Lecture Notes in Artificial Intelligence 535

Subseries of Lectures in Computer Sciences
Edited by J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

Fundamental s of
Artificial Intelligence
Research

International Workshop FAIR 91

Smolencia, Czecheslovakia, September 8-13, 1991
Proceedings

(Ph. Jorrand and J. Kelemen, eds.)

Springer Verlag
Berlin, New York
London, Paris, Tokyo
Hong Kong, Barcelona
Budapest



Logical Fiberings and Polycontextural Systems

J.Pfalzgraf *
RISC-Linz
Johannes Kepler University
A-4040 Linz, Austria
email K311576@AEARN.BITNET

Abstract

Based on the notion of abstract fiber spaces the concept of a logical fibering is developed. This was
motivated by a project where so-called polycontextural logics were discussed. The fiber space approach
provides a rather general framework for the modeling of such non classical logics. It gives the possibility
to construct a variety of new logical spaces from a given (indexed) system of logics. These spaces are
in some sense parallel (inference) systems. We can give a straight forward definition and classification
of the so-called transjunctions arising in polycontextural logics. These are bivariate operations having
values distributed over different logical subsystems. Univariate, bivariate operations are introduced in
functional notation. The group generated by the generalized negation operations and system changes is
investigated. We make some remarks on aspects of applicability and links to other work.

1 Introduction

The following work was initiated by a joint project of two university groups and an industrial company on
so-called ‘Polycontextural Logic’, abbreviated PCL. It is of importance for the whole understanding to give
some motivating background information, we do this subsequently and in the next section when dealing
with basics from PCL.

The PCL approach to a nonclassical generalization of two valued logics in form of a whole system of
classical logical spaces distributed over an indexing set of values is heavily influenced by the philosophical
work of Gotthard Giinther (cf. references to PCL)} and it cannot be seen without these roots. G.Giinther’s
work has been extensively studied and partly continued by R.Kaehr and coworkers (we call them ‘PCL
group’, for short).

One of the main arguments of the PCL group was that this so-called ‘transclassical logic’ should be
suitable as a logical basis for modeling of (living) communicating systems. In fact, parts of that theory had
been discussed and developed at the Biological Computing Laboratory (BCL), Urbana I1.., in the sixties, in
the realm of research done to establish a new 2nd order cybernetics which requires a new logical basis (as
was argued).

Many unconventional philosophical and metaphysical considerations can be found around the whole PCL
theoretic approach. And it is not always easy to follow or adopt these thoughts. Unfortunately, much of the
literature on the subject is not easy to access or available.

Therefore, one aspect of this article is to draw attention to some of these ideas and results and also to
our own formal mathematical approach in the field of abstract fiberings which shows, among others, that
PCL systems can be derived as a special class of logical fiberings. It should be emphasized here that I am
a non-specialist in PCL and not a member of the PCL group.

Of further interest would be possible links to other work (e.g. in the field of the project MEDLAR. (ESPRIT
BRA 3125) on methods of practical reasoning), in particular to labelled deductive systems (cf. [GA]).

In many discussions during that project with the PCL group, intuitively, I always had the impression that
a mathematical formulation of such distributed logical systems can be given naturally in a general framework
using categories, fiberings, indexed systems (and related fields) as a formal mathematical language.

For example, in this way it is possible to give a simple definition of the notion of transjunctions (this is
a typical nonclassical bivariate operation in PCL systems) and their classification. On the basis of the
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notion of an abstract fibering we establish a method to construct {(many valued) logical spaces from a given
(indexed) system of 2-valued logics.

This way, it is possible to derive a variety of new logical spaces systematically and it is casy to examine

situations where formulas are consistent locally (in each subsystem) but not globally.
We apply the construction method to show that PCL systems can be derived as a special class of logical
fiberings. A particular example in a 3-valued PCL motivates, more general, that the fibering approach leads
to a method for decomposing (parallelizing) a given multiple-valued logic into 2-valued components (this is
stbject for further study).

The following presentation is not as rigorous as it could be since there are natural links to disciplines like
indexed categories, toposes and sheaves which provide a more general framework for all such considerations
(cf. selected titles in the literature list). A more general treatment can be subject of future work.

Further comments follow in the subsequent text. We also make a remark on intended possible applications
in robot multitasking problems and possible links to other projects.
More details of the material presented in this article can be found in [PF3).

2 Remarks on PCL

We give some preparatory comments which, of course, can only represent a very limited perspective.

As previously remarked, PCL arose from particular philosophical considerations and has its individual
understanding of communication and interaction. For a thorough understanding of the arguments of the
PCL group it is necessery to have some insight in the written work.

A lot of material (case studies, reports) exists where ideas of polycontexturality are applied to nonformal,
descriptive modeling of processes and scenarios (cf. e.g. [R1,2]).

Basic principles are among others:

Distribution of several classical (2-valued) logics (‘loci’). At least 3 loci are involved; the individual spaces
are pairwise isomorphic {‘locally’). For two classical spaces (components) of the whole system a third one
has the function of mediation. Thus in certain respect, a pair of local components of the polycontextural
system needs a third classical space for ‘reflection’ (for mediation) in the general communication process
and in interaction. Although two components are isomorphic as 2-valued logical spaces, their placement
(‘index’) plays a role in the common context of the whole system - the whole PCL system is multivalued.
The ‘transitions’ (‘communication’) between the particular subsystems is of essential structural importance.
Each individual subobject conceives the world through the same logic, but from a different place in the
system; locally the results are all the same since the same 2-valued logic is placed there; but globally there
may be differences in the results since reasoning is performed at different ontological places, the places being
enumerated (labelled) by an index set; the role of the latter is twofold also constituing a global set of values
for the PCL as a multivalued logic. This involvement is somewhat subtle (we refer to the literature on PCL).

The development of PCL as initiated by G. Giinther is deeply influenced and based on philosophical
considerations and it cannot be seen without these roots (we refer to the literature; cf. also some selected
quotations from PCL literature in {PF3]).

We point out that we are neither specialists in these philosophical foundations nor experts in PCL as
represented by the PCL group.

We find some aspects of this work quite interesting and were motivated to model such PCL-systems as
certain logical fiberings.

In this very general framework the PCL systems form a special class of multiple- valued logical spaces
representable as certain fiberings.

3 Some Basic Notions from PCL

We use L or L; (if an index is necessary) to denote a classical 2-valued logical space (a 1st order language
w.r.t. a symbol set which we do not explicitly specify if there is no need to do so).
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3.1 Local and Global Systems

A PCL system is an m-valued logical system consisting of n classical 2-valued subsystems denoted by L,
;n . The (global) truth values are denoted by 1,2,...,m. (Thus each sub-
system L; can be associated with a 2-element subset of {‘1,2, ...,m}.) The two (local) truth values within
the (classical) subsystem L; are defined by ; = {T;, F;}.

The total (global) system is denoted by L) where £{™) can be seen as the disjoint union (coproduct) of
sets: Ly II... 11 L,,.

In addition to these basic constituents of a PCL the following so-called mediation scheme - we write MS for
short - is an essential data for the definition, of a PCL.

We show such a scheme for the case m = 3 (hence n = 3): Notation MS53

i=1,2,...,n, where n =

F resp. 1 2
T1 r1 Y i
Tz F2 2 — 3

It contains the following information:

The arrow T; — F; expresses an ordering of the two values within the subsystem L;, and _
S>——C expresses the fact that an F-value in one system (L;) becomes a T-value in another (L;) (a

“change” of truth values when changing the corresponding subsystems)- i.e. a ‘semantical change’.

The vertical lines have to be interpreted as identifications.

The right diagram is a short notation where the global values are inserted (indicating the relations(identifications)

between the corresponding local values).

Thus, the MS describes the global relations between the local values and contains informations about
what happens if one passes from one subsystem to another. It expresses how the collection of the value sets
Q) = {T:, F;} of the individual L; becomes the global set of values {1,2,3}, respectively.

In logical fibering notation (cf. section 4 ) we shall express this by an equivalence relation on the union 0
of all the local value sets ; = {T}, F;}. From the set of all local values the global value set is then obtained
as a set of residue classes: Ty =T3, F =T, F;=F;.

If we denote the equivalence class of T) by [T}], etc., then the three ’global’ values are 1 = [T} = [T3},
2 = [FR] = [T3], 3 = [F;] = [F3), corresponding to the foregoing mediation scheme.

REMARK. In PCL a certain enumeration convention for the subsystems is defined. For a motivation
of this kind of indexing and enumeration as well as the mediation scheme we refer to the particular litera-
ture on PCL. We do not go into these details here (cf. also [PF3]).

NOTATIONAL CONVENTION. In PCL ’'vector-like’ formulas are studied. Hence, for terms, formulas
1 L)
(expressions) in a PCL vector notation is used: X = : , Y = : , etc., z; corresponds to

T Ym
expressions in subsystem L; , respectively. We shall make no dictinction between column and row notation

of expressions X,Y, ....

3.2 Negations in a PCL

Particular negation operations are introduced in PCL via tableaux. These univariate operations consist of
negations in particular subsystems combined with system changes. For more details we refer to the PCL
literature (cf. also [PF3,section 3]). With our approach we give a general investigation of negations and
-system changes and describe the group they generate (section 5).
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3.3 Bivariate Operations, Transjunctions

For notational simplicity, again we restrict the considerations to £,

The tableau method is also used to introduce bivariate operations. Since every subsystem is a classical first
order system we are led to bivariate operations which are defined componentwise, as for example:

X AVAY is to be interpreted in £(3) as the operation where a conjunction is performed in the subsystem L,
a disjunction in L, and a conjunction in Lj. Analogously the operation X AV — Y has to be understood.

1Ay 1A%
In vector notation: X AVAY = | zavy |, XAVoY =| 22Vy
3 A 13 Z3 — Y3

Question: can all such operations be formed consistently ?
Answer: it turns out that this is not the case in general, e.g. X AV AY can be formed but XAV — Y

cannot be defined consistently in £(3). This will become clear when we consider semantical aspects and
evaluation of such expressions.

The identification of certain truth values plays an important role from a semantical point of view and it
impacts the introduction of bivariate operations. We will come back to this later.

We give an example of a formula: Ni(MXAAAY)=XVAA NY.
For a typical PCL like proof by tableaux we refer to the literature (cf. also [PF3,3.11]).
In section 6 we shall give a short proof of that formula in an operational way using our notation.

REMARK. In a PCL system a new type of binary operation arises: an operation where the four out-
put values w.r.t. the four inputs in a local subsystem L; are distributed over other subsystems Lj,j # 1.
These (non classical) operations are also introduced via tableaux in the PCL literature, they are called
transjunctions.

Dealing with logical fiberings, it is easy to see how to define and classify such operations, cf. section 6, 7.

3.4 Remark on Implementations

Some rules for forming PCL formulas of the above type have been implemented in Prolog during the previ-
ously mentioned project and were used to verify some formulas.

4 Logical Fiberings

All categories are assumed to be small categories (object and morphism classes are sets).

Subsequently, we introduce the concept of abstract fiber spaces in great generality. There is much material
in the literature showing that fiberings provide a powerful tool - a *formal mathematical language’ where
local-global relations of objects and data are expressible,

(For example, in [PF2] we made practical experiences with that concept when we applied geometric fiberings
to solve some open problems which formerly existed in a category of geometric spaces).

4.1 Preliminary Remarks on Indexed Systems

Fiberings and indexed systems are closely related from a formal point of view. As pointed out by P. Taylor
in [LNCS, p. 449fF], all consistency problems in forming families of sets w.r.t. a given indexing set I can
be avoided when we interpret an indexed system (A4;)ier in terms of an abstract fibering £ with a canonical
projection (so-called display map)  in the following sense:

the “total space” A of the fibering £ = (A,,I) is the coproduct (i.e. disjoint union) of the A;, hence
A = [J;e1 Ai, and 7(a) = i for all @ € A;, defines the projection map « : 4 — I from A to the “base space”
I. Then A; = m~1(4) is exactly the fiber over 4.

After these remarks we come to our general definition.



4.2 Fiber Spaces

We define a fiber space (fibering, bundle) £ = (E,x,B,F) in a very general way for objects of a category
(not only for topological spaces).

The map 7 : E — B is sometimes called projection, E is called fotal space, B the base space, the set of all
preimages of an element b € B, i.e. #71(b) is called fiber over b.

F denotes the typical fiber with which each fiber #=1(b), b € B, of the bundle is modeled.

A covering {U;}ier of the base space B consists in general of subsets of B (whose union is B); depending
on the category additional properties and conditions can be required (e.g. that they are open sets).
Typically, a fibering £ is locally trivial (w.r.t. {U;}ie1), i.e. the following diagram is commutative:

1) 2 -~ UixF

v

®; is an isomorphism in the corresponding category, where
®; = (7, ¢:), $i:m W U) = F (2 morphism).

For b e U;, ¢ip : 77 1(b) 2 F is the fiber isomorphism induced by ®; (through this #=! obtains its fiber
structure).

The remaining properties concerning structure group, cocycle condition, etc. (cf. literature, e.g. [S])
can be formulated analogously here. We do not go into further details here since we only need the elemen-
tary features of the fiber space concept.

Of particular importance for our purposes is the case where the covering consists of one-point sets, i.e.
the U; are 1—point sets (so every point of the base set B is an individual covering set).
The structure isomorphisms of the fibers are then given by:

@ : 7Y (b) = F

and for & # c the fibers over b resp. ¢ can be compared with each other (fiber transition with F as "mediator”)
using

¢t ogpiaTi(b) = F— 17 (e).

4.3 Logical Fiberings

A logical fibering is an abstract fiber space £ as defined above where the typical fiber is F' = L , in our
considerations L will be a classical first order logical space.

The base space will often be denoted by B = I , the "indexing set”.

We can also think of the fibers as modeled via a boolean algebra as typical fiber. Then £ would be an abstract
bundle of boolean algebras.

In this article we shall deal only with coverings where each U; is a one point set, i.e. U; = {i} for B = I,
the base space B of the fibering being the indexing set I.

A morphism between two logical fiberings is defined in a similar way as this is done for bundles (c.f. e.g.
[GO,Ch.4.5], [LS] and others). In some sense we tend to interpret a morphism as a process of transporting
information between spaces.

In this way we obtain the category of logical fiberings. Logical fiberings over a certain constant base space I
(index set) then form a 'comma category’ £ | I in the usual sense (cf. e.g. [GO}).

REMARK. Although we are working here with classical logics as fibers, we point out that all conside-
rations can be done for more general objects in the fibers (e.g. different logics or algebras, etc.), based on a



175

modified, generalized definition of an abstract fibering.

In a logical fibering the map = : E — I is always a morphism in the category of sets. The base set I can
carry an additional own structure (e.g. partial order, graph, net, semigroup, algebra, topology, etc.).

If E,I belong to the same category, then it is reasonable to require that 7 is a morphism in that category.
In particular, it might be of interest in this framework to study logical fiberings which are bundles or sheaves
of e.g. boolean algebras over a topological base space.

We want to mention here that the fibering approach reflects certain internal parallelism.

NOTE. Although we introduced the notions (fiberings, etc.) in great generality our interest in this ar-
ticle concentrates only on a certain class of logical fiberings w.r.t. one-point coverings. We also do not
discuss specific structures of the base space (index set). But nevertheless, we wanted to introduce the
notions in a certain generality for later use. (These aspects are of interest for further study).

4.4 Free Parallel Systems

The simplest form of a fibering or bundle is the trivial fibering” £ = (¥, r, B, F) with E = B x F, 7 the
first projection; the fiber over i € B is: 7~ 1(i) = {i} x F.

In the context of our logical fiberings such a trivial fibering is a parallel system of logics L; over an in-
dex set I as base space B and F = L a classical first order logic.

We can think of reasoning processes running in parallel and independently within each fiber L; = »~1(3).
Transition ("communication™) between fibers (loci) is described via the ¢;,¢ € I.
We call such a logical fibering a "free parallel system” L1, Its total space is denoted by E I note ET = [L;ier Li-

Simplest case (trivial fibering): all ¢; = ¢dy,. We shall make a difference between local truth values Q; =
{T:, F;} in each 2-valued subsystem L;,i € I, and the set of global values Q! of the whole fibering.

Parallel systems are characterized by the fact that there are no relations between different local values, i.e.
the global value set is the mere coproduct (disjoint union)

of =

iel

("free” parallel system). For I = {1,...,n}, n a natural number, we define L™ := LI. The corresponding
total space is denoted by E™.

NOTATION. A logical fibering which is derived from a free parallel fibering £! by the introduction of
an equivalence relation = on Q! will be denoted by £(D, with QD) := @I/ = . For I = {1,...,n} we use
the notation £(®). Accordingly, the total space of such a fibering is EWU or EM respectively.

All the logical operations we are considering in a logical space LD are induced by corresponding operations
in £!. In a certain sense, £{D is a logical fibering with constraints (cf. section 7 for more details).

For example, the PCL system £ arises from the free parallel system £ by introducing the equivalence
relation = (given by MS3, cf. section 3} on the global values 2 yielding Q@) = {1,2,3}.

REMARK. In the free parallel logical systems £ there are no restrictions on the value sets 2 (e.g., in
L™ there is a total amount of 2n global truth values). A variety of logical systems can be derived from c!
by introducing various equivalence relations on /. We can vary freely all data, i.e. base space, the fibers.
In principle, we can combine different logics in a fibering when we allow different types of logical spaces for
the fibers (by a corresponding generalization of the definition of an abstract fibering.)
If we consider (in the category of sets) the total space E! of the fibering £! as coproduct of the sets L;(i € I),
then £f is a bundle over I, i.e. an object of the comma category Set| I, also denoted Bn(I), bundles over
I, cf. [GO,Ch.4.5].
This category actually is a topos, [Goldblatt,loc.cit.]. We do not go into these details here.

4.5 Notation for Logical Expressions

With the notion of a logical fibering we express the coexistence of various logical loci residing over an indexed
system (base space) which itself can have an own structure (object of certain category). Our objective is
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to give a suitable formalization of the logical expressions in a fibering £/ which form the corresponding
language of £!. This should be constructed from the local languages of the L;,i € I. In a free parallel
fibering it is possible without restrictions to form global expressions consisting of a family of arbitrary local
expressions (formed in parallel in each subsystem).

Canonically, this leads to the following formal definition of a global ezpression z in the language of Jih
namely z = (Z;)ielI-

The language of a logical fibering is therefore obtained as the collection of all families of expressions from
the local languages of the subsystems L.

Formally, all such families ¢ = (z;);es form the direct product (in the categorical sense) of the sets of all
local expressions, we denote this by [;c; L:.

Logical connectives are introduced componentwise.

If I is a finite set then we use vector notation for expressions z, as already done previously.

We mention here that, alternatively, the set of all global expressions can be expressed as the set of all
sections s : I — [I;cs Li, a section has the property mos = idy, m being the projection of the fibering. This
is more compatible with our notion of a fibering (cf. P.Taylor in [LNCS, p.451] and also [PF3]).
NOTATION. We use the symbol E! also to denote the language corresponding to the logical fibering (keeping
in mind that it is a direct product or all sections, respectively).

5 Univariate Operations, Negations

5.1 Preliminary Remark

The negation operation N in the PCL £® is defined (cf. e.g. [PF3]) in such a way that N; realizes a
classical negation in L, and swaps the contents of the places L, and L3 (system change) — i.e. realizes the
transposition 2 — 3, 3 — 2 (with cycle description for permutations, briefly written as (23)). This can be

represented as follows:
Ny LB S 6

I N 3 I I
T2 | =1 z3 |, e MX=N]|z; |=] 23
z3 2 I3 T2

Such operations can be canonically extended to general logical fiberings.

5.2 ‘Transpositions (System Changes)

Let £ = L™ (the following considerations can easily be generalized to ch.

Permutations play an important role in the definition of negation operations in PCL.

We recall that every permutation group (i.e. the group of all bijections of a set onto itself — here we consider
mainly finite sets) can be generated by transpositions.

A transposition swaps two elements (numbers) and leaves the rest fixed, e.g.

(i7) is the cycle notation for permutations. We let permutations operate on the indices of the subsystems
Li,..., L, and can then describe system changes as follows:
we denote by 7;; : £ — L the transposition (system change)

Tii(X) = (21, . 2 2ic1, 0ij(25)s -, B5i(Z0), Tj41, - - <, Ba)s

which means: the expression z; in the place (fiber) over j is transferred to L; by ¢;; (fiber transition
isomorphism) and,conversely, the content of position i is brought to the fiber (logical place) L; by means of
Bii.

This corresponds to a “system change” by means of ¢.-,-,¢,-‘jl.

Note that for evaluations w; : L; — €; and w; : L; — Q; it holds that: wi(di;{z;)) = wi(z;).

To shorten notation we shall omit the ¢;; in our formulas and abbreviate 7;; = (i), if no confusion arises.
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5.3 Negations in Subsystems

By a “local” or “inner” negation we mean one of the following operators:

i L= L, 01, . TiyeeyTn) = (T1y-- 1 Fiy--Zn), fori=1,...,n.

So, only in the system L; the negation is applied, all other places remain unchanged.

It holds that m;om; =mjon;, for i#j and n; on; = Id; = the identity on L.

Now we can compose negation operations on L:

The negation operator N,-"J- . [ — [ is defined as the composition of the operators nj and T, namely
N!;- = Tij © Nk.

- So, first a negation is carried out in the subsystem Lj and then the expressions on the positions ¢ and j are
interchanged (by ;).

EXAMPLE. Negation operations in £3:

With the above notation we obtain the following operators (“global” negations) on the fibering £ := L3 by
composition of elementary operations.

(The same can be done by passing to £3) but well-definedness problems have to be handled with care).
In particular we obtain the negation operations Ni,..., N5 using the notational convention of PCL (cf.
(R1], (B2, [PF3]): |

N1 =m¢co (23), Ng = My 0 (13), N3 = N2 o Nl, N4 = Nl o Ng, N5 = N] ¢ Nz 0 Nl

Furthermore, » := ny 0 ng 0 na : £ — £ (negation in each corresponding subsystem).
For every transposition T € {(12),(13),(23)} it holds: Ton;o r7 1 =n,,; where = 771, (i.e. 7 operates
on the elementary (inner) negations ny,nz,n3 by conjugation).

Summarizing the previous considerations, we see that the negation operations and system changes generate
a group. We do this here only for the particular example £3 and remark that this result also holds in the

general case. .
Let N =< nj,na,na > be the group of operators on L generated by the (“inner”, “local”) negations

11, N2, 3.
N contains 8 elements and is isomorphic to the “elementary abelian 2-group”

N = (2/22Z) x (Z/2Z) % (Z/2Z)

The transpositions 7;; generate the group of “system changes”, Ss, which is isomorphic to the full group of
all permutations of 3 elements.

Combining the two groups we can define the group of “global” negation operators N, which is generatéd by
N and §3: N :=<N,53>. : ,

Using the previous results it can be shown that A" can be represented as a semidirect product: -

N:=N >18;

(since it is possible to represent A as a product of groups N = N.S3, N 4 A is a normal subgroup of N
and S operates on N by conjugation).

These considerations can be directly generalized and describe all the univariate operations we want to have
in a (free parallel) logical fibering.

6 Bivariate Operations

.

6.1 Domain of Definition

Given a logical fibering LI the question arises how to define bivariate logical operations, more precisely how
does a suitable domain look like on which we can define an operation in a natural way, fitting to our fiber
space concept.

In a natural way this leads us to the family of products (L; % L;)ier where we can make a componentwise
definition of a bivariate operation.

In a formally correct way and compatible with our fiber space notation such a family can be expressed by
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the pullback (or fibered product) denoted by E! x; EI, cf. Taylor, in [LNCS, p.449ff]. See also [PF3,6.1]
for more details.

A bivariate operation on £ should map each pair of expressions (z;)ier, (¥i)ier in £ to a new expression
of £ (an image of this mapping). Equivalently, such a pair corresponds to the familiy of pairs ((z;, %:))icr
which is exactly an element of the pullback Ef x; EL.

REMARK. In a free parallel system £/ many bivariate operations can be introduced componentwise com-
bining various bivariate operations, defined independently on each component (subsystem) L;, i € I.
6.2 Examples

For the sake of brevity we consider examples in £3 combining negations and bivariate operations. We want
to demonstrate the operational way in which the formalism works. As mentioned in the beginning, all
operations are expressed by mappings (functional notation).

(a) We show Nl(NlX AANA Y) =X VAANY.

Proof:
T n )\
Nl(N1X AA /\Y) =N T3 AAAN] ¥2 =
T2 Y3 /)
TIAN A T VIT )
=M | oAy | =] n2Ay [ =] z2Ay | =
Ty A Y3 T3N Y2 T3NY2 )
z T
Z9 VAA Y3 =XVAANY
3 Y2

The mixed expressions like z; A y3, etc. should be constructed via the transition isomorphisms ¢93, etc.,
but we omit this for short.
(b) Analogously (cf. [PF3,section 6]): Ns((NsX)VVVNsY)=XAAAY.

6.3 Transjunctions

In a parallel system £’ the following situation arises naturally for bivariate operations: a local pair (z;, ;)
in L; x L;, i € I, can be mapped into different subsystems L;, Ly, .. ..

With respect to the four possible local input pairs from ; x ; there are maximally four different subsystems
for the images.

That means that such bivariate operations distribute images over different subsystems — a new feature.
Such bivariate operations are called transjunctions.

More details will be discussed in section 8 where we give a classification of transjunctions. It is helpful using
evaluations to make things more transparent.

7 Evaluations, Semantical Aspects

7.1 Remark

As already remarked, starting from a free parallel system £, there are many possibilities to find new logical
spaces by introducing an equivalence relation = on the global value set 9 and then examining the passage
£h— £,

Many multiple-valued logical spaces can be constructed systematically by this method.

Considering PCL systems, £(®) is derived from £ by the special =-relation defined through the media-
tion scheme (cf. section 3).

From this point of view we obtain PCL systems as a particular class of certain logical fiberings.

To formalize the evaluation process we use an ad hoc notation which is useful for our purposes.
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Again we point out that a rigorous formal treatment in categorial notions would be possible e.g. in the sense
of Goldblatt [{GO, Ch. 6], cf. also [LS].

7 2 TFormalization of the Evaluation Process

In accordance with our notions of logical expressions and bivariate operations the (global) evaluation pro-
cedure w.r.t. a logical operation will be introduced componentwise hence being a family of local (classical)
valuations.

We consider here only bivariate operations; evaluation of univariate operations can be introduced analo-
gously.

Let © be a bivariate operation on LI, Foreveryi € Ilet w : Ly — Q; be a (classical) valuation and
let w := (w;)ic7 be the family of these valuations. This induces a global valuation w : LT — al,

Note, although we deal with families of expressions and truth values we do not express the domain and
codomain of w as direct products explicitely (cf. similar remark at the end of section 4).

A global valuation V(©) of the operation O is defined componentwise by the following composition of
maps (using functional notation).

Vi(@): @ x & B Lix L; 2 LT 5ol
Where J; denotes the local input map (substitution of pairs of truth values)
Ji Qi x Qi — L x L

which substitutes (z;,y;) by pairs of logical values in the expression ©(z;,y;). The global valuation is then
defined by the (family of the) V;(@),i € 1.

The evaluation procedure for a derived logical fibering £ is induced by the previously described eva-
Ination procedure in Ll

Lc}t p:Qf — Q) be the canonical residue class map, where Q) = Qf/ =, for an equivalence relation = on
Q4.

In this case, again, the evaluation is defined via the components, but we have to take into account the given
= —relation and well-definedness properties (cf. the following example).

In formal notation, for i € I, the induced valuation V(;)(©) is defined by

Viy(9): & x @ ) af B @)

hence the local input is on pairs {T;, F;} but respecting that these are representatives of equivalence classes
and whenever two pairs (from different subsystems) belong to the same equivalence class the resulting value
of V;y(©) has to be the same (this corresponds to well-definedness).
Thus we are led to certain constraints on the evaluation procedure.

REMARK. It is important to note again that the images of the four possible local input pairs of © can be
distributed over maximally four different value sets Do, s, Qy, Q5.

EXAMPLE. If we use 2 x 2 - matrix notation for the input pairs and corresponding output, the following
is an example of a transjunction if {e, 3,7, 8} contains at least 2 different indices.

TT; T.F; Vi, Te Fg
F:'Ti KF; F‘1 F6

NOTATION. Subsequently, in all our considerations we express the value scheme (truth table) of a local
bivariate operation by a 2 x 2 - matrix where only the output values (images of the operation) are represented
(as in the right matrix above), their position (index pair) in the matrix is determined by the position of the
corresponding input pair (cf. left matrix).
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We use this convention analogously for 3-valued (multiple-valued) operations.

REMARK. We recall that we have chosen (L; x L;)ier (the pullback) as domain of definition for a bi-
variate logical operation © on a free parallel system £!. This means that we do not consider input pairs
(ziy¥4;),% # 7, i.e. where ;,y; are from different subsystems (since we are mainly interested in forming
logical connectives componentwise).

For a particular £" the value set Q" totally contains 2n values. ,

A bivariate operation in the usual sense of multiple-valued logics would then be represented by a (2n) x (2n)-
value matrix. In our definition of © on L™ the operation is represented by n 2 x 2— submatrices which are
arranged one after the other along the main diagonal of the whole (2n) x (2n)~ scheme (in this sense it
represents a restricted map). For further remarks on this we refer to [PF3].

7.3 Two Examples

We briefly discuss the following evaluation problem. Let Z be the bivariate operation Z =X AV = Y.

No consistency problem arises, of course, when we form Z in the system 3.

We recall that the global value set (%) of £(3) is given by 1 = [T}] = (T3], 2 =[] = [T2), 3 = [F] = [F3)
(corresponding to the mediation scheme MS3).

The corresponding local evaluations can be expressed by the following 2 x 2- matrices (on the right side we
have inserted the corresponding global values):

zy Ay NFR = 12
R 22

| ToVys: 2Ty, = 22
T Fy 23

T3— Y3 I3k 2 13
15T, 11

Applying the valuation V()(Z) - as defined above - we have to respect the relations between input pairs
(T, Th) = (T3, T3) , (F1, ) = (T2, Th), (Fz, F3) = (F3, F3) according to the above mentioned identifications
of local truth values. . : E
In the evaluation procedure these identities have to be respected, i.e. equivalent pairs lead to equal images.
(Alternatively, this can be expressed by the condition that the above three 2 x 2-value matrices are compo-
sable into one 3 x 3-scheme (’morphogram’), cf. next example).

Evaluating X A V — Y leads to inconsistencies, since

(Fay Fy) > [Fy] = 3

= #
(F3, F3) = [T3] = 1

(Locally consistent, but not globally).
The pair (F3, F3) is local input in the second subsystem and (F3, F3) in the third, respectively. But globally,
as input of the valuation of the bivariate operation Z on £ both pairs are equal (since they belong to the
same equivalence class). That means they have to produce the same image (output) of that operation (in
the sense of a mapping).

APPLICATIONAL ASPECTS. It might be an interesting aspect whether such situations can be exploi-
ted to model specific applications where certain local operations are prohibited - from a global perspective
(evaluation).

In the above case the implication in the third subsystem causes problems.

When we consider for example X A V A'Y these problems do not occur:



181

nF”O|_|1 2
R R {722
T T | [2 2 HESs
T, B 2 3 3 '2' 3
T3 F3 |_ 1 3
F I3 {73 3

REMARK. The diagram on the right is an amalgamation of the three 2 x 2— matrices on the left, suggesting
that consistency is expressible in forming such a condensed form. The three 2 x 2— submatrices along the
diagonal have to be compatible in such a way that coinciding diagonal elements have to be equal (compati-
bility with the = — relation).

All the three 2 x 2-value schemes are represented (merged) in the 3 x 3- value scheme as submatrices. In
this form the operation X AVAY in L) is represented by the complete 3 x 3- matrix like a 3-valued logical
connective, cf. [PF3]. ' '

Reversing this procedure leads to a method for decomposing a bivariate operation (given by a corresponding
value matrix ) in a multiple-valued logic into a system of 2-valued operations. In a certain sense this can be
interpreted as a parallelization method for multiple-valued logics.

This will be subject of another work (forthcoming preprint in RISC-Linz publication series).

8 Classifying Transjunctions

For the classification of transjunctions it is convenient to consider the relevant evaluation procedures.

Let £ := £, 2 := Qf and © be a bivariate operation (actually we are interested in transjunctions).
For a local subsystem L;,t € I, we consider © : L; x L; — L and w.r.t. V; : §}; x ; — @ we can represent
O locally by a 2 x 2 pattern (called morphogram in PCL notation), cf. the examples in section 7.
Suppressing the 4 indices «, 8,7, 4 in that T,F-pattern we obtain one of the sixteen 2 x 2— value patterns
corresponding to bivariate operations of classical (1st order) logic. :

Using this, a transjunction can be described by such a 2 x 2 - T', F' — pattern followed by a distribution
of the T, F — values over (maximally four different) value sets 4, Qg, {2, Q5 corresponding to subsystems
Lo,Lg, Ly, Ls.

More formally, let 4 denote a classical _bivaria,te operation 9 : L; x L; = L; and let V = (w;)ier,wi : Ly = &
be valuations. '

For (T;, F) € Qi x Q; let x(1, ;) 4 x Qi — {0,1} be the corresponding characteristic function.
Then the local evaluation of the transjunction © : L; x L — £ can be described by

Wa,G'yE(, ) = X(Ti-Ti)(a) ) waéaiﬂ(,) +
X(r.Fys) - wedsd(,) +
X(F.',Ti)(a) -w,dyud(,) +
X(FF) () - wedsd(, )

We recall that the ¢, denote the system changes (cf. section 4).

This local evaluation Wypys could also be expressed by a map Dagyso Vi, with V; = wyodoJ;: Q; xQ; —
and Dygys @ Qi — § distributes values over different subsystems in the following way:

let for example F; be the first value in the 2 x 2— value matrix belonging to 9, then Doprs(Fy) = Fa,
analogously, if the third value would be Tj, then Dagys(Ti) = Ty , etc..

In other words D,g.s transforms the 2 x 2— value matrix of 9 by substituting the indices a, B,7,6 (in this
order) for the corresponding T, F'~ values (cf. e.g. the following figure).
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T, F|_|T. F
F F|7|F F

This yields a systematic way to classify transjunctions in £7.

NOTATION. We can speak of conjunctional, disjunctional, implicational, ..., transjunctions corresponding
to whether # is a conjunction, disjunction, implication, etc., since the T', F— value matrix of ¥ characterizes
the transjunction type. '

REMARK. Transjunctions extend the set of bivariate operations extensively.

Passing to L) we have to respect well-definedness problems, similar to the example discussed in section 7.
Therefore, the possibility for forming bivariate operations which involve transjunctions depends on the struc-
ture of the set of global values Q) = Qf/ =,

We are interested in possibilities to apply transjunctions in practical fields like robotic scenarios, for example.

9 Concluding Remarks

Concerning labelled deductive systems (LDS), D.Gabbay pointed out that various structures for the label
systems are of interest, e.g. semi groups, boolean algebras. Besides that it is a very interesting question
whether there are possible links to LDS or possibilities to combine certain features.

We are in particular interested in logical fiberings which are deduced from free parallel systems by a group
action on the value set.

Remarks on the base space structure:

Different structures for the base space (indexing set) may be of interest, e.g. totally ordered sets (in the
case of certain PCLs); partially ordered sets (objects of the category POSET); semi groups; net structures;
and others.

Of particular interest can be an ultra metric base space, these spaces appear naturally in the study of hier-
archical structures (cf. [E]: 1-1 correspondence between indexed hierarchies and ultrametrics).

REMARK. We pointed out that we do not use here the categorical language systematically as, e.g., in dealing
with Bn(I) and Sh(I), the category of bundles and sheaves, respectively (cf. [GO),[LS],[{LNM1,2),(RB]),
although this possibility exists for our approach.

We prefer a less abstract formulation here for a first attempt to present the main notions.

We adopt a more engineering point of view in the sense that we suppose that such logical fiberings might
be suitable tools in situations where indexed systems play a role and this arises frequently.

Therefore we are motivated by practical reasons rather than by philosophical or purely theoretical ones.

In general, we can say that the fibering approach allows many constructions since it is a very general
‘formal mathematical language’, in particular we think of topological and differentiable manifolds as base
spaces - this might also be of interest from a physical point of view,

The most general categorial framework seems to be "Indexed Categories” (cf. [LN M1]). We refer also
to the corresponding remarks in [PF1], especially on the impact of the base space structure on the whole
system.

REMARK. The generality of the fibering concept allows, in principle, to put different logics in the fibers
over a common base space, that means to mix different logics. One has to describe carefully the transition
(‘communication’) between different fibers.

APPLICATIONAL ASPECTS. Possible applications of the concept of logical fiberings can be seen from
different perspectives. We find it interesting to try to apply it in the field of robotics, especially robot
multitasking scenarios as they are discussed e.g. in the MEDLAR project.

For example, a space where actions are performed which are to be modeled formally (e.g. robots cooperating
in a robot cell} may be covered by regions where each region has its own logic ("typical fiber’). This refers
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to local triviality of an abstract bundle. Passing from one region to another causes a change of the logics
applied; this is a certain local global interaction principle (typically included in the concept of fiber bundles
and sheaves).
In particular, it is very interesting to find out possibilities how to apply transjunctions (some first ideas are
in discussion).
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