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Motivation

Reduction of the structural complexity of complex cellular automata.

Zheng

“A disadvantages of the new framework lies in its extreme complexity. It is possible to use parallel computers to 

do analysis of the configurations contained by n = 3 (the space already includes more than 10
7
 configurations). It 

is impossible using today’s technology to process the n = 5 space due to the extreme growth of structural complex-

ity I232x 32! configurations).”

This paper is certainly not offering the final solution of the question of a decomposition of complex cellular 

automata but at least a very first step towards an introduction of the question as such.

The question doesn’t get its proper attention in the academic research about the complexity of CAs.

Without a mechanism of a decomposition, the whole theory of CAs remains in the dark, unfinished and just hinting 

to quantities that are qualitatively denying any computational solution.

With that, the elaborations of composition/decomposition of classical automata in general including studies of 

cellular automata is not touched at all. Those results are not questioned at all with the introduction of the 

question of composition/decomposition of complex, i.e. polycontextural and morphic CAs.

Big numbers are still a dream and not a constructive advise. Nevertheless this dream is even obsolete if we accept 

a positional approach to complexity as we know it from the management of natural numbers.

The analogy of the problem of multi-valued logics is well recognized if not understood at all.

“It might be thought that CA with greater values of Κ have also greater computational power, however 

this is not true. It is true that rules with Κ = 1 can be easily characterized because they describe linearly 

separable CA, but even rules with Κ = 2 can have extremely complex behaviors as in the case of rule 

110, which is known to be equivalent to a Universal Turing Machine.

This phenomenon, already hypothesized by Wolfram, is called threshold of complexity. It is noteworthy 

to mention that not all rules with high complexity index have complex behaviors, [...].”

Giovanni E. Pazienza, Aspects of algorithms and dynamics of cellular paradigms

http://www.tdx.cat/bitstream/handle/10803/9151/gpazienza_thesis.pdf

Do complex morphoCAs have a higher computational power than classical CAs?

This question is similar to the common questions about the computational power of other expanded concepts, like 

multiple-valued logics, multi-head, -tape etc. Turing Machines and so on.

The answer there is NO. This is proven by all kind of reduction principles and techniques.

Hence, the new question is: Are morphoCAs reducible to classical CAs?

An answer to such a question is possible only if there is an elaborated definition of morphoCAs.

Prior to such a definition some experiences with different approaches and developments of morphoCAs is 

necessary.

A direct answer simple would be a hint to the formal difference of CAs and mophoCAs:

CA = (S,N,f) ¹ morphoCA = (CA, ÿ). 

But to understand the operator “ÿ” as a distributor and mediator of genuine CAs some experiences have to be 

made.

http://www.tdx.cat/bitstream/handle/10803/9151/gpazienza_thesis.pdf?sequence=1


A direct answer simple would be a hint to the formal difference of CAs and mophoCAs:

CA = (S,N,f) ¹ morphoCA = (CA, ÿ). 

But to understand the operator “ÿ” as a distributor and mediator of genuine CAs some experiences have to be 

made.

What follows is a further contribution to expand the field of experiences with morphoCAs.

Definition

Each complex morphoCA can be decomposed into a complexion of simple total and partial CAs. The decomposition 

is a complexion of partial and total CAs distributed and mediated over a contextural or kenomic grid. Simple CAs 

are defined by total functions and are having the lowest degree of complexity. Simple CAs are based on total 

functions and are the well known classical elementary CAs.

Hence each decomposite of a complex CA is a classical CA with in principle two and only two states and one and 

only one general transition rule.

“In summary, CA are dynamical systems that are homogeneous and discrete in both time and space, and 

that are updated locally in space. 

A d-dimensional CA is specified by a triple (S, N, f ) where S is the state set, N Î JSZ
d

Ln  is the neighbor-

hood vector, and f : Sn
-® S is the local update rule. We usually identify a CA with its global transition 

function G, and talk about CA function G, or simply CA G. In algorithmic questions G is, however, 

always specified using the three finite items S, N and f.

 Following suggestions by S. Ulam, he [John von Neumann] envisioned a discrete universe consisting of a 

two-dimensional mesh of finite state machines, called cells, interconnected locally with each other.

https://www.ibisc.univ-evry.fr/~hutzler/Cours/IMBI_MPS/Kari05.pdf

On the other side, complex CAs are super-additive compositions of partial and total CAs distributed over a grid of 

a m-contextural polyverse.

Partial CAs are not genuinely definable in the framework of simple, i.e. elementary CAs.

simple/complex,

partial/total,

distribution/mediation,

additivity/super-additivity,

composition/decomposition,

mono-/polycontextural,

contextures/morphograms.

Morphogrammatic decomposition

Again, it easily happens to confuse the morpgram-based approach to elementary CAs with the original function-

based approach as we know it. That happens naturally because of the coincidence of the objectified results.

What differs is how the results are achieved (produced) and not so much what is reached (produced).

Functional representations of the morphoCAs are in fact simulations in the realm of functions, and not morphic 

realizations.

Again, there is no ‘natural’ method to extend the classical ECA concept to a ‘trans-classical’ theory on the base of 

set-theoretical functions.

An extension of the function-based approach is easily achieved with an extension of the value-set from 2 elements 

to n>2. But such a concept of extension is abstract and there are no systematic criteria to chose the elements. 

The value-set might be arbitrarily extended to any size.

The analogous situation happened and still happens with the transition from 2-valued to multiple-valued logics.

Hence, the morphogrammatic approach to ECAs is an interpretation of the basic morphograms of morphogrammat-

ics.

In the case of complexity/complication of 4, i.e. for MG H4,4L, there are just 15 basic morphograms. To define the 

classical ECAs, not more than 8 morphograms are necessary as a base for interpretation.

This way to interpret morphograms by values and relabeling is not yet taking the genuine morphogrammatic level 

into account. Morphograms are introduced by differences and not by values of a function. The difference-oriented 

approach to morphogrammatic CAs is ruled by the Ε/Ν-structuration of the domain of computation. 

2     Decomposition2.nb
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This way to interpret morphograms by values and relabeling is not yet taking the genuine morphogrammatic level 

into account. Morphograms are introduced by differences and not by values of a function. The difference-oriented 

approach to morphogrammatic CAs is ruled by the Ε/Ν-structuration of the domain of computation. 

The first presentation of morphogrammatic based CAs had been restricted on a combination of just 4 to 5 mor-

phograms per automaton.

The morphogrammatic approach enables an easy method of combining basic cellular automata to compound 

structures of well defined complex morphic automata of arbitrary complexity.

The tool set for the construction of complex morphoCAs contains the 15 basic morphograms and the two rules of 

composition: ruleCl for ‘classical’ and ruleM for ‘trans-classical’ structurations.

The tool set allows to define morphogrammatic compounds of basic morphograms for more complex CAs.

In this sense, a morphogram MG
H9,3L

 is defined as a mediation of 3 basic morphograms: e.g.

MG
H9,3L

 = (MG
H4,3L

 ÿ MG
H4,3L

) ÿ MG
H4,3L

.

Morphic CAs are therefore defined as interpretations of additive and mediative compositions of morphogrms.

Additive compositions have the form:

 BMG1

H4,nL
, MG2

H4,nL
, ..., MGm

H4,nL
], with 

m = 4 : classical

m = 5: transclassical
 for CAs. 

While mediative compositions have the reflectional and interactional distribution form:

BMG1

H4,nL
 ÿ MG2

H4,nLÿ, ..., ÿ MGm
H4,nL

].

Mediative de/composition examples for m=3:

morpho CA H9,3L : R7.2 .2
1.1 .3

= I R7
1 ÿ R2

2M ÿ R2
3
, "ÿ" : mediation

R7.2 .2

H1,2,3L
à à à

á á á

à á à

 Þ 

R
7.2 .2

H3,2L H1L H2L H3L

H1, 2L R7
1.1 à à á

- á -
- -

H2, 3L - R2
2.2 á á à

- á -
-

H1, 3L - - R2
3.3 à à à

- à -

morpho CA H9,2L : R7.2 .8
1.1 .3

= IR7
1

á R2
1M ÿ R8

3
, "á" : replication, "ÿ" : mediation

R7.2 .8
1.1 .3

à à á

á á á

á á à

Þ

R7.2 .8
1.1 .3 H1L H2L H3L

H1, 2L R7
1.1

à à á

- á -
- -

H2, 3L R2
1.2

á á à

- á -
- -

H1, 3L - - R8
3.3

à á à

- á -

http : // memristors.memristics.com/Notes on Polycontextural Logics/Notes on Polycontextural Logics.html

Other definitions and derivations from the morphogrammatic approach are naturally possible as different and non-

standard interpretations of morphograms.

The most obvious approach to decomposition is certainly given by decomposition of a morphoCA into its defining 

morphograms.

The main question is a mathematical and logical one: How to decompose lossles 9-ary functions/relations into 

ternary functions/relations? In other words: How to decompose without loss complex CAs into elementary CAs?

Descriptive example: 

morpho CA H9,2L : R12.3,3

1.1,3
= IR12

1.2,3
á R3

1.3M ÿ R3
2.2, "á" : replication, "ÿ" : mediation

Decomposition2.nb    3



Functional representation of morphoCAs

For example, the morphoCA defined by the ruleM[{1,8,9,11,15}], which is a composition of the morphograms [1], 

[8], [9], [11] and [15] , is decomposed accordingly into its morphograms.

Each CA rule based on a morphogram has a well defined structure that is defining its behavior.

The composition of the morphic rules is generating a behavior of the composition that is not easily deduced from 

the behavior of its morphic parts.

Because the morphoCA ruleM[{1,8,9,11,15}] entails the morphogram [15], the automaton has to be defined 

symbolically for all its parts over the complexion of 4. 

Therefore, the morphogram [1] is represented by the set of {0,0,0}®0, {1,1,1}®1, {2,2,2}®2, {3,3,3}®3 of 

representations and not just for the rules for the case of two states: {0,0,0}®0, {1,1,1}®1.

4     Decomposition2.nb



R1 R2 R3 R4

à à à

- à -

à à á

- à -

à á à

- à -

à á á

- à -

R6 R7 R8 R9

à à à

- á -

à à á

- á -

à á à

- á -

à á á

- á -

R5

à á à

- à -

R10

à á à

- á -

 

R11 R12 R13 R14 R15

à à á

- à -

à á à

- à -

à á á

- à -

à á à

- à -

à á à

- à -

ArrayPlot@CellularAutomaton@
ruleM@81, 8, 9, 11, 15<D,

881<, 0<, 22D,

ColorRules -> 81 -> Red, 0 -> Yellow, 2 ® Blue, 3 ® Green<D

ruleM@86, 8, 9, 11, 15<D =

8
rule@86<D:
80,0,0<®1,81,1,1<®1,82,2,2<®1,83,3,3<®1,

rule@88<D:
80,1,0<®0,80,2,0<®0,80,3,0<®0,81,0,1<®0,81,2,1<®0,

81,3,1<®0,82,0,2<®0,82,1,2<®0,82,3,2<®0,83,0,3<®0,

83,1,3<®0,83,2,3<®0,

rule@89<D:
81,0,0<®0,81,2,2<®0,81,3,3<®0,82,1,1<®0,82,0,0<®0,

82,3,3<®0,80,1,1<®0,80,2,2<®0,80,3,3<®0,83,1,1<®0,

83,2,2<®0,83,0,0<®0,

rule@811<D:
80,0,1<®2,80,0,2<®1,80,0,3<®2,81,1,0<®2,81,1,2<®0,

81,1,3<®2,82,2,3<®0,82,2,0<®1,82,2,1<®0,83,3,2<®1,

83,3,0<®2,83,3,1<®0,

rule@815<D:
80,3,2<®1,80,2,1<®3,80,1,2<®3,80,2,3<®1,80,3,1<®2,

80,1,3<®2,82,0,1<®3,81,2,0<®3,81,0,2<®3,81,0,3<®2,

81,3,0<®2,83,1,0<®2,81,3,2<®0,82,1,0<®3,83,2,1<®0,

82,1,3<®0,82,3,0<®1,82,3,1<®0,82,0,3<®1,83,0,2<®1,

83,0,1<®2, 83,2,0<®1,83,1,2<®0,81,2,3<®0

<

Order theoretic classification of the morphogrammatic system

Rejection

aL partial rejection:morphograms@9D - @12D and@14D
bL total, undifferentiated, rejection:morphogram@13D
cL total, differentiated, rejection:morphogram@15D
Acception

Decomposition2.nb    5



cL total, differentiated, rejection:morphogram@15D
Acception

dL undifferentiated acception: morphogram @1D
eL differentiated acception: morphograms @2D to @9D

Junctional compositions with frame super-additivity

Junctional compositions are super-additive compositions of elementary morphoCAs. 

CA@and, and, andD = � : ÿ ÿ >

jjj 1 2 3

1 and - -

2 - and -

3 - - and

6     Decomposition2.nb



� � � �

ArrayPlot@Map@Flatten,

8
81, 1, 1< ® 1, 81, 1, 2< ® 2,
82, 2, 1< ® 2, 81, 2, 1< ® 2,
82, 1, 2< ® 2, 81, 2, 2< ® 2,
82, 1, 1< ® 2, 82, 2, 2< ® 2

< �. Rule -> List, 1D,
ColorRules -> 81 -> Red,
2 ® Blue<,

ImageSize -> Small,

Mesh -> TrueD

� �

� � ArrayPlot@Map@Flatten, 8
82, 2, 2< ® 2, 82, 2, 3< ® 3,
83, 3, 2< ® 3, 82, 3, 2< ® 3,
83, 2, 3< ® 3, 82, 3, 3< ® 3,
83, 2, 2< ® 3, 83, 3, 3< ® 3

< �. Rule -> List, 1D,
ColorRules -> 8 2 ® Blue,

3 ® Green<,

ImageSize -> Small,

Mesh -> TrueD

�

� � � ArrayPlot@Map@Flatten, 8
81, 1, 1< ® 1, 81, 1, 3< ® 3,
83, 3, 1< ® 3, 81, 3, 1< ® 3,
83, 1, 3< ® 3, 81, 3, 3< ® 3,
83, 1, 1< ® 3, 83, 3, 3< ® 3

< �. Rule -> List, 1D,
ColorRules -> 81 -> Red,
3 ® Green<,

ImageSize -> Small,

Mesh -> TrueD

Decomposition2.nb    7



CA@8and, and, or<D = � : ÿ ÿ >

8     Decomposition2.nb



CA@8and, and, or<D =

H1L -

- H3L

H2L -

ECA - 1.1

1 1 1

1 1 2

- - -

2 1 1

2 1 2

- - -

- - -

2 1 1

1 2 2

2 2 2

2 2 2

H1L �

- H3L

ECA - 3.3

1 1 1

- - -

1 1 3

- - -

- - -

3 1 1

3 1 3

- - -

- - -

- - -

- - -

- - -

- - -

- - -

1 3 1

1 3 3

- - -

- - -

3 3 1

- - -

3 3 3

ECA - 2.2

2 2 2

2 2 3

3 2 2

3 2 3

- - -

- - -

2 3 2

2 3 3

- - -

� � �

3 3 3

H2L -

Additive composition of the distributed rules

rule110

(Debug) Out[36]=

Decomposition2.nb    9



(Debug) Out[37]=

(Debug) Out[38]=

(Debug) Out[39]=

additive composition of rule110

10     Decomposition2.nb



H1L -

- H3L

H2L -

(Debug) Out[40]=

Additive compositions without super-additivity

ruleCl@81, 7, 8, 9<D in morphoCA
H3,4,2L

880, 0, 0< ® 1, 81, 1, 1< ® 1, 82, 2, 2< ® 1, 83, 3, 3< ® 1,

80, 0, 1< ® 0, 80, 0, 2< ® 0, 80, 0, 3< ® 0, 81, 1, 0< ® 0,

81, 1, 2< ® 0, 81, 1, 3< ® 0, 82, 2, 0< ® 0, 82, 2, 1< ® 0,

82, 2, 3< ® 0, 83, 3, 0< ® 0, 83, 3, 1< ® 0, 83, 3, 2< ® 0,

80, 1, 0< ® 0, 80, 2, 0< ® 0, 80, 3, 0< ® 0, 81, 0, 1< ® 0,

81, 2, 1< ® 0, 81, 3, 1< ® 0, 82, 0, 2< ® 0, 82, 1, 2< ® 0,

82, 3, 2< ® 0, 83, 0, 3< ® 0, 83, 1, 3< ® 0, 83, 2, 3< ® 0,

81, 0, 0< ® 0, 81, 2, 2< ® 0, 81, 3, 3< ® 0, 82, 1, 1< ® 0,

82, 0, 0< ® 0, 82, 3, 3< ® 0, 80, 1, 1< ® 0, 80, 2, 2< ® 0,

80, 3, 3< ® 0, 83, 1, 1< ® 0, 83, 2, 2< ® 0, 83, 0, 0< ® 0<

Decomposition2.nb    11



ArrayPlot@CellularAutomaton@
ruleCl@81, 7, 8, 9<D,

881<, 0<, 22D,

ColorRules -> 81 -> Red, 0 -> Yellow, 2 ® Blue, 3 ® Green<D

ruleCl@81, 7, 8, 9<D in morphoCA
H3,2,2L

ArrayPlot@CellularAutomaton@
880, 0, 0< ® 1,

80, 0, 1< ® 0, 81, 1, 0< ® 0,

80, 1, 0< ® 0, 81, 0, 1< ® 0,

80, 1, 1< ® 0, 81, 0, 0< ® 0,

81, 1, 1< ® 1<,

881<, 0<, 22D,

ColorRules -> 81 -> Red, 0 -> Yellow, 2 ® Blue, 3 ® Green<D

Symbolic representation of the morphic ruleCl[{1,7,8,9}] in morphoCAH3,4,2L

12     Decomposition2.nb



ruleCl@81, 7, 8, 9<D

ruleCl 1 2 3 4

1 @1D � � �

2 � @7D � �

3 � � @8D �

4 � � � @9D

Decomposition2.nb    13



ruleCl 1 2 3 4

1 � � �

2 � � �

3 � � �

4 � � �

Additive composition of ruleCl[{1, 7, 8, 9}]

= : ë ë ë >

Transjunctional compositions (with super-additivity)

It is well-known that complex configurations can be reduced with more or less no sacrifice to non-complex binary 

symbolic constellations. Therefore, an introduction of more than two states of a automaton seems to be redun-

dant and obsolete.

14     Decomposition2.nb



Hence, complex automata, cellular and others, have to be defined differently.

One successfully method is the mediation of dichotomous automata by the mechanism of polycontextural bifuncto-

riality.

Without much decoration, the transjunctional ternary rules are just equally defined like the transjunctional binary 

functions of polycontextural logics. 

Transjunctional functions are build on the base of mediated partial functions. The same applies for transjunc-

tional rules of complex morphoCAs.

The overwhelming amount of morphoCAs are defined as transjunctional CAs.

Excerpts from The Abacus of Universal Logics

“How to explain this kind of distribution?What we learned in place - valued logics was that transjunc-

tions are rejecting value - alternatives and marking this rejection with values not belonging to the sub - 

system from which the rejection happens.The frame values of the transjunction remain accepted. Thus, 

there is nothing mentioned which could justify this "wild" decomposition and distribution of parts of a 

transjunction over different sub - systems and being linked with a single core value to the guest sub - 

system. 

Again, the more mathematical settings of transjunctions by universal algebras and category theory have 

failed to give any further information usable for implementation.

Transjunctions are understood in the proposed setting as compositions of partial functions.Thus, the 

parts have to be mediated to build the whole function.Hence, a frame element has to function as a 

mediation point, additional to the core elements as rejectional

elements. Without such a partial mediation of the rejectional parts the partial function would be free 

floating in a neighbor system without a systematic reason. Hence, with this frame -- element being 

mediated the partial function is fixed at it place in the neighbor system. On the other hand, if both 

frame - elements would be distributed there wouldn' t be a transjunction but a replication of a transjunc-

tional morphogram as such without a rejectional behavior. 

This argumentation gets some justification in the context of polycontextural logics.Without the 

"additional" distribution of a frame - element the tableaux - based proof systems wouldn' t work prop-

erly. This is based on experiences and not on proofs. There is still no general mathematical framework 

to produce reasonable proofs for transjunctional situations. [Today, the mathematization might be 

solved by the appliction of polycontextural bifunctoriality of poly-category theory.]

Such insights in the functioning of distributed transjunction becomes quite clear in the proposed 

notational order of the sub - systems by the tabular matrix of dissemination."  R. Kaehr, The Abacus of 

Universal Logics, 2007, p. 30

Decomposition2.nb    15



The Abacus of Universal Logics

http://works.bepress.com/thinkartlab/17/ 

trjj 1 2 3

1 trans trans trans

2 - junct -

3 - - junct

trjj 1 2 3

1 trans trans trans

2 - and -

3 - - or

� S1 .1 = transjunction S2 .1 S3 .1

ArrayPlot@Map@Flatten, 8
81, 1, 1< ® 1,

81, 1, 2< ® 4,

81, 2, 1< ® 4,

81, 2, 2< ® 4,

82, 1, 1< ® 4,

82, 1, 2< ® 4,

82, 2, 1< ® 4,

82, 2, 2< ® 2

< �. Rule -> List, 1D,
ColorRules -> 81 -> Red,

2 ® Blue, 3 ® Green,

4 ® White=,

ImageSize -> Small,

Mesh -> TrueD

nil nill

16     Decomposition2.nb
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� transjunction = S1 .2

ArrayPlot@Map@Flatten, 8
81, 1, 1< ® 4,

81, 1, 3< ® 3,

81, 3, 1< ® 3,

81, 3, 3< ® 4,

83, 1, 1< ® 4,

83, 1, 3< ® 3,

83, 3, 1< ® 3,

83, 3, 3< ® 2

< �. Rule -> List, 1D,
ColorRules-> 81 -> Red,

2 ® Blue,3 ® Green,

4® White>,ImageSize -> Small,

Mesh -> TrueD

S2 .2 = con-junction

ArrayPlot@Map@Flatten, 8
82, 2, 2< ® 2,

82, 2, 3< ® 3,

82, 3, 2< ® 3,

82, 3, 3< ® 3,

83, 2, 2< ® 3,

83, 2, 3< ® 3,

83, 3, 2< ® 3,

83, 3, 3< ® 3

< �. Rule -> List, 1D,
ColorRules -> 8 2 ® Blue,

3 ® Green<,
ImageSize -> Small,

Mesh -> TrueD

S3 .2

NIL

� S1 .3 = transjunction

ArrayPlot@Map@Flatten, 8
81, 1, 1< ® 1,

81, 1, 3< ® 3,

81, 3, 1< ® 3,

81, 3, 3< ® 3,

83, 1, 1< ® 3,

83, 1, 3< ® 3,

83, 3, 1< ® 3,

83, 3, 3< ® 4

< �. Rule -> List, 1D,
ColorRules-> 81 -> Red,

2 ® Blue,3 ® Green, 4® White>,

ImageSize -> Small,

Mesh -> TrueD

S3 .2

Nil

S3 .3 = dis - junction

ArrayPlot@Map@Flatten, 8
81, 1, 1< ® 1,

81, 1, 3< ® 1,

81, 3, 1< ® 1,

81, 3, 3< ® 1,

83, 1, 1< ® 1,

83, 1, 3< ® 1,

83, 3, 1< ® 1,

83, 3, 3< ® 3

< �. Rule -> List, 1D,
ColorRules -> 81 -> Red,

3 ® Green<,
ImageSize -> Small,

Mesh -> TrueD

Interactional matrix

bif, id, id O1 O2 O3

M1 S1.1 - -

M2 S2.1 S2.2 -

M3 S3.1 - S3.3

trans, et, vel O1 O2 O3

M1 trans1 .1 - -

M2 trans2 .1 and -

M3 trans3 .1 - or

trans : � : ó ó >
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@trans, et, velD : : ó ó > ÿ : ÿ >

�

- -

-

-
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� : ó ó > ÿ : ÿ >

Further example

ArrayPlot@CellularAutomaton@
ruleM@81, 11, 8, 9, 15<D,

881<, 0<, 22D,

ColorRules -> 81 -> Red, 0 -> Yellow, 2 ® Blue, 3 ® Green<D

ruleM@81, 8, 9, 11, 15<D
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Super-additivity of CAH3,3,3
 compositions

Excerpts from  “Memristics : Dynamics of Crossbar Systems”

http : // www.thinkartlab.com/Memristics/Poly - Crossbars/Poly - Crossbars.pdf

“Mediation of two universes results super-additively in a compound of three universes.

mediation:J
U 2

U 1

N
super-additivity

 

U 2 -

- U 3

U 1 -

mediation: B

g 1 -

f 1 g 2

- f 2

F   
super-additivity

  B

g 1 - g 3

f 1 g 2 -

- f 2 f 3

F

Super-additivity is not the same as commutativity for categorical composition and yuxtaposi-

tion.

f ë g : A � C for f : A � B & g : B � C

f Ä g : A ÄC � B Ä D for f : A � B & g : C � D

Hence, the composition of the morphisms f and g, f ë g ,results in the morphism A � C.

But the mediation of the morphism  f1 and f2, f1 ÿ f2 , results in the super-additive compound Hf1 ÿ f2L ÿ f3.

A1 � B1 ÿ B2 �C 2, in general:

A1 � B1

ÿ

A2 �B 2

ÿ

A3 �B 3

, i.e.

f 1

ÿ1.2,0

f 2

ÿ 0.2,3

f 3

.

Nummeration of subsystems for INTERCHdiag

The truth values i, j of Lk are given by: i = j Hj-1L �2-k+1, and j = B3 �2 + 2 k-7 �4 F HThe integer partL
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Example

On u m :  @1 2 3 4 5 D Þ  

Hf ë gL10

Hf ë gL6 Hf ë gL9

Hf ë gL3 Hf ë gL5 Hf ë gL8

Hf ë gL1 Hf ë gL2 Hf ë gL4 Hf ë gL7

Matching conditions for equality based mediation

On u m :  @1 2 3 4 5 6D Þ  

HcodHfiL º domH giLL, i = sH6L

codHg1L º domH f2L, codHg2L º domH f4L, codHg4L º domH f7L

codHg3L º domH f5L, codHg5L º domH f8L

codHg6L º domH f9L

dom(f1L º domH f3L º domH f6L º domH f10L
dom(f2L º domH f5L º domH f9L
dom(f4L º domH f8L
cod(f7) º cod(f8) º cod(f9) º cod(f10)

cod(f2) º cod(f5) º cod(f9)

cod(f4) º cod(f8) 

##

Interplay of polycontextural operators

Interchangeability of a 3 - contextural category with

composition and mediation H ÿ L

U
H3L

= HU1 ÿ 1.2 U 2 L ÿ 1.2 .3 U 3

IU1 è1.2 U 2 M Ý 1.2 .3 U 3 = Æ :

U i = 8f i, g i <, i = 1, 2, 3

B

g 1 - g 3

f 1 g 2 -

- f 2 f 3

F :

Hf 1 ë1.0 .0 g 1L
ÿ 1.2 .0

Hf 2 ë0.2 .0 g 2L

ÿ 1.2 .3

Hf 3 ë 0.0 .3 g 3L

=

f 1

ÿ1.2 .0

f 2

ÿ 1.2 .3

f 3

ë 1 ë 2 ë 3

g 1

ÿ1.2 .0

g 2

ÿ 1.2 .3

g 3

Interchangeability of a 3 - contextural category with

composition, mediation H ÿ L and transposition H � L

f 1

ÿ 1.2

f 2 � 2.1 f 1

ÿ 2.3

f 3 � 3.1 f 1

B

ë 1.1 --

ë 2.1 ë 2.2 -

�

ë 3.1 - ë 3.3

F

g 1

ÿ 1.2

g 2 � 2.1 g 1

ÿ 2.3

g 3 � 3.1 g 1

=

Hf 1 ë 1.1 g 1L
ÿ 1.2

Hf 2 ë 2.2 g 2L � 2.1 Hf 1 ë 2.1 g 1L
ÿ 2.3

Hf 3 ë 3.3 g 3L � 3.1 Hf 1 ë 3.1 g 1L
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Interchangeability of a 3 - contextural category with

composition, mediation H ÿ L and replication H åL

f 1 å 1.2 f 1 å 1.3 f 1

ÿ 1.2

f 2

ÿ 2.3

f 3

B

@ ë 1.1 ë 1.2 å 1.3D --

- ë 2.2 -

-- ë 3.3

F

g 1 å 1.2 g 1 å 1.3 g 1

ÿ 1.2

g 2

ÿ 2.3

g 3

=

HHf 1 ë 1.1 g 1L å 1.2 Hf 1 ë 1.2 g 1LL å 1.3 Hf 1 ë 1.3 g 1L
ÿ 1.2

Hf 2 ë 2.2 g 2L
ÿ 2.3

Hf 3 ë 3.3 g 3L

Mixed bifunctoriality for replication, yuxtaposition,

composition and dissemination

f 1 å 1.2 f 1 å 1.3 f 1

ÿ 1.2

f 2

ÿ 2.3

f 1

Ä3

f 2

3.3

B

@ ë 1.1 ë 1.2 å 1.3D --

- ë 2.2 -

-- ë 3.3

F

g 1 å 1.2 g 1 å 1.3 g 1

ÿ 1.2

g 2

ÿ 2.3

g 1

Ä3

g 2

3.3

=

HHf 1 ë 1.1 g 1L å 1.2 Hf 1 ë 1.2 g 1LL å 1.3 Hf 1 ë 1.3 g 1L
ÿ 1.2

Hf 2 ë 2.2 g 2L
ÿ 2.3

Hf 1 ë3 g 1L
Ä 3

Hf 2 ë3 g 2L
3.3

Mixed bifunctoriality for replication and transposition together

with composition and dissemination

f 1 å 1.2 f 1 å 1.3 f 1

ÿ 1.2

f 2 � 2.1 f 1

ÿ 2.3

f 3 � 3.1 f 1

B

@ ë 1.1 å 1.2 å 1.3D --

ë 2.1 ë 2.2 -

�

ë 3.1 - ë 3.3

F

g 1 å 1.2 g 1 å 1.3 g 1

ÿ 1.2

g 2 � g 1

ÿ 2.3

g 3 � g 1

=

Hf 1 ë 1.1 g 1L å 1.2 Hf 1 ë 1.2 g 1L å 1.3 Hf 1 ë 1.3 g 1L
ÿ 1.2

Hf 2 ë 2.2 g 2L � 2.1 Hf 1 ë 2.1 g 1L
ÿ 2.3

Hf 3 ë 3.3 g 3L � 3.1 Hf 1 ë 3.1 g 1L
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Mixed interchangeability for replication , transposition and yuxtaposition IÄM

f 1 å 1.2 f 1 å 1.3 f 1

ÿ 1.2

f 2 � 2.1 f 1

ÿ 2.3

f 1

Ä3

f 2

� 3.1 f 1

B

@ ë 1.1 å 1.2 å 1.3D --

ë 2.1 ë 2.2 -

ë 3.1 - ë 3.3

F

g 1 å 1.2 g 1 å 1.3 g 1

ÿ 1.2

g 2 � g 1

ÿ 2.3

g 1

Ä3

g 2

� g 1

=

HHf 1 ë 1.1 g 1L å 1.2 Hf 1 ë 1.2 g 1LL å 1.3 Hf 1 ë 1.3 g 1L
ÿ 1.2

Hf 2 ë 2.2 g 2L � 2.1 Hf 1 ë 2.1 g 1L
ÿ 2.3

Hf 1 ë3 g 1L
Ä 3

Hf 2 ë3 g 2L
� 3.1 Hf 1 ë 3.1 g 1L

Mediation of CAH3,3,3L composites

In analogy to the proposed ‘abacus of logics’ an antagonistic approach to the idea of a ‘universal’ logic, an abacus of 

cellular automata might be proposed.

CA = HS, N, f L

A cellular automaton CA is defined as a triple (S,N,f) with the following properties.

“A d-dimensional CA is specified by a triple (S, N, f ) where S is the state set, N Î ISZ
d

) n  is the neighborhood vector, 

and f : Sn
-® S is the local update rule.”

“At any given time, the configuration of the automaton is a mapping c : Zd -® S that specifies the states of all cells.

“The set SZ
d

 is the set of all configurations.”  (Kari)

Hence, a mediation of a multitude of discontextural CAs has to consider the mediation of its constituents: states S, 

neigborhood N and update rule f.

CA
H3.3,3L

= CA
1

H3.2L Ü CA
2

H3.3L Ü CA
3

H3,2L Ü partCA
1.2,3

H3.3L

ICA
1

H3.2L Ü CA
2

H3.2L Ü CA
3

H3.2LM £ CA
1.2,3

H3.3,3L

CA
H3.3,3L

= HS, N, fLH3L
:

CA
1

H3.2L
= HS, N, fL1

: f : S
1

n
# S1

CA
2

H3.2L
= HS, N, fL2

: f : S
2

n
# S2

CA
3

H3,2L
= HS, N, fL3

: f : S
3

n
# S3

partCA
1.2,3

H3.3L
= HS, N, fL1,2,3

: f : S
1.2,3

n
- S1.2,3

Valuation of CA
H3,3,3L

24     Decomposition2.nb



valICA
H3,3,3LM =

AvalICA1
H3,3,2LM = 80, 1< H = S1L,

valICA2
H3,3,2LM = 81, 2< H = S2L ,

valICA3
H3,3,2LM = 80, 2< H = S3L,

valIpartCA1.2 .3

H3,3,3LM = 80, 1, 2<

H = S1.2,3LE

Mediation of CA
H3,3,3L

medICA
H3.3,3LM =

AmedICA1
H3,3,2L

, CA2
H3,3,2LM = maxICA1

H3,3,2LM @ minICA2
H3,3,2LM,

medICA1
H3,3,2L

, CA2
H3,3,2LM = minICA3

H3,3,2LM @ min ICA1
H3,3,2LM @ min IpartCA1.2,3

H3,3,3LM,

medICA2
H3,3,2L

, CA3
H3,3,2LM = maxICA2

H3,3,2LM @ max ICA3
H3,3,2LM @ max IpartCA1.2,3

H3,3,3LME.

Decomposition of CA
H3,3,3L

CA
H3,3,3L

 [trans, junct, junct]. 

The values of min, max are defining the frame values of the mediation. The core values are variable in the context of 

the frame values. 

medICA@trans,junct,junctD
H3,3,3L M =

AmedICA1
H3,3,2L

, CA2
H3,3,2LM = maxIpartCA1.1

H3,3,2LM @ maxIpartCA1.2
H3,3,2LM @ min ICA2.2

H3,3,3LM,

medICA1
H3,3,2L

, CA3
H3,3,2LM = minICA3.3

H3,3,2LM @ min IpartCA1.3
H3,3,2LM @ min IpartCA1.1

H3,3,3LM,

medICA2
H3,3,2L

, CA3
H3,3,2LM = maxICA2.2

H3,3,2LM @ max ICA3.3
H3,3,2LME.

Superoperators over polyCAs

Given the framework of mediated CAs, there are not just the intracontextural transitions to define but als a manag-

ment of interactions between discontextural CAs to manage. In the literature to polycontextural systems they are 

called ‘super-operators’, short sops.

The main super-operators on complexions of CAs are:

1. interactional

2. reflectional, iterative and accretive

3. interventional.

Example for a interactional and compositional complexion of CAs

Excerpts from  "Playing Chiasms and  Bifunctoriality"

“The super-operators SOPS are the programming strategies, the distributed processor on the kenomic 

matrix are the programmed machines to be programmed firstly, contexturally, i.e. depending on the 

loci/places of the processors and secondly, by the types of operations involved. The involved operations 

then are the localized junctional, transpositional, replicational and reflectional logico-arithmetic 

operations.

The super-operators are activating or deactivating the disseminated processors according to their 

operational structure.

Because of the exchange mechanism of operator and operand on the level of the hardware processors, a 

feature that is not realizable within the possibilities of classical processors and architectures, it is 

proposed that by taking into account the new possibilities of memristive approaches to realize such 

mechanisms of interchangeability with a successive application of devices based on memristors and 

memristive systems, such limits of traditional computation might be, in principle, overcome.
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Because of the exchange mechanism of operator and operand on the level of the hardware processors, a 

feature that is not realizable within the possibilities of classical processors and architectures, it is 

proposed that by taking into account the new possibilities of memristive approaches to realize such 

mechanisms of interchangeability with a successive application of devices based on memristors and 

memristive systems, such limits of traditional computation might be, in principle, overcome.

It is understood that the main novelty of memristors is not in the domain of quantities, like speed and 

storage, but in the functionality of the exchangeability of “processor” and “memory” functions of the 

“same” computing device at the “same” place.

Hence, the dissemination, defined by distrubution and mediation, of the activity, i.e. inter- and trans-

activity of the processors of the grid, is managed by the interchangeability of the main features of 

computability, computation and memorization, and realized by the application of memristors and their 

distribution in crossbar systems.

Logical and symbolic processes are distributed over the kenomic matrix. But this distribution is not a 

static architectonic fact but is involved in the process of interactions between different processors. In 

this sense, the relization of a transpositional distribution is seen as an interaction between different 

processors. The ‘main’ processor of a transjunctional operation is ‘sending’ an activation messige to the 

transpositioned processor to realize the transjunction addressed by the main processor. The main 

processors in the design are the ‘diagonal’ processors of the grid. This is not a restriction to a mxm-

matrix. Other configurations are easily produced, and each processor might play the role of a ‘main’ 

processor.

The super-operators are activating or deactivating the disseminated processors according to their 

operational structure.”

http : // memristors.memristics.com/Playing %20 Chiasms/Playing %20 Chiasms %20 and %20 Bifunctoriali-

ty.html

Those insights shall be directly applied to the special case of complex polyCAs.

�i.j : Processor active at Hi, jL
´ i.j : Processor inactive at Hi, jL

SOPScomposition
H3,1L

:

PM O1 O2 O3

M1 ´1.1 ´ 2.1 ´ 3.1

M2 ´ 1.2 ´2.2 ´ 3.2

M3 ´ 1.3 ´ 2.3 ´3.3

�

PM O1 O2 O3

M1 �1.1 ´ 2.1 ´ 3.1

M2 ´ 1.2 �2.2 ´ 3.2

M3 ´ 1.3 ´ 2.3 �3.3

SOPSreplication
H3,1L

:

PM O1 O2 O3

M1 ´1.1 ´ 2.1 ´ 3.1

M2 ´ 1.2 ´2.2 ´ 3.2

M3 ´ 1.3 ´ 2.3 ´3.3

�

PM O1 O2 O3

M1 �1.1 �2.1 �3.1

M2 ´ 1.2 �2.2 ´ 3.2

M3 ´ 1.3 ´ 2.3 �3.3

SOPStransactional
H3,1L

:

PM O1 O2 O3

M1 ´1.1 ´ 2.1 ´ 3.1

M2 ´ 1.2 ´2.2 ´ 3.2

M3 ´ 1.3 ´ 2.3 ´3.3

�

PM O1 O2 O3

M1 �1.1 ´2.1 ´3.1

M2 � 1.2 �2.2 ´ 3.2

M3 �1.3 ´ 2.3 �3.3

Short notation

SOPS
H3,1L

@repl,comp,compD =

´1.1 � �1.1 �1.2 �1.3

´2.2 � �2.2

´3.3 � �3.3

SOPS
H3,1L

@trans,comp,compD =

´1.1 � �1.1

´2.2 � �2.2 �2.1

´3.3 � �3.3 �3.1
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SOPS
H3,1L

@comp,trans,compD =

´1.1 � �1.1

´2.2 � �2.2 �2.1 �3.1

´3.3 � �3.3

SOPS
H3,1L

@comp,comp,compD =

´1.1 � �1.1

´2.2 � �2.2

´3.3 � �3.3

Interpretation

How are such complexities of cellular automata to understand?

Given 2 CAs, a mediation of both is producing a third contexture which offers the place for a third CA.

A possible interpretation of the activities of the 3 mediated CAs might be expressed as a ‘parallel’ computation of the 

first two and as a computation of the interaction of both mediated CAs at third place as the ‘product’ of the computa-

tions of the two CAs.

Therefore it has to be show that an activity of a complex CA of degree 3 is understandable as a mediated activity 

resulting in complexion as a result. 

The following example of a complex CA might be seen as a parallel realization of CA
2.2

I3,3,2M
 and

  

partCA
1.1

H3,3,2L

part CA
2.1

H3,3,2L

partCA
3.1

H3,3,2L

  reflected in CA
3.3

H3,3,2L
.

This is certainly not yet obvious at a first glance and more elaborated examples have to be studied. Without doubt 

there has also modifications of the simple and ‘introductionary’ model to elaborted. 

The functionality of proper parts like CA
2.2

I3,3,2M
, CA

3.3

I3,3,2M
 and partial functions as partCA

i,j

H3,3,2L
has to analyed more 

properly.

Concrete example

CA@trans,junct,junctD
H3,3,3L O1 O2 O3

M1 partCA
1.1

H3,3,2L
- -

M2 part CA
2.1

H3,3,2L
CA

2.2

H3,3,2L
-

M3 partCA
3.1

H3,3,2L
- CA

3.3

H3,3,2L

http : // www.thinkartlab.com/Memristics/Poly - Crossbars/Poly - Crossbars.html

http://www.thinkartlab.com/pkl/lola/Abacus.pdf

Super-additive parts are morphogrammatically realized by ‘transjunctional’ morphograms. Super-additivity of com-

posed morphoCAs is a measure of the degree of interactivity between the CA parts of a complex morphoCA.
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CA@trans,junct,junctD
H3,3,3L

O1 O2 O3

M1

H* ECA-1 part *L
80, 1, 0< ® 0, 81, 0, 1< ® 0,

80, 0, 1< ® 1, 81, 1, 0< ® 1,

80, 1, 1< ® 0, 81, 0, 0< ® 0,

80, 0, 0< ® 1

H*super-additive*L
80, 1, 2< ® 0,

80, 2, 1< ® 0,

81, 0, 2< ® 0,

81, 2, 0< ® 0,

82, 1, 0< ® 0,

82, 0, 1< ® 0

partCA
1.1

H3,3,2L

- -

M2

H*super-additive*L
80, 1, 2< ® 0,

80, 2, 1< ® 0,

81, 0, 2< ® 0,

81, 2, 0< ® 0,

82, 1, 0< ® 0,

82, 0, 1< ® 0

part CA2.1
H3,3,2L

CA2.2
H3,3,2L

H* ECA-2 part *L
81, 1, 2< ® 1, 82, 2, 1< ® 1,

82, 1, 2< ® 2, 81, 2, 1< ® 2,

81, 2, 2< ® 2, 82, 1, 1< ® 1,

81, 1, 1< ® 2

-

M3

H*super-additive*L
80, 1, 2< ® 0,

80, 2, 1< ® 0,

81, 0, 2< ® 0,

81, 2, 0< ® 0,

82, 1, 0< ® 0,

82, 0, 1< ® 0

partCA3.1
H3,3,2L

-

H* ECA-3 part *L
82, 2, 2< ® 0, 80, 2, 0< ® 0,

82, 0, 2< ® 0, 80, 0, 2< ® 2,

80, 2, 2< ® 2, 82, 0, 0< ® 2,

82, 2, 0< ® 0

CA
3.3

H3,3,2L

ArrayPlotBCellularAutomatonB:

H* ECA-1 part *L
80, 1, 0< ® 0, 81, 0, 1< ® 0,

80, 0, 1< ® 1, 81, 1, 0< ® 1,

80, 1, 1< ® 0, 81, 0, 0< ® 0,

80, 0, 0< ® 1

H* ECA-2 part *L
81, 1, 1< ® 2

81, 1, 2< ® 1, 82, 2, 1< ® 1,

82, 1, 2< ® 2, 81, 2, 1< ® 2,

81, 2, 2< ® 2, 82, 1, 1< ® 1

H* ECA-3 part *L
82, 2, 2< ® 0, 80, 2, 0< ® 0,

82, 0, 2< ® 0, 80, 0, 2< ® 2,

80, 2, 2< ® 2, 82, 0, 0< ® 2,

82, 2, 0< ® 0

H*super-additive*L
80, 1, 2< ® 0,

80, 2, 1< ® 0,

81, 0, 2< ® 0,

81, 2, 0< ® 0,

82, 1, 0< ® 0,

82, 0, 1< ® 0

>, 881<, 0<, 22F,

ColorRules -> 81 -> Red, 0 -> Yellow, 2 ® Blue<F
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Some variations of the super-additive part
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Reductions

CA of Part - 1
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Reduction of CA
H3,3,3

 with state 2 reduced to state 1, CA
H3,3,2L
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Decomposites
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0

1

2

3
0

1

2

3

0

1

2

3

ruleM[{6, 3, 9, 11, 15}], dynamic
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ruleM[{6, 3, 9, 11, 15}], dynamic
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Decomposition within the positionality frame of morphograms

Reduction and decomposition of CA constructs are of equal importance.

Reductions are mainly based on an application of the Stirling numbers of the second kind instead of the application 

of the Klenee product  (star) on an alphebet of atomic signs.

A functional approach demands a combinatorics of mn  value distributions. Hence, a system with 3 variables and 3 

values includes 33= 27 value constellations between {1,1,1} and {3,3,3}. But this approach gets into conflicts with the 

principle of positionality that demands a distribution of morphic and functional parts. 

With the positional approach, just 21 ternary value constellations are necessary. According to the mediation principle 

they coincide with the constellations {1,1,1} Î S1 and S2, {2,2,2} Î S1 and S2 and  {3,3,3} Î S2 and S3.

But with a strict disjunctivity of the core values of S1, S2 and S3, just 21, instead of 27 value constellations are 

realized.
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This approach works fine for junctional and transunctional funtions and morphograms. Transjunctional constellations 

are defined as interactional core values and are not in conflict with the mediating values of the frame.

The set of 21 possibilities of value constellations is in itself not involved with transjunctional or interactional features. 

But the functions on the base of this set constellations is not restricted to ‘junctional’ functions only. The whole set of 

possible of trnasjunctional constellations is avaible too.

Framework for decomposed ternay functions

“Time direction is a significant property to distinguish a Cellular Automata logic function from a traditional logic 

function.” (Zheng)

http://cdn.intechweb.org/pdfs/15019.pdf

A composition of 3 two-valued functions S1, S2 and S3representing the states ai at a time t, consists of a mediation of 

the value-sets of the two-valued functions and the mediation of the disjunct time function of each function Si.

The elementary cellular automaton function is defined by:  (ai-1(t), ai(t), ai+1(t)) � ai(t+1).

“A cellular automaton is a model consisting of a discrete number of states in a regular grid. Time is also discrete, 

and the state of a cell at time t is a function of the states of its neighbors at time t - 1.”

A polycontextural approach to computation has not to be restricted by a homogeneous linear discrete structure of 

time.

Skizze einer graphematischen Systemtheorie

“Damit ist die Grundlage für eine irreduzible POLY–PROZESSUALIT… T angeben. Die komplexen 

Phänomene der Mehrzeitigkeit, der Gegenzeitigkeit und der Polyrhythmie wie auch die Dynamisierung von 

Entscheidbarkeit und Unentscheidbarkeit in formalen Systemen lassen sich hierdurch explizieren. Die 

allgemeine Konzeption der Prozessualität in komplexen bzw. heterarchischen Systemen transformiert 

grundlegend Apparat und Konzeption der Operativität und der Entscheidung.” (1985)

http://www.thinkartlab.com/pkl/graphematik.htm#Zur Prozessualit%E4tkomplexerSysteme

http://www.vordenker.de/vgo/vgo_mehrzeitigkeit.pdf

Nevertheless it is not the place to go into such intriguing philosophical and time-theoretical considerations. It is 

enough to see that the classical approach is based on a maximal reduction of complexity to be able to function. The 

time of this decison is over.

Back to normal:

The global time of a 3-contextural CA is composed by 3 time-structures of each contexture, hence the 3 involved 

CAs get each its own time-structure. In general, for n contextural CAs exactly 
n

2
 time-structures are involved in the 

complexion of morphoCA
HnL

.

With that features, poly-rhythms, antidromic and complex events in different time domains are formally accessible.

t
H30 =  (t1 ÿ 1.2,0 t

2M ÿ 1.2,3 t
3.

transition
H3L ICA

H3,3LM =

IIai-1It
1M,aiIt

1M,ai+1It
1MM� aiIt

1
+1MM

ÿ 1.2,0

Iai-1It
2M,aiIt

2M,ai+1It
2MM� aiIt

2
+1M

ÿ 1.2,3

Iai-1It
3M, aiIt

3M, ai+1It
3MM� aiIt

3
+ 1M

Framework for equality based mediation of functions
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p q r - S1 - - S2 - - S3 -

1 1 1 1 1 1 - - - 1 1 1

1 1 2 1 1 2 - - - - - -

1 1 3 - - - - - - 1 1 3

2 1 1 2 1 1 - - - - - -

2 1 2 2 1 2 - - - - - -

3 1 1 - - - - - - 3 1 1

3 1 3 - - - - - - 3 1 3

1 2 1 2 1 1 - - - - - -

1 2 2 1 2 2 - - - - - -

2 2 1 2 2 2 - - - - - -

2 2 2 2 2 2 2 2 2 - - -

2 2 3 - - - 2 2 3 - - -

3 2 2 - - - 3 2 2 - - -

3 2 3 - - - 3 2 3 - - -

1 3 1 - - - - - - 1 3 1

1 3 3 - - - - - - 1 3 3

2 3 2 - - - 2 3 2 - - -

2 3 3 - - - 2 3 3 - - -

3 3 1 - - - - - - 3 3 1

3 3 2 - - - � � � - - -

3 3 3 - - - 3 3 3 3 3 3

Interchangeability of mediation for state sets

HAT

U
H3L

= HU1 ÿ 1.2 U 2 L ÿ 1.2,3 U 3

HU1 Ý1.2 U 2 L Ý 1.2,3 U 3 = Æ :

U i = 8Id i, Set i <, i = 1, 2, 3

HEAD

Id 1 - Id 3

Id 1 Id 2 -

- Id 2 Id 3

:

BODY

IId 1 1.0,0 Set 1M

ÿ 1.2,0

IId 2 0.2,0 Set 2M

ÿ 1.2,3

HId 3 0.0,3 Set 3L

=

Id 1

ÿ1.2,0

Id 2

ÿ 1.2,3

Id 3

ë 1 ë 2 ë 3

Set 1

ÿ1.2,0

Set 2

ÿ 1.2,3

Set 3

 Set
H3,3L

 = {1,2,3} ÿ {1,2,3} ÿ {1,2,3}

Interchangeability of mediation for transitions

HAT

U
H3L

= HU1 ÿ 1.2 U 2 L ÿ 1.2,3 U 3

HU1 Ý1.2 U 2 L Ý 1.2,3 U 3 = Æ :

U i = 8Func i, Set i <, i = 1, 2, 3

HEAD

Set 1 - Set 3

Func 1 Set 2 -

- Func 2 Func 3

:

BODY

IFunc 1 1.0,0 Set 1M

ÿ 1.2,0

IFunc 2 0.2,0 Set 2M

ÿ 1.2,3

HFunc 3 0.0,3 Set 3L

=

Func 1

ÿ1.2,0

Func 2

ÿ 1.2,3

Func 3

ë 1 ë 2 ë 3

Set 1

ÿ1.2,0

Set 2

ÿ 1.2,3

Set 3
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Compositional

CA@tableD
H3,3,3L

O1 O2 O3

M1 CA
1.1

H3,3,2L
- -

M2 - CA
2.2

H3,3,2L
-

M3 - - CA
3.3

H3,3,2L

CA@j,j,jD
H3,3,3L

O1 O2 O3

M1

ECA - 1.1

1 1 1

1 1 2

- - -

2 1 1

2 1 2

- - -

- - -

2 1 1

1 2 2

2 2 2

2 2 2

- -

M2 -

ECA-2.2

2 2 2

2 2 3

3 2 2

3 2 3

- - -

- - -

2 3 2

2 3 3

- - -

� � �

3 3 3

-

M3 - -

ECA - 3.3

1 1 1

- - -

1 1 3

- - -

- - -

3 1 1

3 1 3

- - -

- - -

- - -

- - -

- - -

- - -

- - -

1 3 1

1 3 3

- - -

- - -

3 3 1

- - -

3 3 3

Different presentation
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ECA - 1.1

1 1 1

1 1 2

- - -

2 1 1

2 1 2

- - -

- - -

2 1 1

1 2 2

2 2 2

2 2 2

H1L -

- H3L

ECA - 3.3

1 1 1

- - -

1 1 3

- - -

- - -

3 1 1

3 1 3

- - -

- - -

- - -

- - -

- - -

- - -

- - -

1 3 1

1 3 3

- - -

- - -

3 3 1

- - -

3 3 3

ECA - 2.2

2 2 2

2 2 3

3 2 2

3 2 3

- - -

- - -

2 3 2

2 3 3

- - -

� � �

3 3 3

H2L -

Interactional

CA
Atrans,junct,junctE

I3,3,3M O1 O2 O3

M1 partCA
1.1

H3,3,2L
- -

M2 part CA
2.1

H3,3,2L
CA

2.2

H3,3,2L
-

M3 partCA
3.1

H3,3,2L
- CA

3.3

H3,3,2L

CA@trans,j,jD
H3,3,3L

O1 O2 O3

M1

ECA - 1.1

1 1 1 ® 1

1 1 2 ® ð

- - -

2 1 1 ® ð

2 1 2 ® ð

- - -

- - -

2 1 1 ® ð

1 2 2 ® ð

2 2 2 ® ð

2 2 2 ® 2

- -
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M2

ECA - 3

1 1 1 ® ð

- - -

1 1 3 ® 3

- - -

- - -

3 1 1 ® 3

3 1 3 ® ð

- - -

- - -

- - -

- - -

- - -

- - -

- - -

1 3 1 ® ð

1 3 3 ® 3

- - -

- - -

3 3 1 ® 3

- - -

3 3 3 ® 2

ECA-2

2 2 2 ® 2

2 2 3 ® 3

3 2 2 ® 3

3 2 3 ® 3

- - -

- - -

2 3 2 ® 3

2 3 3 ® 3

- - -

� � �

3 3 3 ® 3

-

M3

ECA - 3

1 1 1 ® 1

- - -

1 1 3 ® 3

- - -

- - -

3 1 1 ® 3

3 1 3 ® 3

- - -

- - -

- - -

- - -

- - -

- - -

- - -

1 3 1 ® 3

1 3 3 ® 3

- - -

- - -

3 3 1 ® 3

- - -

3 3 3 ® ð

-

ECA - 3.3

1 1 1 ® 1

- - -

1 1 3 ® 1

- - -

- - -

3 1 1 ® 1

3 1 3 ® 1

- - -

- - -

- - -

- - -

- - -

- - -

- - -

1 3 1 ® 1

1 3 3 ® 1

- - -

- - -

3 3 1 ® 1

- - -

3 3 3 ® 3
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� S1 .1 = transjunction S2 .1 S3 .1

ArrayPlot@Map@Flatten, 8
81, 1, 1< ® 1,
81, 1, 2< ® 4,
81, 2, 1< ® 4,
81, 2, 2< ® 4,
82, 1, 1< ® 4,
82, 1, 2< ® 4,
82, 2, 1< ® 4,
82, 2, 2< ® 2

< �. Rule -> List, 1D,
ColorRules -> 81 -> Red,
2 ® Blue, 3 ® Green,

4 ® White=,

ImageSize -> Small,

Mesh -> TrueD

nil nill

� transjunction = S1 .2

ArrayPlot@Map@Flatten, 8
81, 1, 1< ® 4,
81, 1, 3< ® 3,
81, 3, 1< ® 3,
81, 3, 3< ® 4,
83, 1, 1< ® 4,
83, 1, 3< ® 3,
83, 3, 1< ® 3,
83, 3, 3< ® 2

< �. Rule -> List, 1D,
ColorRules->81 -> Red,

2 ® Blue,3 ® Green,

4®White> ,ImageSize -> Small,

Mesh -> TrueD

S2 .2 = con-junction
ArrayPlot@Map@Flatten, 8

82, 2, 2< ® 2,

82, 2, 3< ® 3,

82, 3, 2< ® 3,

82, 3, 3< ® 3,

83, 2, 2< ® 3,

83, 2, 3< ® 3,

83, 3, 2< ® 3,

83, 3, 3< ® 3

< �. Rule -> List, 1D,
ColorRules -> 8 2 ® Blue,

3 ® Green<,
ImageSize -> Small,

Mesh -> TrueD

S3 .2

NIL

� S1 .3 = transjunction

ArrayPlot@Map@Flatten, 8
81, 1, 1< ® 1,
81, 1, 3< ® 3,
81, 3, 1< ® 3,
81, 3, 3< ® 3,
83, 1, 1< ® 3,
83, 1, 3< ® 3,
83, 3, 1< ® 3,
83, 3, 3< ® 4

< �. Rule -> List, 1D,
ColorRules->81 -> Red,

2 ® Blue,3 ® Green, 4®White> ,
ImageSize -> Small,

Mesh -> TrueD

S3 .2

Nil

S3 .3 = dis - junction

ArrayPlot@Map@Flatten, 8
81, 1, 1< ® 1,

81, 1, 3< ® 1,

81, 3, 1< ® 1,

81, 3, 3< ® 1,

83, 1, 1< ® 1,

83, 1, 3< ® 1,

83, 3, 1< ® 1,

83, 3, 3< ® 3

< �. Rule -> List, 1D,
ColorRules -> 81 -> Red,

3 ® Green<,
ImageSize -> Small,

Mesh -> TrueD

CA@t,j,jD
H3,3,3L

O1 O2 O3

M1

ECA - 1.1

1 1 1 ® 1

1 1 2 ® 4

- - -

2 1 1 ® 4

2 1 2 ® 4

- - -

- - -

2 1 1 ® 4

1 2 2 ® 4

2 2 2 ® 4

2 2 2 ® 2

- -

M2

ECA - 1.2

1 1 1 ® 4

- - -

1 1 3 ® 3

- - -

- - -

3 1 1 ® 3

3 1 3 ® 4

- - -

- - -

- - -

- - -

- - -

- - -

- - -

1 3 1 ® 4

1 3 3 ® 3

- - -

- - -

3 3 1 ® 3

- - -

3 3 3 ® 2

ECA-2.2

2 2 2 ® 2

2 2 3 ® 3

3 2 2 ® 3

3 2 3 ® 3

- - -

- - -

2 3 2 ® 3

2 3 3 ® 3

- - -

� � �

3 3 3 ® 3

-

M3

ECA - 1.3

1 1 1 ® 1

- - -

1 1 3 ® 3

- - -

- - -

3 1 1 ® 3

3 1 3 ® 3

- - -

- - -

- - -

- - -

- - -

- - -

- - -

1 3 1 ® 3

1 3 3 ® 3

- - -

- - -

3 3 1 ® 3

- - -

3 3 3 ® 4

-

ECA - 3.3

1 1 1 ® 1

- - -

1 1 3 ® 1

- - -

- - -

3 1 1 ® 1

3 1 3 ® 1

- - -

- - -

- - -

- - -

- - -

- - -

- - -

1 3 1 ® 1

1 3 3 ® 1

- - -

- - -

3 3 1 ® 1

- - -

3 3 3 ® 3

Some bifunctorial frameworks for a general mediation of CAs

Compositional mediation

The examples in this paper are mainly based on a mediation in the mode of equality (identity). This is just a conve-

nient way to introduce the conceptas such. 

The modi of mediation to be studied are:

mediation in the mode of equality,

mediation in the mode of equivalence,

mediation in the mode of similarity,

mediation in the mode of bisimilarity,

mediation in the mode of metamorphosis.
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Types of compositions

MG H m H m H m H m H m

= MG + + + + + + - - +- +-

= sem + + + - - - - - - -

[ + + + + + + - - � �

type id � eq � sim � bisim � metamorph �

CA CCA � kenoCA � morphCA � bisimCA � metamCA �

Some summary

Interdependence of operators H ë , ÿ , � , » L : Metamorphism

HM 1 ë Σ 1L ÿ HM 2 ë Σ 2L

HΣ ' 2 � M '1L

HΣ ' 1 � M ' 2L

�

M 1 » Σ ' 2

Σ ' 1 » M 2

Σ 1 » M ' 2

M '1 » Σ 2

Interdependence of operators H ë , Ä, º L : Equality

B
HM 1 ë Σ 1L

Ä

HM 2 ë Σ 2L
=

M 1

Ä

M 2

ë

Σ 1

Ä

Σ 2

F �

M 1 º M 1

Σ 1 º Σ 1

M 2 º M 2

Σ 2 º Σ 2

Interdependence of the operators H ë , ÿ , >L : Similarity

B
HM 1 ë Σ 1L

ÿ
HM 2 ë Σ 2L

=

M 1

ÿ
M 2

ë

Σ 1

ÿ
Σ 2

F �
M 1 > M 2

Σ 1 > Σ 2

http://memristors.memristics.com/MorphoProgramming/Morphogrammatic%20Programming.html

http://memristors.memristics.com/semi-Thue/Notes%20on%20semi-Thue%20systems.pdf

http://memristors.memristics.com/Polyverses/Polyverses.html

Interchangeability of mediation

HAT

U
H3L

= HU1 ÿ 1.2 U 2 L ÿ 1.2,3 U 3

HU1 Ý1.2 U 2 L Ý 1.2,3 U 3 = Æ :

U i = 8f i, g i <, i = 1, 2, 3

HEAD

g 1 � g 3

f 1 g 2 �

� f 2 f 3

:

BODY

If 1 1.0,0 g 1M

ÿ 1.2,0

If 2 0.2,0 g 2M

ÿ 1.2,3

Hf 3 0.0,3 g 3L

=

f 1

ÿ1.2,0

f 2

ÿ 1.2,3

f 3

ë 1 ë 2 ë 3

g 1

ÿ1.2,0

g 2

ÿ 1.2,3

g 3

CA@tableD
H3,3,3L

O1 O2 O3

M1 CA1.1
H3,3,2L

:

f1.1 : S1.1
n

# S1.1

- -

M2 � CA
2.2

H3,3,2L
:

f2.2 : S2.2
n

# S2.2

-

M3 - - CA
3.3

H3,3,2L
:

f3.3 : S3.3
n

# S3.3
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transition
1 H µ1.1 L

�8min, max<1.1
H1L -

- H3L
transition

3H µ3.3 L
� 8min, max< 3.3

transition
2H µ2.2 L

� Hmin, maxL 2.2
H2L -

Transjunctional mediation

Interchangeability of transpositions

HAT

U
H3L

= HU1 ÿ 1.2 U 2 L ÿ 1.2,3 U 3

HU1 Ý1.2 U 2 L Ý 1.2,3 U 3 = Æ :

U i = 8f i, g i <, i = 1, 2, 3

HEAD

g 1 � g 3

f 1 g 2 �

� f 2 f 3

:

BODY

interchangeability of a 3 - contextural category with composition H ë L,

mediation H ÿ L and transposition H � L

f 1

ÿ 1.2

f 2 � 2.1 f 1

ÿ 2.3

f 3 � 3.1 f 1

ë 1.1 --

ë 2.1 ë 2.2 -

�

ë 3.1 - ë 3.3

g 1

ÿ 1.2

g 2 � 2.1 g 1

ÿ 2.3

g 3 � 3.1 g 1

=

Hf 1 ë 1.1 g 1L
ÿ 1.2

Hf 2 ë 2.2 g 2L � 2.1 Hf 1 ë 2.1 g 1L
ÿ 2.3

Hf 3 ë 3.3 g 3L � 3.1 Hf 1 ë 3.1 g 1L

CA
Atrans,junct,junctE

I3,3,3M O1 O2 O3

M1 partCA
1.1

H3,3,2L
- -

M2 part CA
2.1

H3,3,2L
CA

2.2

H3,3,2L
-

M3 partCA
3.1

H3,3,2L
- CA

3.3

H3,3,2L

CA@tableD
H3,3,3L O1 O2 O3

M1 partCA3.1
H3,3,2L

:

f1.1: S
1.1

n
- S1.1�S1.2,3

- -

M2 part CA2.1
H3,3,2L

:

f2.1:S2.1
n

- S2.1�S1.2,3

CA
2.2

H3,3,2L
:

f2.2 :S2.2
n

# S2.2

-

M3 partCA3.1
H3,3,2L

:

f3.1: S
3.1

n
- S3.1�S1.2,3

- CA
3.3

H3,3,2L
:

f3.3 :S3.3
n

# S3.3

Reflectional mediation
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Bifunctoriality for replication H ë L , mediation H ÿ L

f 1 å 1.2 f 1 å 1.3 f 1

ÿ 1.2

f 2

ÿ 2.3

f 3.3

@ ë 1.1 ë 1.2 å 1.3D --

- ë 2.2 -

-- ë 3.3

g 1 å 1.2 g 1 å 1.3 g 1

ÿ 1.2

g 2

ÿ 2.3

g 3.3

º

HHf 1 ë 1.1 g 1L å 1.2 Hf 1 ë 1.2 g 1LL å 1.3 Hf 1 ë 1.3 g 1L
ÿ 1.2

Hf 2 ë 2.2 g 2L
ÿ 2.3

Hf 3 ë 3.3 g 3L

CA
Arepl,junct,junctE

I3,3,3M O1 O2 O3

M1 partCA
1.1

H3,3,2L
part CA

1.2

H3,3,2L
partCA

1.3

H3,3,2L

M2 CA
2.2

H3,3,2L
-

M3 � - CA
3.3

H3,3,2L

CA@tableD
H3,3,3L O1 O2 O3

M1 partCA3.1
H3,3,2L

:

f1.1:S1.1
n

- S1.1�S1.2,3

part CA2.1
H3,3,2L

:

f1.2:S1.2
n

- S1.2 � S1.2,3
partCA3.1

H3,3,2L
:

f1.3:S1.3
n

- S1.3 � S1.2,3

M2 - CA
2.2

H3,3,2L
:

f2.2 :S2.2
n

# S2.2

-

M3 - - CA
3.3

H3,3,2L
:

f3.3 :S3.3
n

# S3.3
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