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The automatic computing engine now being designed at N.P.L. is a typical large 
scale electronic digital computing machine. In a single lecture it  will  not be 
possible to give much technical detail  of this machine, and most of what I shall  
say will  apply equally to any other machine of this type now being planned. 
 
From the point of view of the mathematician the property of being digital should 
be of greater interest than that of being electronic. That i t  is electronic is 
certainly important because these machines owe their high speed to this,  and 
without the speed it  is doubtfül if  financial support for their construction would 
be forthcoming. But this is virtually all  that there is to be said on that subject.  
That the machine is digital however has more subtle significance. It  means firstly 
that numbers are represented by sequences of digits which can be as long as one 
wishes. One can therefore work to any desired degree of accuracy. This accuracy 
is not obtained by more careful machining of parts,  control of temperature 
variations, and such means, but by a slight increase in the amount of equipment in 
the machine. To double the number of significant figures used would involve 
increasing the equipment by a factor definitely less than two, and would also have 
some effect in increasing the time taken over each job. This is in sharp contrast 
with analogue machines, and continuous variable machines such as the differential 
analyser,  where each additional decimal digit  required necessitates a complete 
redesign of the machine, and an increase in the cost by perhaps as much as a 
factor of 10. A second advantage of digital computing machines is that they are 
not restricted in their applications to any particular type of problem. The 
differential analyser is by far the most general type of analogue machine yet 
produced, but even it  is comparatively limited in its scope. It  can be made to deal 
with almost any kind of ordinary differential equation, but i t  is hardly able to deal 
with partial differential equations at all ,  and certainly cannot manage large 
numbers of linear simultaneous equations, or the zeros of polynomials.  With 
digital machines however it  is almost l i terally true that they are able to tackle any 
computing problem. A good working rule is that the ACE can be made to do any 
job that could be done by a human computer,  and will  do it  in one ten-thousandth 
of the time. This t ime estimate is fairly reliable, except in cases where the job is 
too trivial to be worth while giving to the ACE. 
 
Some years ago I was researching on what might now be described as an 
investigation of the theoretical possibili t ies and limitations of digital computing 
machines. I  considered a type of machine which had a central mechanism, and an 
infinite memory which was contained on an infinite tape. This type of machine 
appeared to be sufficiently general.  One of my conclusions was that the idea of a 
'rule of thumb' process and a 'machine process' were synonymous. The expression 
'machine process' of course means one which could be carried out by the type of 
machine I was considering. l t  was essential in these theoretical arguments that the 
meinory should be infinite.  It  can easily be shown that otherwise the machine can 
only execute periodic operations. Machines such as the ACE may be regarded as 
practical versions of this same type of machine. There is at least a very close 
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analogy. Digital computing machines all  have a central mechanism or control and 
some very extensive form of memory. The memory does not have to be infinite,  
but i t  certainly needs to be very large. In general the arrangement of the memory 
on an infinite tape is unsatisfactory in a practical machine, because of the large 
amount of t ime which is l iable to be spent in shifting up and down the tape to 
reach the point at which a particular piece of information required at the moment 
is stored. Thus a problem might easily need a storage of three million entries,  and 
if each entry was equally likely to be the next required the average journey up the 
tape would be through a million entries,  and this would be intolerable. One needs 
some form of memory with which any required entry can be reached at short 
notice. This difficulty presumably used to worry the Egyptians when their books 
were written on papyrus scrolls.  It  must have been slow work looking up 
references in them, and the present arrangement of written matter in books which 
can be opened at any point is greatly to be preferred. We may say that storage on 
tape and papyrus scrolls is somewhat inaccessible.  It  takes a considerable time to 
find a given entry. Memory in book form is a good deal better,  and is certainly 
highly suitable when it  is to be read by the human eye. We could even imagine a 
computing machine that was made to work with a memory based on books. It  
would not be very easy but would be immensely preferable to the single long tape. 
Let us for the sake of argument suppose that the difficulties involved in using 
books as memory were overcome, that is to say that mechanical devices for 
finding the right book and opening it  at  the right page, etc.  etc.  had been 
developed, imitating the use of human hands and eyes. The information contained 
in the books would stil l  be rather inaccessible because of the time occupied in the 
mechanical motions. One cannot turn a page over very quickly without tearing it ,  
and if one were to do much transportation, and do it  fast,  the energy involved 
would be very great.  Thus if we moved one book every millisecond and each was 
moved ten metres and weighed 200 grams, and if the kinetic energy were wasted 
each time we should consume 101 0 watts,  about half the country's power 
consumption. lf  we are to have a really fast machine then, we must have our 
information, or at any rate a part of i t ,  in a more accessible form than can be 
obtained with books. It  seerns that this can only be done at the expense of 
compactness and economy, e.g. by cutting the pages out of the books, and putting 
each one in to a separate reading mechanism. Some of the methods of storage 
which are being developed at the present t ime are not unlike this.  
 
lf  one wishes to go to the extreme of accessibili ty in storage mechanisms one is 
l iable to find that i t  is gained at the price of an intolerable loss of compactness 
and economy. For instance the most accessible known form of storage is that 
provided by the valve flip-flop or Jordan Eccles trigger circuit .  This enables us to 
store one digit ,  capable of two values, and uses two thermionic valves. To store 
the content of an ordinary novel by such means would cost many millions of 
pounds. We clearly need some compromise method of storage which is more 
accessible than paper,  fi lm etc,  but more economical -in space and money than the 
straightforward use of valves. Another desirable feature is that i t  should be 
possible to record into the memory from within the computing machine, and this 
should be possible whether or not the storage already contains something, i .e.  the 
storage should be erasible. 
 
There are three main types of storage which have been developed recently and 
have these properties in greater or less degree. Magnetic wire is very compact,  is 
erasible, can be recorded on from within the machine, and is moderately 
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accessible.  There is storage in the form of charge patterns on the screen of a 
cathode ray tube. This is probably the ultimate solution. It  could eventually be 
nearly as accessible as the Jordan Eccles circuit .  A third possibility is provided by 
acoustic delay lines. They give greater accessibility than the magnetic wire, 
though less than the C.R.T type. The accessibility is adequate for most purposes. 
Their chief advantage is that they are already a going concern. It  is intended that 
the main memory of the ACE shall  be provided by acoustic delay lines, consisting 
of mercury tanks. 
 
The idea of using acoustic delay lines as memory units is due I believe to Eckert 
of Philadelphia University, who was the engineer chiefly responsible for the 
Eniac. The idea is to store the information in the form of compression waves 
travelling along a column of mercury. Liquids and solids will  transmit sound of 
surprisingly high frequency, and it  is quite feasible to put as many as 1000 pulses 
into a single 5' tube. The signals may be conveyed into the mercury by a 
piezo-electric crystal,  and also detected at the far end by another quartz crystal.  A 
train of pulses or the information  

 
which they represent may be regarded as stored in the mercury whilst  i t  is 
travelling through it .  lf  the information is not required when the train emerges it  
can be fed back into the column again and again until  such time as it  is required. 
This requires a 'recirculating circuit '  to read the signal as it  emerges from the tank 
and amplify it  and feed it  in again. lf  this were done with a simple amplifier i t  is 
clear that the characteristics of both the tank and the amplifier would have to be 
extremely good to permit the signal to pass through even as many as ten times. 
Actually the recirculating circuit  does something slightly different.  What it  does 
may perhaps be best expressed in terms of point set topology. Let the plane of the 
diagram represent the space of all  possible signals.  I  do not of course wish to 
imply that this is two dimensional.  Let the fünction f  be defined for arguments in 
this signal space and have values in it .  In fact let  f(s)  represent the effect on the 
signal s  when it  is passed through the tank and the recirculating mechanism. We 
assume however that owing to thermal agitation the effect of recirculation may be 
to give any point within a circle of radius δ  of f(s) .  Then a necessary and 
sufficient condition that the tank can be used as a storage which will  distinguish 
between N different signals is that there must be N sets E1 . . .  EN  such that if  Fr is 
the set of points within distance ε  of Er  

s  ∈  Fr ⊂   f(s)  ∈  Er
 

and the sets Fr are disjoint.  It  is clearly sufficient for we have only then to ensure 
that the signals initially fed in belong to one or other of the sets Fr and it  will  
remain in the set after any number of recirculations, without any 
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danger of confusion. It  is necessary for suppose s1 . . .  sN  are signals which have 
different meanings and which can be fed into the machine at any time and read out 
later without fear of confusion. 
 
Let Er be the set of signals which could be obtained for s,  by successive 
applications of f  and shifts of distance not more than ε .  Then the sets Er are 
disjoint [two lines indecipherable - Ed.].  In the case of a mercury delay line used 
for N  = 16 the set would consist of all  continuous signals within the shaded area. 

 
One of the sets would consist of all  continuous signals lying in the region below. 
It  would represent the signal 1001. 

 
In order to put such a recirculation system into effect i t  is essential that a clock 
signal be supplied to the memory system so that i t  will  be able to distinguish the 
times when a pulse if  any should be present.  l t  would for instance be natural to 
supply a timing sine wave as shown above to the recirculator.  
 
The idea of a process f  with the properties we have described is a very common 
one in connection with storage devices. It  is known as 'regeneration' of storage. It  
is always present in some form, but sometimes the regeneration is as it  were 
naturally occuring and no precautions have to be taken. In other cases special 
precautions have to be taken to improve such an f  process or else the impression 
will  fade. 
 
The importance of a clock to the regeneration process in delay lines may be 
il lustrated by an interesting li t t le theorem. Suppose that instead of the condition s 
∈  Fr ⊂  f(s) ∈  Er  we impose a stronger one, viz.  fn(s) →  c r  if s ∈  Er i .e.  there are 
ideal forms of the distinguishable signals,  and each admissible signal converges 
towards the ideal form after recirculating. Then we can show that unless there is a 
clock the ideal signals are all  constants.  For let Uα  represent a shift  of origin, i .e.  
Uα  s(t)  = s(t  + α).  Then since there is no clock the properties of the recirculator 
are the same at all  t imes andf therefore commutes with Uα .  Then f  Uα(cr) = Uα f(cr) 
= Uαcr  for f(cr) = cr  since cr is an ideal signal.  But this means that Uα(cr)  is an 
ideal signal,  and therefore for sufficiently small α  must be cr  since the ideal 
signals are discrete.  Then for any β  and sufficiently large u, ß/u  will  be 
sufficiently small and Uß / u(c) = c .  But then by iteration c = Uu

ß / u(c) = Uß(c)  i .e.  
c(t + ß) =  c(t).  This means that the ideal signal c  is a constant.  
 
We might say that the clock enables us to introduce a discreteness into time, so 
that t ime for some purposes can be regarded as a succession of instants instead of 
a continuous flow. A digital machine must essentially deal with discrete objects,  
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and in the case of the ACE this is made possible by the use of a clock. All other 
digital computing machines except for human and other brains that I  know of do 
the same. One can think up ways of avoiding it ,  but they are very awkward. I  
should mention that the use of the clock in the ACE is not confined to the 
recirculation process, but is used in almost every part.  
 
l t  may be as well to mention some figures connected with the mercury delay line 
as we shall  use it .  We shall  use five foot tubes, with an inside diameter of half an 
inch. Each of these will  enable us to store 1024 binary digits.  The unit I  have used 
here to describe storage capacity is self explanatory. A storage mechanism has a 
capacity of m binary digits if  i t  can remember any sequence of m digits each being 
a 0 or a 1. The storage capacity is also the logarithm to the base 2 of the number 
of different signals which can be remembered, i .e.  log, N. The digits will  be 
placed at a t ime interval of one microsecond, so that the time taken for the waves 
to travel down the tube is just over a millisecond. The velocity is about one and a 
half kilometres per second. The delay in accessibili ty time or average waiting for 
a given piece of information is about half a millisecond. In practice this is 
reduced to an effective 150 ps. The füll  storage capacity of the ACE available on 
Hg delay lines will  be about 200,000 binary digits.  This is probably comparable 
with the memory capacity of a minnow. 
 
I  have spent a considerable time in this lecture on this question of memory, 
because I believe that the provision of proper storage is the key to the problem of 
the digital computer,  and certainly if they are to be persuaded to show any sort of 
genuine intelligence much larger capacities than are yet available must be 
provided. In my opinion this problem of making a large memory available at 
reasonably short notice is much more important than that of doing operations such 
as multiplication at high speed. Speed is necessary if the machine is to work fast 
enough for the machine to be commercially valuable, but a large storage capacity 
is necessary if i t  is to be capable of anything more than rather trivial operations. 
The storage capacity is therefore the more fundamental requirement.  
 
Let us now return to the analogy of the theoretical computing machines with an 
infinite tape. It  can be shown that a single special machine of that type can be 
made to do the work of all .  l t  could in fact be made to work as a model of any 
other machine. The special machine may be called the universal machine, i t  works 
in the following quite simple manner. When we have decided what machine we 
wish to imitate we punch a description of it  on the tape of the universal machine. 
This description explains what the machine would do in every configuration in 
which it  might find itself.  The universal machine has only to keep looking at this 
description in order to find out what it  should do at each stage. Thus the 
complexity of the machine to be imitated is concentrated in the tape and does not 
appear in the universal machine proper in any way. 
 
lf  we take the properties of the universal machine in combination with the fact 
that machine processes and rule of thumb processes are synonymous we may say 
that the universal machine is one which, when supplied with the appropriate 
instructions, can be made to do any rule of thumb process. This feature ig 
paralleled in digital computing machines such as the ACE. They are in fact 
practical versions of the universal machine. There is a certain central pool of 
electronic equipment, and a large memory. When any particular problem has to be 
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handled the appropriate instructions for the computing process involved are stored 
in the memory of the ACE and it  is then 'set up' for carrying out that process. 
 
I  have indicated the main strategic ideas behind digital computing machinery, and 
will  now follow this account up with the very briefest description of the ACE. It  
may be divided for the sake of argument into the following parts 
 

Memory 
Control 
Arithmetic part 
Input and output 

 
I  have already said enough about the memory and will  only repeat that in the ACE 
the memory will  consist mainly of 200 mercury delay lines each holding 1024 
binary digits.  The purpose of the control is to take the right instructions from the 
memory, see what they mean, and arrange for them to be carried out.  It  is 
understood that a certain 'code of instructions' has been laid down, whereby each 
Vord' or combination of say 32 binary digits describes some particular operation. 
The circuit  of the control is made in accordance with the code, so that the right 
effect is produced. To a large extent we have also allowed the circuit  to determine 
the code, i .e.  we have notjust thought up an imaginary'best code'and then found a 
circuit  to put i t  into effect,  but have often simplified the circuit  at  the expense of 
the code. It  is also quite difficult  to think about the code entirely in abstracto 
without any kind of circuit .  The arithmetic part of the machine is the part 
concerned with addition, multiplication and any other operations which it  seems 
worth while to do by means of special circuits rather than through the simple 
facili t ies provided by the control.  The distinction between control and arithmetic 
part is a rather hazy one, but at any rate it  is clear that the machine should at least 
have an adder and a multiplier,  even if they turn out in the end to be part of the 
control.  This is the point at which I should mention that the machine is operated 
in the binary scale, with two qualifications. Inputs from externally provided data 
are in decimal,  and so are outputs intended for human eyes rather than for later 
reconsumption by the ACE. This is the first  qualification. The second is that,  in 
spite of the intention of binary working there can be no bar on decimal working of 
a kind, because of the relation of the ACE to the universal machine. Binary 
working is the most natural thing to do with any large scale computer.  It  is much 
easier to work in the scale of two than any other,  because it  is so easy to produce 
mechanisms which have two positions of stability: the two positions may then be 
regarded as representing 0 and 1. Examples are lever as diagram, Jordan Eccles 
circuit ,  thyratron. lf  one is concerned with a 

 
small scale calculating machine then there is at least one serious objection to 
binary working. For practical use it  will  be necessary to build a converter to 
transform numbers from the binary form to the decimal and back. This may well 
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be a larger undertaking than the binary calculator.  With the large scale machines 
this argument carries no weight.  In the first  place a converter would become a 
relatively small piece of apparatus, and in the second it  would not really be 
necessary. This last statement sounds quite paradoxical,  but i t  is a simple 
consequence of the fact that these machines can be made to do any rule of thumb 
process by remembering suitable instructions. In particular i t  can be made to do 
binary decimal conversion. For example in the case of the ACE the provision of 
the converter involves no more than adding two extra delay lines to the memory. 
This situation is very typical of what happens with the ACE. There are many fussy 
lit t le details which have to be taken care of,  and which, according to normal 
engineering practice would require special circuits.  We are able to deal with these 
points without modification of the machine itself,  by pure paper work, eventually 
resulting in feeding in appropriate instructions. 
 
To return to the various parts of the machine. I  was saying that i t  will  work in the 
scale of two. It  is not unnatural to use the convention that an electrical pulse shall  
represent the digit  1 and that absence of a pulse shall  represent a digit  0.  Thus a 
sequence of digits 00 10 110 would be represented by a signal l ike 

 
where the time interval might be one microsecond. Let us now look at what the 
process of binary addition is l ike. In ordinary decimal addition we always begin 
from the right,  and the same naturally applies to binary. We have to do this 
because we cannot tell  whether to carry unless we have already dealt  with the less 
significant columns. The same applies with electronic addition, and therefore it  is 
convenient to use the convention that if  a sequence of pulses is coming down a 
line, then the least significant pulse always comes first .  This has the unfortunate 
result  that we must either write the least significant digit  on the left  in our binary 
numbers or else make time flow from right to left  in our diagrams. As the latter 
alternative would involve writing from right to left  as well as adding in that way, 
we have decided to put the least significant digit  on the left .  Now let us do a 
typical addition. Let us write the carry digits above the addends. 

 
Note that I  can do the addition only looking at a small part of the data. To do the 
addition electronically we need to produce a circuit  with three inputs and two 
outputs.  
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I t  is very easy to produce a voltage proportional to the number of pulses on the 
inputs,  and one then merely has to provide a circuit  which will  discriminate 
between four different levels and put out the appropriate sum and carry digits.  I  
will  not attempt to describe such a circuit;  i t  can be quite simple. When we are 
given the circuit  we merely have to connect i t  up with feedback and it  is an adder. 
Thus: 

 
l t  will  be seen that we have made use of the fact that the same process is used in 
addition with each digit ,  and also the fact that the properties of the electrical 
circuit  are invariant under time shifts,  at  any rate if  these are multiples of the 
clock period. It  might be said that we have made use of the isomorphism between 
the group of these time shifts and the multiplicative group of real numbers to 
simplify our apparatus, though I doubt if  many other applications of this principle 
could be found. 
 
It  will  be seen that with such an adder the addition is broken down into the most 
elementary steps possible, such as adding one and one. Each of these occupies a 
microsecond. Our numbers will  normally consist of 32 binary digits,  so that two of 
them can be added in 32 microseconds. Likewise we shall  do multiplications in the 
form of a number of consecutive additions of one and one or one and zero etc. 
There are 1024 such additions or thereabouts to be done in a multiplication of one 
32 digit  number by another,  so that one might expect a multiplication to take 
about a millisecond. Actually the multiplier to be used on ACE will  take rather 
over two milliseconds. This may sound rather long, when the unit operation is 
only a microsecond, but i t  actually seems that the machine is fairly well balanced 
in this respect,  Le. the multiplication time is not a serious bottleneck. Computers 
always spend just as long in writing numbers down and deciding what to do next 
as they do in actual multiplications, and it  is just the same with the ACE. A great 
deal of t ime is spent in getting numbers in and out of storage and deciding what to 
do next.  To complete the four elementary processes, subtraction is done by 
complementation and addition, and division is done by the use of the iteration 
formula 
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un = un - 1  + u n - 1  (1  -  aun - 1) 

 
un  converges to a- 1 provided |1 – au0  |  < 1. The error is squared at each step, so 
that the convergence is very rapid. This process is of course programmed, i .e.  the 
only extra apparatus required is the delay lines required for storing the relevant 
instructions. 
 
Passing on from the arithmetic part there remains the input and output.  For this 
purpose we have chosen Hollerith card equipment.  We are able to obtain this 
without having to do any special development work. The speeds obtainable are not 
very impressive compared with the speeds at which the electronic equipment 
works, but they are quite sufficient in all  cases where the calculation is long and 
the result  concise: the interesting cases in fact.  It  might appear that there would 
be a difficulty in converting the information provided at the slow speeds 
appropriate to the Hollerith equipment to the high speeds required with the ACE, 
but i t  is really quite easy. The Hollerith speeds are so slow as to be counted zero 
or stop for many purposes, and the problem reduces to the simple one of 
converting a number of statically given digits into a stream of pulses. This can be 
done by means of a form of electronic commutator.  
 
Before leaving the outline of the description of the machine I should mention 
some of the tactical situations that are met with in programming. I  can illustrate 
two of them in connection with the calculation of the reciprocal described above. 
One of these is the idea of the iterative cycle. Each time that we go from ur  to 
ur + 1 ,  we apply the same sequence of operations, and it  will  therefore be 
economical in storage space if  we use the same instructions. Thus we go round and 
round a cycle of instructions: 

 
It  looks however as if  we were in danger of getting stuck in this cycle, and unable 
to get out.  The solution of this difficulty involves another tactical idea, that of 
'discrimination' Le. of deciding what to do next partly according to the results of 
the machine itself,  instead of according to data available to the programmer. In 
this case we include a discrimination in each cycle, which takes us out of the 
cycle when the value of |1 – au |   is  sufficiently small.  It  is l ike an aeroplane 
circling over an aerodrome, and asking permission to land after each circle.  This 
is a very simple idea, but is of the utmost importance. The idea of the iterative 
cycle of instructions will  also be seen to be rather fundamental when it  is realised 
that the majority of the instructions in the memory must be obeyed a great number 
of times. lf  the whole memory were occupied by instructions, none of it  being 
used for numbers or other data, and if each instruction were obeyed once only, but 
took the longest possible time, the machine could only remain working for sixteen 
seconds. 
 
Another important idea is that of constructing an instruction and then obeying it .  
This can be used amongst other things for discrimination. In the example I have 
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just taken for instance we could calculate a quantity which was 1 if |1 – au |  was 
less than 2- 3 . 1  and 0 otherwise. By adding this quantity to the instruction that is 
obeyed at the forking point the instruction can be completely altered in its effect 
when finally 1 - au  is reduced to sufficiently small dimensions. 
 
Probably the most important idea involved in instruction tables is that of standard 
subsidiary tables. Certain processes are used repeatedly in all  sorts of different 
connections, and we wish to use the same instructions, from the same part of the 
memory every time. Thus we may use interpolation for the calculation of a great 
number of different fünctions, but we shall  always use the same instruction table 
for interpolation. We have only to think out how this is to be done once, and 
forget then how it  is done. Each time we want to do an interpolation we have only 
to remember the memory position where this table is kept,  and make the 
appropriate reference in the instruction table which is using the interpolation. We 
might for instance be making up an instruction table for finding values of J0(x)  
and use the interpolation table in this way. We should then say that the 
interpolation table was a subsidiary to the table for calculating J0(x) .  There is thus 
a sort of hierarchy of tables. The interpolation table might be regarded as taking 
its orders from the J0  table, and reporting its answers back to it .  The master 
servant analogy is however not a very good one, as there are many more masters 
than servants,  and many masters have to share the same servants.  
 
Now let me give a picture of the operation of the machine. Let us begin with some 
problem which has been brought in by a customer. It  will  first  go to the problems 
preparation section where it  is examined to see whether it  is in a suitable form and 
self-consistent,  and a very rough computing procedure made out.  l t  then goes to 
the tables preparation section. Let us suppose for example that the problem was to 
tabulate solutions of the equation 

y"  + xy´  = J0(x)  
 
with initial  conditions x  = y  = 0, y'  = a. This would be regarded as a particular 
case of solving the equation 

y" = F(x, y,  y') 
 
for which one would have instruction tables already prepared. One would need 
also a table to produce the fünction F(x, y,  z) (in this case F(x, y,  z) = J0(x)  -  xz  
which would mainly involve a table to produce J0(x) ,  and this we might expect to 
get off the shelf).  A few additional details about the boundary conditions and the 
length of the arc would have to be dealt  with, but much of this detail  would also 
be found on the shelf,  just l ike the table for obtaining J0(x) .  The instructions for 
the job would therefore consist of a considerable number taken off the shelf 
together with a few made up specially for the job in question. The instruction 
cards for the standard processes would have already been punched, but the new 
ones would have to be done separately. When these had all  been assembled and 
checked they would be taken to the input mechanism, which is simply a Hollerith 
card feed. They would be put into the card hopper and a button pressed to start  the 
cards moving through. It  must be remembered that initially there are no 
instructions in the machine, and one's normal facili t ies are therefore not available. 
The first  few cards that pass in have therefore to be carefülly thought out to deal 
with this situation. They are the initial  input cards and are always the same. When 
they have passed in a few rather fundamental instruction tables will  have been set 
up in the machine, including sufficient to enable the machine to read the special 
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pack of cards that has been prepared for the job we are doing. When this has been 
done there are various possibili t ies as to what happens next,  depending on the way 
thejob has been programmed. The machine might have been made to go straight on 
through, and carry out the job, punching or printing all  the answers required, and 
stopping when all  of this has been done. But more probably it  will  have been 
arranged that the machine stops as soon as the instruction tables have been put in. 
This allows for the possibility of checking that the content of the memories is 
correct,  and for a number of variations of procedure. l t  is clearly a suitable 
moment for a break. We might also make a number of other breaks. For instance 
we might be interested in certain particular values of the parameter a ,  which were 
experimentally obtained figures, and it  would then be convenient to pause after 
each parameter value, and feed the next parameter value in from another card. Or 
one might prefer to have the cards all  ready in the hopper and let the ACE take 
them in as it  wanted them. One can do as one wishes, but one must make up one's 
mind. Each time the machine pauses in this way a 'word' or sequence of 32 binary 
digits is displayed on neon bulbs. This word indicates the reason for stopping. I  
have already mentioned two possible reasons. A large class of further possible 
reasons is provided by the checks. The programming should be done in such a way 
that the ACE is frequently investigating identities which should be satisfied if  all  
is as it  should be. Whenever one of these checks fails the machine stops and 
displays a word which describes what check has failed. 
 
It  will  be seen that the possibili t ies as to what one may do are immense. One of 
our difficulties will  be the maintainence of an appropriate discipline, so that we 
do not lose track of what we are doing. We shall  need a number of efficient 
l ibrarian types to keep us in order.  
 
Finally I should like to make a few conjectures as to the repercussions that 
electronic digital computing machinery will  have on mathematics.  I  have already 
mentioned that the ACE will  do the work of about 10,000 computers.  It  is to be 
expected therefore that large scale hand-computing will  die out.  Computers will  
sti l l  be employed on small calculations, such as the substitution of values in 
formulae, but whenever a single calculation may be expected to take a human 
computer days of work, i t  will  presumably be done by an electronic computer 
instead. This will  not necessitate everyone interested in such work having an 
electronic computer.  It  would be quite possible to arrange to control a distant 
computer by means of a telephone line. Special input and output machinery would 
be developed for use at these out stations, and would cost a few hundred pounds at 
most.  The main bulk of the work done by these computers will  however consist of 
problems which could not have been tackled by hand computing because of the 
scale of the undertaking. In order to supply the machine with these problems we 
shall  need a great number of mathematicians of ability.  These mathematicians will  
be needed in order to do the preliminary research on the problems, putting them 
into a form for computation. There will  be considerable scope for analysts.  When 
a human computer is working on a problem he can usually apply some common 
sense to give him an idea of how accurate his answers are. With a digital computer 
we can no longer rely on common sense, and the bounds of error must be based on 
some proved inequalities.  We need analysts to find the appropriate inequalities for 
us. The inequalities need not always be explicit ,  i .e.  one need not have them in 
such a form that we can tell ,  before the calculation starts,  and using only pencil  
and paper,  how big the error will  be. The error calculation may be a serious part 
of the ACE's duties.  To an extent it  may be possible to replace the estimates of 
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error by statistical estimates obtained by repeating the job several t imes, and 
doing the rounding off differently each time, controlling it  by some random 
element,  some electronic roulette wheel.  Such statistical estimates however leave 
much in doubt,  are wasteful in machine time, and give no indication of what can 
be done if i t  turns out that the errors are intolerably large. The statistical method 
can only help the analyst,  not replace him. 
 
Analysis is just one of the purposes for which we shall  need good mathematicians. 
Roughly speaking those who work in connection with the ACE will  be divided into 
its masters and its servants.  Its masters will  plan out instruction tables for i t ,  
thinking up deeper and deeper ways of using it .  Its servants will  feed it  with cards 
as it  calls for them. They will  put right any parts that go wrong. They will  
assemble data that i t  requires.  In fact the servants will  take the place of limbs. As 
time goes on the calculator i tself will  take over the fünctions both of masters and 
of servants.  The servants will  be replaced by mechanical and electrical l imbs and 
sense organs. One might for instance provide curve followers to enable data to be 
taken direct from curves instead of having girls read off values and punch them on 
cards. The masters are liable to get replaced because as soon as any technique 
becomes at all  stereotyped it  becomes possible to devise a system of instruction 
tables which will  enable the electronic computer to do it  for i tself.  It  may happen 
however that the masters will  refuse to do this.  They may be unwilling to let their 
jobs be stolen from them in this way. In that case they would surround the whole 
of their work with mystery and make excuses, couched in well chosen gibberish, 
whenever any dangerous suggestions were made. I  think that a reaction of this 
kind is a very real danger. This topic naturally leads to the question as to how far 
i t  is possible in principle for a computing machine to simulate human activities.  I  
will  return to this later,  when I have discussed the effects of these machines on 
mathematics a l i t t le fürther.  
 
I  expect that digital computing machines will  eventually stimulate a considerable 
interest in symbolie logic and mathematical philosophy. The language in which 
one communicates with these machines, Le. the language of instruction tables, 
forms a sort of symbolic logic. The machine interprets whatever it  is told in a 
quite definite manner without any sense of humour or sense of proportion. Unless 
in communicating with it  one says exactly what one means, trouble is bound to 
result .  Actually one could communicate with these machines in any language 
provided it  was an exact language, i .e.  in principle one should be able to 
communicate in any symbolic logic, provided that the machine were given 
instruction tables which would enable it  to interpret that logical system. This 
would mean that there will  be much more practical scope for logical systems than 
there has been in the past.  Some attempts will  probably be made to get the 
machine to do actual manipulations of mathematical formulae. To do so will  
require the development of a special logical system for the purpose. This system 
should resemble normal mathematical procedure closely, but at the same time 
should be as unambiguous as possible. As regards mathematical philosophy, since 
the machines will  be doing more and more mathematics themselves, the centre of 
gravity of the human interest will  be driven fürther and fürther into philosophical 
questions of what can in principle be done etc. 
 
It  has been said that computing machines can only carry out the processes that 
they are instructed to do. This is certainly true in the sense that if  they do 
something other than what they were instructed then they have just made some 
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mistake. It  is also true that the intention in constructing these machines in the 
first  instance is to treat them as slaves, giving them only jobs which have been 
thought out in detail ,  jobs such that the user of the machine fülly understands 
what in principle is going on all  the time. Up til l  the present machines have only 
been used in this way. But is i t  necessary that they should always be used in such 
a manner? Let us suppose we have set up a machine with certain initial instruction 
tables,  so constructed that these tables might on occasion, if  good reason arose, 
modify those tables. One can imagine that after the machine had been operating 
for some time, the instructions would have altered out of all  recognition, but 
nevertheless stil l  be such that one would have to admit that the machine was stil l  
doing very worthwhile calculations. Possibly it  might sti l l  be getting results of the 
type desired when the machine was first  set up, but in a much more efficient 
manner. In such a case one would have to admit that the progress of the machine 
had not been foreseen when its original instructions were put in.  It  would be like a 
pupil who had learnt much from his master,  but had added much more by his own 
work. When this happens I feel that one is obliged to regard the machine as 
showing intelligence. As soon as one can provide a reasonably large memory 
capacity it  should be possible to begin to experiment on these lines. The memory 
capacity of the human brain is probably of the order of ten thousand million 
binary digits.  But most of this is probably used in remembering visual 
impressions, and other comparatively wasteful ways. One might reasonably hope 
to be able to make some real progress with a few million digits,  especially if one 
confined one's investigations to some rather limited field such as the game of 
chess. It  would probably be quite easy to find instruction tables which would 
enable the ACE to win against an average player.  Indeed Shannon of Bell 
Telephone laboratories tells me that he has won games playing by rule of thumb: 
the skill  of his opponents is not stated. But I would not consider such a victory 
very significant.  What we want is a machine that can learn from experience. The 
possibili ty of letting the machine alter i ts own instructions provides the 
mechanism for this,  but this of course does not get us very far.  
 
It  might be argued that there is a fundamental contradiction in the idea of a 
machine with intelligence. It  is certainly true that 'acting like a machine',  has 
become synonymous with lack of adaptability. But the reason for this is obvious. 
Machines in the past have had very li t t le storage, and there has been no question 
of the machine having any discretion. The argument might however be put into a 
more aggressive form. It  has for instance been shown that with certain logical 
systems there can be no machine which will  distinguish provable formulae of the 
system from unprovable, i .e.  that there is no test that the machine can apply which 
will  divide propositions with certainty into these two classes. Thus if a machine is 
made for this purpose it  must in some cases fail  to give an answer. On the other 
hand if a mathematician is confronted with such a problem he would search around 
and find new methods of proof, so that he ought eventually to be able to reach a 
decision about any given formula. This would be the argument. Against i t  I  would 
say that fair play must be given to the machine. Instead of it  sometimes giving no 
answer we could arrange that i t  gives occasional wrong answers. But the human 
mathematician would likewise make blunders when trying out new techniques. It  
is easy for us to regard these blunders as not counting and give him another 
chance, but the machine would probably be allowed no mercy. In other words 
then, if  a machine is expected to be infallible,  i t  cannot also be intelligent.  There 
are several mathematical theorems which say almost exactly that.  But these 
theorems say nothing about how much intelligence may be displayed if a machine 
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makes no pretence at infallibili ty.  To continue my plea for 'fair play for the 
machines' when testing their I .Q. A human mathematician has always undergone 
an extensive training. This training may be regarded as not unlike putting 
instruction tables into a machine. One must therefore not expect a machine to do a 
very great deal of building up of instruction tables on its own. No man adds very 
much to the body of knowledge, why should we expect more of a machine? Putting 
the same point differently, the machine must be allowed to have contact with 
human beings in order that i t  may adapt itself to their standards. The game of 
chess may perhaps be rather suitable for this purpose, as the moves of the 
machine's opponent will  automatically provide this contact.  
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