

 Summer-Edition 2017

— vordenker-archive —

Rudolf Kaehr

(1942-2016)

Title

Finite State Machines and Morphogrammatics

Machines on Differences: A Contribution to Saussure-Derrida Machines

Archive-Number / Categories

3_12 / K09

Publication Date

2012

Keywords

TOPICS: MorphoFSA examples, Some applications of MorphoFSMs onto morphogrammatics, Palindromes

and MorphoFSMs, Palindromes and Chiasms, Simulation of FSA by MorphoFSA, Formal
approximations for MorphoFSA, Classical machines with input and outpu.

Disciplines

Cybernetics, Computer Sciences, Artificial Intelligence and Robotics, Systems Architecture and

Theory and Algorithms, Memristive Systems/Memristics, Semiotics

Abstract

This paper is sketching a further approach toward a better understanding of morphogrammatics:

Morphic Finite State Machines, more exactly, Morphic Difference Machines. It seems that the

difference-theoretical aspect of morphogrammatics gets an even more direct thematization and

formalization in the context of an analogon to FSMs. Some preliminary combinatorial elaborations are

added with the application of SML-procedures. The concept of asymmetric palindromes is sketched.
“Derrida’s Machines” is the title of a continuing research program that went public 2004.

Citation Information / How to cite

Rudolf Kaehr: "Finite State Machines and Morphogrammatics", www.vordenker.de (Sommer Edition, 2017) J. Paul (Ed.),

http://www.vordenker.de/rk/rk_Finite-State-Machines-and-Morphogrammatics_2012.pdf

Categories of the RK-Archive
K01 Gotthard Günther Studies

K02 Scientific Essays

K03 Polycontexturality – Second-Order-Cybernetics

K04 Diamond Theory

K05 Interactivity

K06 Diamond Strategies

K07 Contextural Programming Paradigm

K08 Formal Systems in Polycontextural Constellations

K09 Morphogrammatics

K10 The Chinese Challenge or A Challenge for China

K11 Memristics Memristors Computation

K12 Cellular Automata

K13 RK and friends

http://www.vordenker.de/index.html
http://www.vordenker.de/index.html
http://www.vordenker.de/navigation.htm
https://de.wikipedia.org/wiki/Rudolf_Kaehr
http://www.vordenker.de/rk/rk_Finite-State-Machines-and-Morphogrammatics_2012.pdf
http://www.vordenker.de/rk/rk_Finite-State-Machines-and-Morphogrammatics_2012.pdf
http://www.vordenker.de/rk/rk_DERRIDAs_Machines_2004.pdf

 Sommer-Edition 2017

Finite State Machines and Morphogrammatics

Machines on Differences: A Contribution to Saussure-Derrida Machines

Author: Rudolf Kaehr

Table of Contents
(compiled by EvGo, April 2017) [

*
]

(Number of pages refer to the display of the pdf-reader)

Abstract

1. Some types of Automata 003
1.1. FSA, IFA, CA and morphic Automata 004

1.1.1. Motivation: the ubiquity of automata

1.1.2. Finite state machines

1.1.3. Morphic automata

1.2. Finite State Machines 009

1.2.1. Recalling definitions

1.2.2. Motivations for morphic FSA

2. Morphogrammatic FSA 012
2.1. Some descriptions 012

2.2. The epsilon/nu-structure of morphogram 014

2.2.1. Differentiation and enumeration

2.2.2. The systematic status of morphograms

2.2.3. General scheme of a subversion strategy

2.2.4. Number of symbolic representations

2.2.5. FSA equivalence, isomorphism and minimization

3. Morphogrammatic FSAs 021
3.1. First definitions of morphogrammatic FSA 021

3.1.1. MorphoFSA examples

3.1.2. Further examples of MorphoFSA

3.1.3. Machine tables for MorphoFSA

3.1.4. Comparisons, abstractions and more machine tables

3.1.5. Some applications of MorphoFSMs onto morphogrammatics

3.1.6. Towards a little Zoo of MorphoFSM diagrams

3.2. Palindromes and MorphoFSMs 042

3.2.1. Palindromes and iteration

3.2.2. Palindromes, first

3.2.3. Palindromes, again

3.2.4. Palindromes and Chiasms

3.2.5. Appendix about asymmetric palindromes

3.2.6. Chiasm AB:C:BA

3.3. Simulation of FSA by MorphoFSA 060

3.3.1. Relations

3.3.2. Comparisons: MorphoFSA and FSA

3.3.3. Why are MorphoFSMs not just relational systems?

3.4. Pumping lemma, first 063

3.4.1. The classical scenario

*
 URL: http://www.vordenker.de/rk/rk_Finite-State-Machines-and-Morphogrammatics_2012.pdf

 Sommer-Edition 2017

3.5. Formal approximations for MorphoFSA 066

3.5.1. Automata-theoretical approach

3.5.2. Programming approach

3.6. Observations on morphic automata 068

3.6.1. Iteration and retrogradeness

3.6.2. Operations on MorphoFSM

3.6.3. Dissemination of MorphoFSMs

3.6.4. Mono- and polysemy

3.6.5. Determinism and non-determinism

3.6.6. Logic, Categories, FSM and MorphoFSM

3.6.7. Diamond characterization

3.7. Further comparisons 086

3.7.1. Quotient automata of FSA and MorphoFSA

3.7.2. General comparison of automata

3.7.3. Cellular automata based on differences

3.8. Classical machines with input and output 090

3.8.1. Mealy Machine

3.8.2. Moore Machine

3.8.3. Turing Machines

3.8.4. Examples

3.8.5. Representations and combinations

3.9. Presentations of automata: transition tables and de Brujin graphs 095

3.9.1. Transition tables

3.9.2. de Brujin graphs for FSM

4. Critical questions 096
4.1. Are morphic FSAs Finite State Automata at all? 096

4.2. Is there any use for morphic automata? 097

4.2.1. Semiotics of palindromes and anagrammatics

Notes 102

How to cite:

Rudolf Kaehr, "Finite State Machines and Morphogrammatics", www.vordenker.de (Sommer Edition,
2007) J. Paul (Ed.)
URL: http://www.vordenker.de/rk/rk_From-Universe-to-Polyverses_2010.pdf

Finite State Machines and
Morphogrammatics
Machines on Differences: A Contribution to Saussure-Derrida
Machines

Rudolf Kaehr Dr.phil
@

Copyright ThinkArt Lab ISSN 2041-4358

Abstract
Morphograms as a new mode of inscription had been introduced into the academic world by

Gotthard Gunther (1900 - 1984) with his theory of “transjunctional operations” for a cybernetic

logic of self-reflection at the BCL at the 1st of April 1962. His concept of a transformation system

of mediated morphograms by a reflector operator has been studied in my dissertation

“Materialien 1973-75”, published 1976, based on a project at the FeOLL GmbH, 1973-75, (Prof. H.

Stachowiak, G. Thomas, J. Seehusen), and brought to a formal and programmed elaboration by

different collaborators around 1988 guided by Wolfgang Niegel and students, Munich, and then

finally formalized, programmed and published 1993 as the book “Morphogrammatik” as the report

No. 1 of the research project “Theorie komplexer biologischer Systeme” (Volkswagen-Stiftung) and

also published at the IFF Klagenfurt by Thomas Mahler/Rudolf Kaehr, and made accessible later on

the Website “Polycontextural Logic” at Techno.net, later ThinkArt Lab Glasgow.

Meanwhile new approaches emerged, especially with the understanding of morphograms not just as

pre-logical patterns but also as rules (operators), realized by the concept of morphogrammatic

cellular automata.

This paper is sketching a further approach toward a better understanding of morphogrammatics:

Morphic Finite State Machines, more exactly, Morphic Difference Machines. It seems that the

difference-theoretical aspect of morphogrammatics gets an even more direct thematization and

formalization in the context of an analogon to FSMs.

Some preliminary combinatorial elaborations are added with the application of SML-procedures.

The cocept of asymmetric palindromes is sketched. “Derrida’s Machines”

(http://www.thinkartlab.com/pkl/media/DERRIDA'S%20MACHINES.pdf) is the title of a

continuing research program that went public 2004.

(Work in progress v. 0.8.5.5, Jan. 2013)

1. Some types of Automata
"But the paradox is that: In the language, there are only differences, without positive terms.

That is the paradoxical truth.” Ferdinand de Saussure

"(...) Dans la langue il n’y a que des différences. Bien plus: une différence suppose en général des termes positifs

entre lesquels elle s’établit; mais dans la langue il n’y a que des différences sans termes positifs.

"Qu’on prenne le signifié ou le signifiant, la langue ne comporte ni des idées ni des sons qui préexisteraient au

système linguistique, mais seulement des différences conceptuelles et des différences phoniques issues de ce

système.

"Mais dire que tout est négatif dans la langue, cela n’est vrai que du signifié et du signifiant pris séparément; dès

que l’on considère le signe dans sa totalité, on se trouve en présence d’une chose positive dans son ordre.”

Ferdinand de Saussure, Cours de linguistique générale, Payot, 1975, p. 166-167.

mailto:rkaehr@btinternet.com

1.1. FSA, IFA, CA and morphic Automata

1.1.1. Motivation: the ubiquity of automata

Automata are everywhere. They come in the form and realizations as mechanical,
electro-mechanical, electric, electronic, chemical, etc. physical devices and paper.
They are used to control traffic at the railway and underground stations, they serve
for the tickets as tickets automata, or for cigarettes, and so on. Nobody has to care
about their theoretical status, except theoreticians. Such automata in their simplest
form are called finite state automata or finite state machines, or for short FSA or
FSM. They are perfect models to study abstractly the behavior of simple physical
automata.

For computer scientist, FSMs are perfect models for computation. Unfortunately they
lack of a memory function. Therefore, the use of FSAs is limited. It is not a big deal
to fill this gap. Augmented automata with memory are doing the job. Well known as
pushdown automata and finally as Turing machines. Everybody knows their name but
not necessarily how they work.

As usual in mathematics, there are further abstractions at hand. The mathematical
concept of physical finite state automata gets a further abstraction: different
symbolic FSAs that have the same behavior are abstractly equivalent. This defines the
chain of physical automata to symbolic FSMs and to abstract equivalence classes of
FSMs. One of thoese types of abstraction of FSMs is called quotient automaton.

The path to the mathematical abstractions is clear. After having used physical
devices millions of times, an abstraction of its physical use to an abstract
representation follows naturally. An abstract treatment of automata becomes crucial
if the automata systems are growing into highly complex configurations.

All those abstract concepts of automata are faithful to their physical origins. Even
the Abstract State Machines, ASM, of Yuri Gurevich is considered not with
abstractions but with a more concrete representation of “real world” events. The
states for ASMs are not just symbols but models, algebras,
structures representing real world constellations.

Having lived long enough to have encountered million times physical automata and
often enough their mathematization and their conceptual applications in all kinds of
sciences, the question arises: Is there not time for a further ‘abstraction'? Even if this
kind of abstraction turns out to be more a reflection and subversion than a
mathematical abstraction, it might nevertheless be considered as a natural
abstraction from the existing models of computation.

Does it really matter anymore what is processed, and on what level of abstraction
these procedures happen? Whatever is processed in this classical approach, physically
and theoretically, is based on identity. It certainly would be absurd to ask for an
automaton in which its objects would dissolve into hot air while being processed.

But it isn’t specially absurd to focus on the actions of the automaton as such and to
ask if the actions have to be considered as the same or as different. Nothing more.
Sameness and differentness distributed in specific configurations of sameness and
differentness are replacing ‘state-based’ symbolic concepts and their identity as
equality and non-equality.

A machine concept that is thematizing and formalizing just the aspects of actional
sameness and differentness is deliberated from its identity-theoretical heritage. With
that, all constituents of the FSM are endangered: the states and transitions of the
FSM are ‘bracket’ out and reserved for the classical, identity-based concepts of
automata.

Such new kinds of machines shall be called differentiation machines. The use of the
term differentiation might get more explanation with the connection to the concepts
of differences and distinctions. Obviously all terms that have to be deconstructed and
taken out of their origins and involvement into identity. This approach also shouldn’t
be confused with an attempt of “programming the Ready-to-Hand” of Heideggerian
AI (Hubert L. Dreyfus) because latter doesn’t attempt to deconstruct its own medium,
the presumed programming languages as such.

"Ce mouvement (actif) de la (production de la) différance sans origine, n’aurait-on
pu l’appeler, tout simplement et sans néographisme, différenciation? Entre autres
confusions, un tel mot eût laissé penser à quelque unité organique, originaire et
homogène, venant éventuellement à se diviser, à recevoir la différence comme un
événement. Surtout, formé sur le verbe différencier, il annulerait la signification
économique du détour, du délai temporisateur, du <<différer>>." (Derrida,
Différance)

The new differentiation machine is ‘calculating’ differences that are distributed in a
system that is defined by its differences and that is defining its differences.

The self-referentiality of this description of “differentiation” marks the departure of
difference machines from state machines. State machines are based on identifiable
atomic states in transitions with an initial and a final state, in finite or infinite steps.
Difference machines are not based on “identifiers” which are identifying something (a
sign) as something in the mode of “is-abstractions” but are evoking ("imaginative re-
creation") something, i.e. themselves as something different.

This new approach shall be modeled in analogy to classical finite state machines as
far as the new intuition survives. Other approaches to conceptualize and formalize
differentiation machines shall follow.
http://www.thinkartlab.com/pkl/lola/ConTeXtures.pdf

How to classify morphogrammatic machines?
If we stipulated that a morphic machine might iteratively repeat its actional structure
or it might decide to augment its differentiation by choosing an accretive repetition
and differentiate its actional base further by accretively augmenting retrograde
recursively its domain by a new, not yet decided and included differentiation, then
we would have to offer a mathematical model that would be able to cope with such a
structural demand.

It is stipulated that classical machine models are not designed to respond to such
vivid situations.
A morphogrammatic machine might therefore be modeled in analogy to an organism
that is adapting towards the requests and conditions of its morphic environment.

How does that contrast to Gurevich’s Abstract State Machine (ASM) model of
computation? It is understood that the ASM approach is one of the most advanced
general models of computation.

“A state is an algebra (structure)"
"The central and new idea of ASM is easily described: It is the systematic way of how
symbols occurring in the syntactic representation of a program are related to the real
world items of a state. In fact, a state of an ASM may include any real world objects
and functions. In particular, the ASM approach does not assume a symbolic, bit level
representation of all components of a state.”
http://www2.informatik.hu-
berlin.de/top/download/publications/Reisig2006_classroom.pdf

The question is not if the ASM approach is covering “real world” objects and functions
by it computational model. The question that comes first is probably more
philosophical and fundamental and therefore not easily accepted by computer

scientists, the question is: Are “real world” data really just “abstract” and
identifiable objects, i.e. events, occurrences, functions, relations, transitions, etc.?

"In particular, the ASM approach does not assume a symbolic, bit level representation
of all components of a state. Herein it differs from standard computation models -
and most obviously to Turing Machines - where a state is a (structured) collection of
symbols.

"But conventional computation concentrates on the transformation of symbols, not
dwelling too deeply on what they stand for.” (ibd., p. 3)

This exercise is focusing on the (deconstruction of the) transition rule (function). The
consequences for the concepts of the alphabet, the states and the initial and the
final state will be reflected later and will be conceived then as the pre-conditions of
the new understanding of the transition function as an act of differentiation and the
concept of the morphogrammatic finite state machines (FSM) as such.

Elementary cellular automata are collections of simple finite state machines.

In earlier approaches, the order was inverse. The focus was on the ‘non'-alphabetic
characteristics of kenoms (kenograms) and its paradoxical consequences, especially
for the definition of a beginning of a formal language or an automaton. The new
approach plays with the fact of the Stirling character of kenogram sequences and
morphograms and a standard representation of the ‘non'-representable alphabet and
kenogrammatic sequences and their non-linear constellations. A further reflection
(deconstruction) has to take the ‘infinity’ of the stream-property of morphograms
into account.

One of the most elucidate analysis of an abstract theory of computation is given by
Gurevich’s Abstract State Machines (ASM).

This way of thinking was reflected in my “Skizze-0.9.5” from 2003. (Parts are
published by Fink Verlag 2012, ISBN: 978-3-7705-5419-5)

Like with Konrad Zuse, computation is defined by Gurevitch as a step-wise transition
in time (Levin), guided by rules, from an initial to a terminal object, in the mode of
finite or infinite, parallel or serial configurations, the result of the computation. This
approach is extended without changing its basic concept to non-terminal and parallel
situations too.

Computation (in the Framework of FSM M =)
1. ro = q0, : initial

2. δ (ri, ω) = r for 0<=i> n : transition
3. rn = ∈ F : terminal.

Also written as r0 rn.

http://www.cs.cmu.edu/~fp/courses/flac/lectures/lecture05.ps

Obviously, the limits of this paradigm are clear: no interactivity. Computation is
conceived as problem-solving and not as a media of interacting computational
processes, without beginning nor end (Peter Wegner’s interactivity, Turing’s Oracle
Machines).

1.1.2. Finite state machines

FSA
"The finite state automaton (FSA) or finite state machine is a very important model
that has been widely used in computer science and industry. The automaton can
perform very complex computational tasks with only finite internal states and fixed
transition rules.

“Usually, there are two kinds of FSAs. Finite state acceptors (recognizers) only accept
information and jump between different states but do not generate any output
information. These machines are widely used as language recognizers. Another class
is called finite state transducers, which are able to generate output information as
well as accept input information. They can be designed as controllers.

Mealy and Moore
"Another class is called finite state transducers, which are able to generate output
information as well as accept input information. They can be designed as controllers."

Finite State Machine
"We consider non-deterministic finite state machines with no accepting states,
defined as follows.

A finite state machine (FSM) is a quadruple M = (Σ, Q, q , δ), where Σ is the alphabet
of input symbols, Q is the set of states, q0 is the initial state, and δ is
the transition function, which maps Q × Σ to subsets of Q. If every δ(q, a) contains
exactly one state, then M is deterministic.
In this case we may write δ(q, a) = q’ instead of δ(q, a) = {q' }." Dana Angluin et al,
Mutation Systems

Wolfram’s IFAs
"By adding a tape with finite size and some other constraints to the FSA, we can study
the behavior just like one-dimensional cellular automata (CAs). Wolfram has
enumerated all possible patterns of two-state two-color and three-state two-color
IFAs.”

Cellular automata

"An alphabet Σ is a finite nonempty set of symbols. Σ* denotes the set of all finite
strings of symbols from Σ. The empty string is denoted λ. A language is any subset of
Σ* . Σkdenotes those elements of Σ* of length k. The symbols in a string s of
length n are indexed from 1 to n and s[i] denotes the ith symbol of s.

"A cellular automaton C = (Σ, δ) is composed of an alphabet of symbols Σ and a set
δ transition rules of the form axb <-> ayb for substitutions or ab <-> axb
for insertions and deletions, where a, b, x, y ∈ Σ.
The idea is that the value of a given cell of the automaton may change only when
both its neighbors have specific values.

"For s1, s2 ∈ Σ* , s1 can reach s2 in one step of C , denoted s1 ->C s2 , if applying one
transition rule to s1 yields s2 . And s1 can reach s2 in C if s1 ->*C s2 . Given an input
string s ∈ Σ* , a snapshot of C on input s is any string s’ such that s can reach s’ in C.”
Dana Angluin et al, Mutation Systems
http://www.cs.yale.edu/homes/aspnes/papers/lata2011-proceedings.pdf

Turing machines
Finite state machines have a limited memory. This restricts the range of
computability. Turing machines are not finite machines but have an infinite tape to
store information. Hence, their range of computability encompasses that of finite
state machines. Memory is not disturbing the general concept of transitions.

Büchi automata
Considering streams of events, another kind of automata has to be introduced.

"A Büchi automaton is a type of ω-automaton, which extends a finite automaton
to infinite inputs. It accepts an infinite input sequence iff there exists a run of the
automaton that visits (at least) one of the final states infinitely often. Büchi
automata recognize the omega-regular languages, the infinite word version of regular
languages.”

"An ω-automaton (or stream automaton) is a variation of finite automaton that runs
on infinite, rather than finite, strings as input. Since ω-automata do not stop, they
have a variety of acceptance conditions rather than simply a set of accepting states.”
(Pandya)

"Stream automata, e.g. {Büchi, Muller, parity }-automata, accept languages of infinite
words (ω-regular languages)." (Venema)

1

1Remarks to algebra and co-algebra for morphic streams (in German).

3

http://www.cs.yale.edu/homes/aspnes/papers/lata2011-proceedings.pdf

"Universal Coalgebra provides the notion of a coalgebra as the natural mathematical
generalization of state-based evolving systems such as (infinite) words, trees, and
transition systems.”
http://staff.science.uva.nl/~yde/papers/2010/font-auto2010.pdf

1.1.3. Morphic automata

Morphic automata are an experimental concept developed in this paper. Morphic
finite state machines (automata), MorphoFSA or MorphoFSM, are opting for a
difference-oriented approach of computation, and are therefore contrasting to all
existing kinds of abstract machines by their deconstruction of the identity of the
concept of a state, its alphabet and its transitions.

Transitions for MorphoFSA are not relations or functions, thus transitions but
differentiations. Differentiations are also not covert by the concept of distinctions in
the sense of Spencer-Brown’s Laws of Form. The concept of differentiations as
applied for the introduction of finite differentiation machines, MorphoFSA, has to be
separated from the calculus of differentiation as I have developed as a
complementary calculus to the calculus of indication. There it was called
a Mersenne calculus.

Therefore, MorphoFSA are at first build in analogy and used as a support for the
strategy of surpassing the limits of identity-dominated machines. MorphoFSA are not
dealing with states as sings, symbols, information, real world representations etc. but
with differences as such. Differences in this sense are not relations, functions or
operations between or with objects, sympols, signs. The leading metaphor for
MorphoFSA is living matter in the sense of autopoietic
structurations/differentiations/distinctions, and not symbolic or physical control
systems of information processing.

1.2. Finite State Machines

1.2.1. Recalling definitions

JFLAP defines a finite automaton (FA) M as the quintuple

M = (Q, Σ, δ, qs, F)
 where
Q is a finite set of states {qi | i is a nonnegative integer}
Σ is the finite input alphabet
δ is the transition function, δ : D -> 2Q where D is a finite subset of Q × Σ*
qs (is member of Q) is the initial state
F (is a subset of Q) is the set of final states .

A string w is accepted by a finite automaton M iff there is a labeled path lp
such that
• lp is valid for M;
• the label of lp is w;
• the start state of lp is the start state of M; and
• the end state of lp is an accepting state of M.

3.4.1 Finite Automata
A finite automaton (FA) M consists of:
• a finite set QM of symbols (we call the elements of QM the states of M);
• an element sM of QM (we call sM the start state of M);
• a subset AM of QM (we call the elements of AM the accepting states of M);
• a finite subset TM of { (q, x, r) | q, r ∈ QM and x ∈ Str }.
http://www.jflap.org/

Numeration
Following the successive construction of the word “abbba” in the formal language,
the numeration of the transitions of the FA for the selected word of the formal
language follows automatically.
Hence, a recognition of a word starts with its first element, continues linearly, step
by step, and ends with its last element (halt state).

Properties for an acceptance
1. machine in acceptance (halt) state,
2. input is exhausted,
3. string accepted. (Parkes, p.55)

Example

Debugger ready with string "abbba"
Symbol = , remaining string = "abbba", states = [], accepting = false
Symbol = a, remaining string = "bbba", states = [2], accepting = true
Symbol = b, remaining string = "bba", states = [1], accepting = true
Symbol = b, remaining string = "ba", states = [1], accepting = true
Symbol = b, remaining string = "a", states = [1], accepting = true
Debugger: stopped (no more characters to process)

Further literature
Thomas Hanneforth, Finite-state Machines: Theory and Applications (2010)
http://tagh.de/tom/wp-content/uploads/FSM_UnweigtedAutomata.pdf

1.2.2. Motivations for morphic FSA

A first step of deconstruction
Abstractions from states in respect of actions: “turnOn” and “turnOff” are obviously
morphogramatically equivalent. What is of interest from a morphogrammatic point of
view is not what is changed, i.e. the semantics of the change, “On”, “Off”,
but how it is changed, i.e. the form of the action involved. Thus its interactivity. And
not any physical details. For both direction, “On” and “Off”, the same form of
activity gets realized. That is, the same complexity/complication and time-structure
of the action is involved. The opposite semantics of “On” and “Off” loses its
significance if the focus is on the inter-activity instead on its material objects. In this
scenario it strictly doesn’t matter what’s on the plate.

Interactivity means here: “neither open nor closed” and “open and closed at once”,
hence the new (meta)state is just this paradoxical interplay. Therefore a meta-state
is a diamond bi-object in the sense of diamond category theory.

"The number and names of the states typically depend on the different possible
states of the memory, e.g. if the memory is three bits long, there are 8 possible
states.” (WiKi)

Hence, 32= 8 gets reduced in the actional approach to Sum(StirlingSn2(3, 2))= 4.

What might then a keno-state be? How can it be represented?
A nice model of a keno-state is just a model of a simple FSM, here a transducer
model, itself.

keno-state = [1, open; 2, closed]
Thus, a keno-state represents the activity measured in mn of a FSM as such in contrast

to the form of the activity measured as Sum[StirlingSn2[m, n]].

With the strategy of Stirling-abstractions and standard notation of kenograms as
replacement of identitive signs, the whole machinery of automata theory remains still
applicable. Without this strategy of “abstraction and acception” it seems to be more
or less impossible to advance and surpass, step-wise, philosophical speculations
towards mathematical constructions. As a first attempt to understand the strategy,
this step might be conceived just as a change in the data structure of the machine,
from identitive to morphogrammatic ‘data’ structures. Thus, not yet touching the
mechanism of the machine as such.

Hence, a kenogram sequences kseq is represented by a standard alphabet of signs in a
lexical order.

A morphogram of a binary action is of the form [aa] or [ab].
If both 'states" are involved in the same kind of actions then nothing happens, i.e. no
differentiation is involved: [aa].
If the 'states' are representing opposite actions the form of the interactivity is: [ab].
The action [aa] is realized in morphic FSM as a self-application (self-differentiation),
while the action [ab] is realized in MorphoFSA as a differentiation.

This game might be continued for arbitrary length of morphograms with two and only
two kenograms.
More interesting is the case for general morphograms of arbitrary complexity. Such a
complexity of arbitrary morphograms is represented in MorphoFSA with the amount
of positions of differences.

As for kenogrammatic cellular automata the crucial consequence of the
morphogrammatic approach is demonstrated with the definition of the transition
function with a transition (differentiation) from a Cartesian or Cantorian paradigm to
a Stirling option.
http://memristors.memristics.com/CA-
Overview/Short%20Overview%20of%20Cellular%20Automata.pdf

Glossary for FSM
1) FSM A collection of states and transitions that outline a path of actions
that may occur.
2) State A state is a position in time. For example, when you are at the bus
stop, you are
 currently in a waiting state.
3) Event An event is something that happens in time. For example, the bus has
arrived.
4) Action A task performed given a certain event that occurred. For example, you
enter the bus.
5) Transition A link between 2 states. May be unidirectional or bidirectional.

New:
0) Keno A collection of interactivities between the transitions of FSMs as
objects.

 A state in a kenoFSM is a standard representation of an interactivity of
a transition
 (transformation) and therefore classical states are conceived as
automorphisms,
 i.e. as interactivity onto itself.

http://www.generation5.org/content/2003/FSM_Tutorial.asp

With this model of keno-states or meta-states it is easy to understand the reduction
of FSM with its Cartesian combinatorics to kenoFSM with their Stirling combinatorics.

transition-substitution = (Objects = {signs, patterns, monomorphies}, Operations = {
concatenation, fusion, bisimilarity})
symbolicCA = [grid=lattice, cells=atomic, signs, concatenation]
kenoCA = [grid, cells, patterns, concatenation]
morphoCA = [grid=multi-layers, cells=leveled, monomorphy, fusion]
transition-substitution = (concatenation, fusion, bisimilarity).

"Substitutions transform a sequence into another sequence. So do other mechanisms
known as cellular automata."

http://www.dtic.mil/dtic/tr/fulltext/u2/p010899.pdf

2. Morphogrammatic FSA

2.1. Some descriptions

Morphograms of morphogrammatic languages, interpreted as kenogram
sequences, kseq, are build step-wise retrograde-recursively and not just recursively
as for strings of a formal language.

The class of words ω over an alphabet Σ for a formal language is: Σ* =

{ω1ω ωn | k>= 0, ∀ωi ∈ Σ}.

Example
Σ = {a,b, c}, then Σ* is the set: {ε, a,b,c, aa, an, ac, ba, bb, bc, ca, cb, cc, aaa, aab,
aac, ...}
The class of morphograms μ over a kenogrammatic ‘sign repertoire’ Κ in standard
normal form is: Sum(Sn2(Κ, n)).

Example
K = {a,b, c}, then Κ* is the set: {ε, a, aa, ab, aaa, aab, aba, abb, abc,...}.

The semiotic universe is Σ* is defined by the star or Kleene closure:

Σ* = Σi = Σ Σ2 ∪ Σ3 ∪ ... ∪ Σn.

The kenomic (morphogrammatic)trito-universe TU is defined as Κ = ([1], Tsucc)
with val TU = from [1].
This construction of the trito-universe TU is based on an application of lazy-lists, that

http://www.dtic.mil/dtic/tr/fulltext/u2/p010899.pdf

is a realization of the concept “evaluation-by-need”.
http://www.thinkartlab.com/pkl/SML-sources.NJ/ALL-MG-nov2012.sml

The automata FSA are recognizing words and languages from Σ*, while the MorphoFSA
are recognizing morphograms from Κ*.

A language accepted by FSA is the set of words accepted by the automaton. Similarly,
morphic languages accepted by a MorphoFSA are set of morphograms accepted by
MorphoFSA. A word or a morphogram is accepted if the machine has an accepted final
run for the word.

http://memristors.memristics.com/CA-
Overview/Short%20Overview%20of%20Cellular%20Automata.pdf
http://memristors.memristics.com/Graphematics/Graphematics%20of%20Cellular%20
Automata.html

That’s so far the analogy.

Morphogrammatics was developed in analogy to recursive word arithmetics in the
book “Morphogrammatik” 1993, applying extensively methods of lazy lists and lazy
programming.

Hence, methods of producing recursively, and computing morphograms with the
SML/NJ program, defined well the universe of kenogrammatics and
morphogrammatics.

But as for regular formal languages, it is another question to decide (recognize,
accept) if a morphogram belongs to a specified morphogrammatic script or not. Finite
state machines are applied to this decision problem for regular symbolic languages.

It is proposed with this paper that MorphoFSA, i.e. morphogrammatic ‘finite state
machines’, are doing the job for all specified morphogrammatic scriptures.

A calculus is defined by 2 alphabets:
1. the alphabet of signs,
2. the alphabet of variables.

Two semiotic words of a FSA are equal iff they are of the same length and all the
occurrences of its atomic signs are equal at the same places of the comperaed words
(strings).

In contrast, two morphograms of a MorphoFSA are MG-equivalent iff they have the
same EN structure:
[A] =MG [B] iff EN(A) = EN(B).

ML-definition

fun from ts = Cons(ts,fn () => from (Tsucc ts));
The set of all trito-sequences (morphograms) is calculated by val TU = from [1];
The first elements of the lazy list of morphograms is given by nfirstq (n, seq).

fun nfirstq (0, xq)=[]
|nfirstq (n, Nil)=[]
|nfirstq (n, Cons(x,xf))= x::(nfirstq (n-1, xf ()));

Example
- nfirstq(23,TU);
> val it =
[[1],[1,1],[1,2],[1,1,1],[1,1,2],[1,2,1],[1,2,2],[1,2,3],[1,1,1,1],
[1,1,1,2],[1,1,2,1],[1,1,2,2],[1,1,2,3],[1,2,1,1],[1,2,1,2],[1,2,1,3],[1,2,2,1],
[1,2,2,2],[1,2,2,3],[1,2,3,1],[1,2,3,2],[1,2,3,3],[1,2,3,4]] : int list list

-nfirstq (55, TU)4

The hint to lazy lists shows an important difference to algebraic list definitions of
lists and finite state automata. Lazy lists are streams (sequences, Paulson) that are
evaluated “by need”. Hence, problems of “infinite” streams for automata or
automata of streams have to be analysed.

Enumeration
Morphograms are not build up of elements of an alphabet but are defined by the
differences between their “elements’, i.e. the kenograms. Therefore, the
enumeration of the “elements” of a morphogram has to adapt to the special property
of retrograde recursivity.

The best way to enumerate the constituents of a morphogram is therefore to
enumerate its differences.

Because morphograms are patterns and not sequences or lists, there are some options
how to enumerate and where to start the numeration of its differences.

Hence, a start or initial state is not a property of a morphogram as it is necessary for
a string but a property of an observation. The observation is deciding with which
element a description or recognition of a pattern will be opted as a start.

One aspect of morphograms is their retrograde-recursive construction, the other is
the recognition procedure by an automaton of a ‘encountered' (given) morphogram.

A convenient way to do this was introduced by the so-called epsilon/nu-enumeration,
ε/ν-enumeration of the position of the kenomic differences.

A word, here a morphogram, is read then as a sequence of ε/ν-situations.
What counts is the transition or move of differentiation from one position (state) to
another position. This is realizing a ν-difference or a move into itself, realizing an ε-
difference. These two types of differences correspond to the distinction of iteration
and accretion in kenogrammatics.

The labels of the differentiations from one position to another are the number of the
differentiations or the number of runs, and not the elements of an alphabet to be
used or recognized.

The positions might be identified with the number of different kenograms involved in
the definition of the morphogram.

There are only two kinds of moves (transitions, differentiations) for a kenomic SFM: ε-
or ν-transitions. But strictly, those ‘moves’ are not moves in a literal sense but acts
of differentiations.

Differentiation happens by the amount of positions (states) of the automaton, and not
by the amount of elements of a sign-repertoire. This corresponds to the difference-
theoretical approach that signs (keno- and morphograms) are determined by located
differences of the texture.

Tape and matrix
FSA are reading their words by reading step-wise the elements of the word from
a tape.
MorphoFSA are reading their morphogram according to a reading convention from
a matrix, where the morphogram is inscribed as a pattern, i.e. a grid of differences.
The pattern-structure is not dictating a singular linear step-by-step reading as it is
the case for the linear strings of FSA-words.

2.2. The epsilon/nu-structure of morphograms

2.2.1. Differentiation and enumeration

Encountered a string from a textual environment, say, as a possible input of a
morphic automaton, we have to decide as what kind of text we want to thematize it.
If we decide to thematize the textual event not as a semiotic, indicational, Mersenne
or other type of sign, but as a kenogrammatic pattern, i.e. as a morphogram, we
might have finally to decide on which level of the scriptural system of graphematics
the event shall be accepted. Here, all patterns are understood as belonging to the
trito-structure of kenogrammatics, thus, we are dealing with morphograms. This
decision invites to build the epsilon/nu-structure (ENstructure) of the event
(morphogram), now considered as a string or a pattern of kenograms. The ENstructure
of this pattern gives the structure of the distributed differences of the pattern,
denoted by “ϵ” for sameness (equivalence), and “ν” for differentness of the
differences of the pattern.

Complexions of MorphoFSA (M, n)
In this setting up of morphogrammatics for the purpose to introduce morphic FSA,
there are just these two kinds of differences that are differentiating
between sameness and differentness in respect of the systematics of the automaton.
Other differentiations are introduced for complexions of morphogrammatic systems,

like MorphoFSA , where intra- and trans-contextural differences enter the game.
Such complex MorphoFSAs are defined by the distinctions: (ε,ν,∐), with ∐ for
dissemination.

The transition rules and the order of their occurrence in the pattern (morphogram) of
the morpic FSA are defined by the enumerated sequence of those distinctions.

The minimal number of positions (states) of the morphic FSM is given by the
aggregation of the pattern, AG(Str) = n.

The ε/ν -structure of a morphogram (kseq) gets calculated by the ML-function
ENstructure: type enstruc = (int*int*EN) list list;

ENstructure of trito-events [A] and [B]
EN([A]):
- ENstructure ["a”, “a”, “b”, “c"];
> [[],
 [(1,2, E),
 [(1, 3, N), (2, 3, N)],
 [(1, 4, N), (2, 4, N), (3, 4, N)]]: enstruct.

EN([B]):
- ENstructure [];
> [[],
 [(1,2, E),
 [(1, 3, N), (2, 3, N)],
 [(1, 4, N), (2, 4, N), (3, 4, N)]]: enstruct.

Equivalence based on EN
[A] =MG[B] iff EN([A]) = EN([B]).

ENtoKS
ENtoKS builds the morphogram, ks, in standard notation, tnf, out of the ENstructure.
ENtoKS(ENstructure ks) = ks
ENtoKS [[],
 [(1,2, E),
 [(1, 3, N), (2, 3, N)],
 [(1, 4, N), (2, 4, N), (3, 4, N)]] = [1, 1, 2, 3].

Numeration of the e/v-tupels by k(i,j) and subsystems n

Number of a subsystem at place (i, j):
fun k (i,j)=((j*(j-1)) div 2)-i+1;

Enumeration of the subsystems for n
fun subsystems n=
 sort(map (fn [i,j] => (k(i,j),[i,j]))
 (maufn n 2));

Examples

- k(4,7);
val it = 18 : int

- subsystems 7;
val it =
 [(1,[1,2]),(2,[2,3]),(3,[1,3]),(4,[3,4]),(5,[2,4]),(6,[1,4]),(7,[4,5]),
 (8,[3,5]),(9,[2,5]),(10,[1,5]),(11,[5,6]),(12,[4,6]),(13,[3,6]),(14,[2,6]),
 (15,[1,6]),(16,[6,7]),(17,[5,7]),(18,[4,7]),(19,[3,7]),(20,[2,7]),
 (21,[1,7])] : (int * int list) list

2.2.2. The systematic status of morphograms

Just abstractions?
Again, the discussion of the systematic status of morphograms, say its
epistemological, ontological, semiotical, mathematical, etc., status, is as old as their
introduction by Gunther in the ‘60s.

It was never denied that morphograms originated at first by a set-theoretically
defined mathematical abstraction from the ‘combinatorial’ truth tables of
propositional semantic-based logic. And then generalized by Dieter Schadach’s
classification system of abstractions. Nevertheless, the question about the status of
morphograms is by no way answered by the insistence on this fact of abstraction. The
question is much more what was the use of this abstraction? Where did it led? And is

this use of the abstraction establishing an abstract level upon the truth table, like
quotient structures of model theory, or is their use by Gunther not in fact a
deconstruction of the hierarchy of truth-tables and their abstraction?

Philosophically, abstractions are building ideal structures, the declared aims of
subversions are the deconstruction of ideality. Abstractions are establishing meta-
structures, subversions are unmasking deep-structures of semiotic systems.

The use of the morphograms of classical truth-functional logic led to the discovery of
its “morphogrammatical incompleteness”. Such an incompleteness, i.e. the addition
of transjunctional morphograms to the abstractively gathered junctional
morphograms of the truth functions is obviously not covered by the rules of
abstraction as such. Hence, the symmetry of base structure and abstraction over it is
disturbed towards an asymmetry. Abstractions, combined with deconstructive
applications, are characterizing the methods of introducing morphograms not as
abstractions but as a result of subversion.

Needless the mention that the abstractive aspects of this subversion is saved and
productively used for the study of mathematical properties of morphograms,
morphogrammatics and kenogrammatics. Especially studies in the combinatorics of
kenogrammatics had been crucial to define the new territory of reflection.

Therefore, there is no surprise that the difference-theoretical characterization of
morphograms by the epsilon/nu-structure is faithfull to its abstract counter-part, the
equivalence classes build over strings of signs. As clearily elaborated in the book
“Morphogrammatik” there are different ways to uncover morphograms, and one,
certainly, is the application of equivalence classes.

Hence, there is an isomorphism between the equivalence classes that are defining
morphograms and the representation of the morphograms by the e/v-structure. This
fact is well ruled by the ML-functions ENstructure and ENtoKS. Both are translating
between the “equivalence classes” EN and KS, i.e. e/v-structure and kenogram
sequence KS.

In the case of quotient FSMs, the abstraction happens over the alphabet Σ. “For ∀ x, y

∈ Σ* and a ∈ Σ: ≡A is an equivalence relation over Σ*." (cf. § 3.6.1)

Special abstractions over the kenogrammatic trito-structure of morphic FSMs are well
known as deutero- and proto-structures. As shown with the general system
of graphematics, several more abstractions had been introduced quite early in the
‘60s, and elaborated in several papers later.

The parlance “that is just this and that, and nothing more” is not explaining why
there are no similar formal theories in mathematics and logic as they had been
developed under the presumption of the kenogrammatic subversion.

One of such subversive constructions is disseminating the whole machinery of set or
category theory over a kenomic grid. Then, there are irreducibly distributed chances
to build multitudes of different types of equivalence classes at hand. The attempt to
build again equivalence classes over distributed notions and constructions of
equivalence classes is “just” building an additional candidate of the distribution, and
“nothing else”, especially no sublimation of the differences between distributed
polycontextural theories.

This paper is not going into the intriguing arguments and constructions for a more
elaborated introduction of kenograms and morphograms. A lot had been developed in
recent papers. For example:
http://www.thinkartlab.com/pkl/media/Chinese%20Grammar/What%20Chinese%20Gr
ammar.pdf

Also semiotic terms in this paper are used vaguely, or at least in reference to the
literature not mentioned here, and restricted to the context of formal languages,
where a symbol or sign is used just as a mark.
Mathematical semiotics is ingeniously developed by the semiotician Alfred Toth and
presented as an impressive research output at: http://www.mathematical-
semiotics.com/

2.2.3. General scheme of a subversion strategy

http://memristors.memristics.com/CA-
Overview/Short%20Overview%20of%20Cellular%20Automata.pdf

2.2.4. Number of symbolic representations

How many identive (symbolic) strings are represented by a morphogram,
respectively by a single MorphoFSM?

To deal with abstractions needs representations. A tritogram [abb] is written
in trito-normal form (tnf) and has therefore a number of different
representation that are equivalent to the tritogram.

For the case of just 3 elements involved, the tritogram has a representation
of 6 concrete symbolic realizations, i.e. {(abb), (acc), (baa), (bcc), (caa),

(cbb)}, all representing the tritogram [abb]. In a more complex
environment, the 3 place pattern might be occupied by further kenograms,

say “d", "e”, delivering patterns like [add] or [bee], etc. which are all
morphogrammatically equivalent to the pattern [abb] in trito-normal form.

This number is calculated by the formula card[μ]

Hence, a morphogrammatic FSA is representing semiotically different formal
languages of the same structuration.

http://memristors.memristics.com/Graphematics/Graphematics%20of%20C

ellular%20Automata.html
http://www.ballonoffconsulting.com/PDF/1987AppendixII.pdf

2.2.5. FSA equivalence, isomorphism and minimization

An interesting application of the ‘representation theorem’ for MorphoFSM in
respect to FSMs might be a ‘mediative’ interpretation of the concept
of equivalence and isomorphism between FSMs. Hence, the classical

approach of equivalence, isomorphism and minimization gets an additional
level in the tectonics of graphematic scriptures, called here, instantiational

representations (instantiations, representations).

Equivalence of FSMs

"Two states si and sj are equivalent if and only if for every input sequence

the machine will produce the same output sequence regardless of whether
si or sjis the initial state; i.e., for an arbitrary input sequencex, λ(si, x) =

λ(sj, x). Otherwise, the two states are inequivalent, and there exists an
input sequence x such that λ(si, x) != λ(sj, x); in this case, such an input

sequence is called a separating sequence of the two inequivalent states.

"For two states in different machines with the same input and output sets,
equivalence is defined similarly. Two machines M and M’ are equivalent if

and only for every state in M there is a corresponding equivalent state in M’

and vice versa.
Machine equivalence is an equivalence relation on all the FSM’s with the

same inputs and outputs.”
http://www.cse.ohio-state.edu/~lee/english/pdf/ieee-proceeding-survey.pdf

Isomorphism between FSMs

"Two machines are called isomorphic if there is an isomorphism from one to
the other. Obviously, two isomorphic FSM’s are equivalent; the converse is

not true in general.” (ibd.)

MorphoFSM is representing the morphogrammatically equivalent machines

FSA1, ..., FSAn, n = card as distributed separated machines in the

constellation ruled by the machine MorphoFSM and the concept of
morphogrammatic equivalence between the represented FSAs.

The opposite direction of the representation is abstracting from the

isomorphic FSA’s the equivalence class of FSAs FSA/

Minimization for FSMs

"Machine equivalence is an equivalence relation on all the FSM’s with the
same inputs and outputs. In each equivalence class there is a machine with

the minimal number of states, called a minimized (reduced) machine. A
machine is minimized if and only if no two states are equivalent.

"In an equivalence class, any two minimized machines have the same
number of states; furthermore, there is a one-to-one correspondence

between equivalent states, which gives an isomorphism between the two
machines. That is, the minimized machine in an equivalence class is unique

up to isomorphism." (ibd.)

Example
Morphic Automaton M1

M1 = ({pos1, pos2), {ν1, ν2, ε3}, Δ, pos1, {pos2})

Differences: Δ = {νi, εj, i,j∈N}

Positions: {pos1, pos2}

Initial: {pos1}
Acceptance: {pos1}

Differentiations:
pos1, ν1 --> pos2

pos2, ν2 --> pos
pos1, ε3 --> pos1

Final: {pos1}.

M1 is accepting the morphic machine based on the mophogram [abb] in
trito-normal form.

M1 is representing the symbolic machines FSA1 - FSA6 based on the
symbolic representation of the morphogram [abb] in trito-normal form:

FSA1(abb), with alphabet Σ1= {a,b},
FSA2(acc), with alphabet Σ2= {a,c},

FSA3(baa), with alphabet Σ3= {b,a},
FSA4(bcc), with alphabet Σ4= {b,c},

FSA5(caa), with alphabet Σ5= {c,a},
FSA6(cbb), with alphabet Σ6= {c,b}.

The case of further alphabets, say with Σ= {d,e}, wouldn’t be a proper
morphogrammatic representation but a possible redundant interpretation.

Isomorphism
With the change of the state sets and transition rules of a given FSA, different
isomorphic FSA of the original FSA might be introduced for each symbolic
representation FSA1 to FSA6 of the primary MorphoFSM.

To each symbolic FSAi with aphabets Σi there are a
number m of isomorphic symbolic machines FSAi.1, ..., FSAi.m.

Hence, the task of minimization of machine realizations appears.

3. Morphogrammatic FSAs

3.1. First definitions of morphogrammatic FSA

3.1.1. MorphoFSA examples

Automaton M1
M1 = ({pos1, pos2), {ν1, ν2, ε3}, Δ, pos1, {pos2})
Differences: Δ = {νi, εj, i,j∈N}
Positions: {pos1, pos2}
Initial: {pos1}
Acceptance: {pos1}
Differentiations:
pos1, ν1 --> pos2

pos2, ν2 --> pos
pos1, ε3 --> pos1
Final: {pos1}.

M1 is accepting : [abb].

The acceptance for the morphogram [abb] is accepting the acceptance conditions as
they are defined for FSA:
1. machine is in the acceptance (halt, final) state,
2. input is exhausted, i.e. all the epsilon/nu-differences of the initial EN-structure of
the morphogram are read,
3. string accepted.

Again, the notation of the morphogram [abb] is just a representation in trito-standard

normal form, tnf, of the ENstructure (ν1ν2ε3) with ((a-b)1= ν1, (a-b)2 = ν2, (b-b = ε3))
of the morphogram.

Therefore, the accepted language of MorphoFSA is L(M1) = {μ | μ repeats a ν-
differentation and ends in an ε-differentiation).

A is accepting :(100), (11000), (01100), ...,
The accepted language of FSA A is L(A) = {α| α is the empty string ε or ends in a 0}.
(Sipser, p. 38)

The MorphoFSA M1 accepts all patterns equivalent to the pattern [abb] in standard-
normal-form. Hence (baa), (bcc), (caa), etc. are accepted by M1. This acceptance
can be seen as a first run of M1 or as the FSA definition of the morphogram [abb].
Therefore, machine M1 accepts the regular trito-languages {[a]1[b]n: n>=1}. That is:

{v : n,m >=1}.

In contrast, the FSA A accepts just all symbolic regular languages ending in 0.

For |Σ |= m, the machine M1 accepts n * l regular symbolic languages {a1bn, a ,...,

b , ...}.
Thus, for |Σ |= 3 and Q = 2, there are 6 regular symbolic languages accepted by
MorphoFSA M1:

Words of M1: μ ∈ L(M1)= {v1ν2ε3}.
M1(L(3,2)) = {a1bn, b1an, a1cn, b1cn, c1an, c1bn: n>=1}.

An iteration of M1, i.e. a second run, is not changing the pattern of the machine M1
albeit the “final state” changes from position pos1to position pos2.|

Automaton M1.0

Differences: Δ = {νi, εj, i,j∈N}
Positions: {pos1, pos2}
Initial: {pos1}
Acceptance: {pos1}
Differentiations:

pos1, ν --> pos2

pos2, ν --> pos
pos1, ε3 --> pos1

pos
Final: {pos1}.

This machine M1.0 is in conflict with the ENstructure of morphograms. That is, the
e5-differentiation and the the v6-differentiation are in conflict. The only
prolongations of [abb] are [abba], [abbb] and [abbc]. The machine M1’ is accepting
[abba], and the machine M1.1 is accepting [abbb].

Diagram of M1.0

3.1.2. Further examples of MorphoFSA

Automaton M1’

Differences: Δ = {νi, εj, i,j∈N}
Positions: {pos1, pos2}
Initial: {pos1}
Acceptance: {pos2}
Differentiations:

pos1, ν --> pos2

pos2, ν --> pos

pos1, ε --> pos1
Final: {pos1}.

M1’ is retrograde iteratively accepting: [abba].

Diagram of M1'

Diagram for M1"

M1” is a retrograde iteratively accepting: [abbabb].
Automaton M1.1
Differences: Δ = {νi, εj, i,j∈N}
Positions: {pos1, pos2}
Initial: {pos1}

Acceptance: {pos2}
Differentiations:

pos1, ν --> pos2

pos2, ν2 --> pos
pos1, ε3 --> pos1

pos
Final: {pos2}.

M1.1 as a retrograde iteration of M1 is accepting : [abbb].
The word [abbb] is morpogram μ with μ = (ν1ν2ε3 ν4ε5 ε6), short:(ννε νε ε).

Automaton M1.1.1
Differences: Δ = {νi, εj, i,j∈N}
Positions: {pos1, pos2}
Initial: {pos1}
Acceptance: {pos1}
Differentiations:

pos1, ν --> pos2

pos2, ν --> pos

pos1, ε --> pos1

pos
Final: {pos1}.

M1.1.1 as a retrograde iteration of M1.1 is accepting : [abbbb].

Machine diagrams for basic morphogrammatic constellations
Basic constellations are [aa], [ab], [aba], [abb], [aab] and [abc].

Iterations

Automaton M1.1.1.1
Differences: Δ = {νi, εj, i,j∈N}

Positions: {pos1, pos2}
Initial: {pos1}
Differentiations:

pos1, ν --> pos2

pos2, ν --> pos

pos1, ε --> pos1

pos

Final: {pos }.

M1.1.1.1 as a retrograde iteration of M1.1.1 is accepting : [abbbbb].

Automaton M2
Differences: Δ = {νi, εj, i,j∈N}
Positions: {pos1, pos2}
Initial: {pos1}
Acceptance: {pos1}
Differentiations:
pos1, ν1 --> pos2

pos2, ν3 --> pos
pos2, ε2 --> pos2
Final: {pos1}.

M2 is accepting : [aba].

Automaton M2
Differences: Δ = {νi, εj, i,j∈N}
Positions: {pos1, pos2}
Initial: {pos1}
Acceptance: {pos1}
Differentiations:

pos1, ν --> pos2

pos2, ν3 --> pos

pos2, ε --> pos2
pos1, ε4 --> pos1
Final: {pos1}.

M2.1 is accepting : [abaa].

Automaton M3

Differentiations: Δ = {νi, εj, i,j∈N}
Positions: {pos1, pos2, pos3}
Initial: {pos1}
Differentiations:
pos1, ν1 --> pos2
pos2, ν6 --> pos3
pos1, ν4 --> pos3

pos , ν3 --> pos1

pos3, ν5 --> pos2

pos2, ν3 --> pos
pos2, ε2 --> pos2
Final: {pos2}.

M3 is accepting : [abac].

Automaton M3.2

Differences: Δ = {νi, εj, i,j∈N}
Positions: {pos1, pos2, pos3}
Initial: {pos1}
Differentiations:

pos1, ν --> pos2
pos2, ν2 --> pos3
pos3, ν3 --> pos2

pos , ν4 --> pos1
pos3, ν5 --> pos2
pos2, ν6 --> pos2: final
Final: {pos2}.

M3 is accepting : [abcc].

Automaton M4

Differences: Δ = {νi, εj, i,j∈N}

Positions: {pos1, pos2, pos }
Initial: {pos1}
Differentiations:
pos1, ν1 --> pos2
pos2, ε2 --> pos2

pos2, ν --> pos1: final
pos1, ν4 --> pos3

pos3, ν --> pos2
pos3, ν7 --> pos4
pos4, ν8 --> pos3
Final: {pos1}.

M4 is accepting : [abacd].

3.1.3. Machine tables for MorphoFSA

Machine table for M1

accepts [aba] M2

Machine table for M2.2

accepts [abaa] M2.2

Machine table for M3

accepts [abac] M3.

accepts [abacc] M3.

Machine table for M4

accepts [abacd] M4.

Machine table for M4.1

accepts [abacdd] M4.

3.1.4. Comparisons, abstractions and more machine tables

A more abstract interpretation of the machine diagram is achieved by separating the
e/n-distinction from its position number.
Hence, a self-cycle e might be abstractly accepted as either positioned at pos1 or
pos2 or both. Therefore, a constellation const = (v1,v2,e3), which is a standard
constellation, has variations, like const2 = (v1,e3,v2) and const3 = (e3,v1,v2) in the
common acceptance and start position {pos1}.

Hence, the machine M1 is realizing at once, first the corresponding FSA sequences of
the FSA machine A on the alphabet {0, 1} and second, all the combinatorial
possibilities too. That is the four sequences (101..., 010..., 001..., 110...}. Without
the separation of position and differentiation of differentiations, there are still two
FSA sequences accepted at once: (100...) and (010...) by the corresponding
MorphoFSA.

Iterations
(011) : (v1, v2, e3)
(0111) : (v1,4, v2, e3,5,6) = iter(v1,v2,e3)
(01111) : (v1,4, v2,7, e3,5,6,8,9,10) = iter2(v1,v2,e3)

(011111) : (v1,4, v2,7,11, e3,5,6,8-15) = iter (v1,v2,e3)

Δ = {v1, v2, e3},
Positions = {pos1, pos2, pos3} with pos1 = (1,2), pos2 = (1,3), pos3 =(2,3)
FSA realization alphabet = {0,1},
Constellations = Positions x Δ.
The proper notation for the ENstructure of a morphogram is given by a list of triples.

Example
ENstructure[abac] = ((1,2,v), (1,3,e), (2,3,v), (1,4,v), (2,4,v), (3,4,v)).
Hence, the linearized enumeration of the ENstructure is
num(ENstructure) = ((1,2,-)1, (1,3,-)2, (2,3,-)3,(1,4, -)4, (2,4, -)5, (3,4,-)6).

The list for ENstructure[abac] might also be written as a table:

ENstructure table of [abac] =

ENstructure automaton table of [abac] :

The direction of the differentiation (arrow) is marked by (posi x posi) and the label

(value) of the arrow is written by an element from {e, v}j, j∈ s(m).

Comparison of traces of FSA and MorphoFSA
FSA(aabc) MorphoFSA[aabc]

Again, because morphograms are patterns and not sequences like the symbolic words
of FSAs, the step-wise procedure might take different paths. For the classical case,
there is one and only one path, i.e. the linear succession of the steps ruled by the
linear structure of the sequential word.

Hence, the presented sequential order (e1,v2,v3,v4,v5,v6) is just one of the possible
orders. It might serve as a standard order. Alternatively, another order might be:
[aabc] => [aabc] -> [aabc] -> [aabc] -> [aabc] -> [aabc] -> [aabc] => [aabc], with
(v2,v4,v5,v3,v6,e1).

Without doubt, things are much more intriguing. The trick shall work nicely for a
Beginners Guide.

Formal definition for M3

M3 = (posi x posi) x {e, v}j, i∈{1,2,3}, j∈{1,2,...,6).
This goes conform with directed labeled graphs.

ENstructure automaton table of M3 [abac]

Classical machine table for M3 [abac]

Diagram for M3

accepts [abac] M3.

The diagram of machine M3 is representing one and only one morphogrammatic
structure, i.e. [abac].

The ENstructure of the morphogram [abac] is unambigously determined by
ENstructure([abac]) = (v1e2v3 v4v5 v6).

ENstructure table of M3.1 [abacc]

ENstructure automaton table of M3.1 [abacc]

Classical machine table for M3.1 [abacc]

Diagram for M3.1 [abacc]

The diagram of machine M3.1 is representing one and only one morphogrammatic
structure, i.e. [abacc].
The ENstructure of the morphogram [abacc] is unambigously determined by
ENstructure([abacc]).

ENstructure automaton table of M4 [abacd]

The diagram of machine M4 is representing one and only one morphogrammatic
structure, i.e. [abacd].

The ENstructure of the morphogram [abac] is unambigously determined by
ENstructure([abacd]) = (v1e2v3v7 v4v5v8 v6v9 v10).

Diagram for M4 [abacd]

ENstructure automaton table of M4.1 [abacdd]

Diagram for M4.1 [abacdd]

Thanks to Jean Bovet for his simple and practical “Visual Automata Simulator”. In
fact, the static aspect of the morphogrammatic automata is just giving
a visualisation of the pattern aspect of morphograms as a data type.
http://www.cs.usfca.edu/~jbovet/
Further: jForlan, jFLAP and GOAL for Büchi automata.

3.1.5. Some applications of MorphoFSMs onto morphogrammatics

Modeling the decomposition of morphograms into monomorphies

MorphoFSM for [aabb]
dec([aabb]) = {[aa], [bb]} = [aa].

The machine has two self-cycles at the acceptance pos1. This is indicating the
monomorphy [aa], realized as the equivalence of the monomorphies [aa] and [bb]
supported by the differentiations v2,4 and v3,5.

MorphoFSM[aabbaa]
dec([aabbaa]) = [aa]

The machine is repeating iteratively the monomorphy [aa] as [aa], [bb] and [aa] in
the morphogram [aabbaa].
Again, the iteration at the position pos1 is determined by the whole machine and not
just by the cycles at pos1.
Therefore, the cycle e1 is producing [aa], the cycle e6 the cycle [bb] and the cycle
e15 [aa]. The left self-cycles e7,8,11,12 are determining together with the
differentiations v2,4,9,13 and v3,5,10,14 the positions of the monomorphies as the
internal different monomorphies [aa] and [bb] of the morphogram [aabbaa].

ENstructure automaton table for MorphoFSM [aabbaa]

MorphoFSM for [aabbc]
dec([aabbc]) = {[aa], [bb], [c]} = {[aa], [a]}.

The history of [aabb] is remembered in [aabbc], hence the acceptance state of
MorphoFSM for [aabb] at pos1 is saved by MorphoFSM [aabbc] with acceptance at pos3
as [c]. Hence, the machine is reflecting the two monomorphies [aa] and [bb] that are
morphogrammatically “collapsing” at pos1 with e1,6 for MorphoFSM[aabb] additional
to the acceptance at pos3 with [c] for the machine MorphoFSM[aabbc]. Therefore,
the machine can be used to analyse the step-wise decomposition of the morphogram
[aabbc] into its monomorphies [aa] and [a].

ENstructure automaton table for MorphoFSM [abacc]

MorphoFSM for [aabbcc]
dec([aabbcc]) = {[aa], [bb], [cc]} = [aa]

The same holds for MorphoFSM[aabbcc]. The self-cycles at pos1 of MorphoFSM[aabb]
are saved and additional the monadic monomorphy [a] is extended to the
monomorphy [aa] by the realization of the self-cycle at pos3 by [cc]. Hence,
MorphoFSM[aabbcc] can be read as a realization of the decomposition of the
morphogram [aabbcc] into its monomorphy [aa].

ENstructure automaton table for MorphoFSM [aabbcc]

MorphFSM[abcd]
dec([abcd]) = {[a], [b], [c], [d]} = [a].

The monomorphy [a] is given by the start action on pos1, [b] is represented by the
first difference for [ab] by v1, acceptance of MorphoFSM[abc] in pos1 by v3 is defining
the monomorphy [c], while the acceptance of the machine for [abcd] at pos3 is
delivering with v6 the monad [d]. All monomorphies in this configuration are monads

and are therefore morphogrammatically collapsing step-wise into the single monad
[a].

ENstructure automaton tables for MorphoFSM [abc], [abcd], [abcde]

MorphFSM[abcde]
dec([abcde]) = {[a], [b], [c], [d], [e]} = [a].

MorphoFSM[abcde] is a continuation of MorphoFSM[abcd] and shows, together with
MorphoFSM[abc], how prolongations are working.
It doesn’t make sense just to repeat, arbitrarily, say a loop like (v9,v10), as it is
possible for FSAs.

MorphoFSA[aaaa]

dec([aaaa]) = [aaaa].

Because there is no differentiation involved, the machine accepts the morphogram
[aaaa] as such, i.e. as a monomorphy [aaaa]. Hence, the morhogram [aaaa] is
decomposable only into itself. This corresponds ecaxtly the rules of monomorphic
decomposition of morphograms.

MorphoFSM[abbbb]

dec([abbbb]) = {[a], [aaaa]}.

The machine sets a difference with n1 to the start [a] with [b], 'confirms’ the
difference with n2, creates a first monomorphy [bb], repeats the differentiation and
produces a second monomorphy at position pos2 with [bbb] and confirms this
different monomorphy to position pos2 with v7, where the self-loops e8,9,10 are
establishing the monomorhy [bbbb]. Thus, the machine makes a difference between
the monad [a] and the monadic pattern [bbbb], hence the decomposition of the
morphogram [abbbb] delivers [a] and [aaaa] written in trito-normal form, therefore
dec([abbbb]) = {[a], [aaaa]}.

The diagram also contains the history of the decompositions for [ab] into {[a]}, [abb]
into {[a], [aa]} and [abbb] into {[a], [aaa]}.

Monomorphic MorphoFSMs

Monomorphies might also be used as an abstraction over morphic automata. The
features of retrograde recursivity are still covered by monomorphic interpretations of
morphograms. In fact, the proposed paper is focused more on
the kenogrammatic defintion of morphograms then on the
specific monomorphic understanding of morphograms and its consequences. The
monomorphic abstraction mon of a morphogram, mon([MG]), is partitioning the
morphogram into its monomorphies and is therefore delivering a slightly more
abstract approach to MorphoFSMs.

Example1
mon([aabcaa]) = ([aa], [b], [c],[aa]),
mon([aabcaa]) is in fact dealt in the same way of retrogradeness like the reduced
morphogram [abca].

mon([aabcaa]) = ([mg , mg2=[b], mg3=[c], mg1=[aa]).

More interesting and specific properties of monomorphic MorphoFSMs are opened up
with the operations of
monomorphic concatenation, coalition and cooperations between morphic automata.
In the context of reductions, the standard techniques of deutero- and proto-
structures are at place.

http://works.bepress.com/thinkartlab/41/
http://memristors.memristics.com/MorphoProgramming/Morphogrammatic%20Progra
mming.pdf

MorphoFSM(mon([aabcaa]))
Differences: Δ = {νi, εj, i,j∈N}
Positions: {pos1, pos2, pos3}
Initial: {pos1}
Differentiations:

pos1, ε --> pos1 : [mg1.1] --> [mg1.4]

pos1, ν --> pos2 : [mg1.1] --> [mg2]

pos2, ν --> pos3 : [mg1.1] --> [mg3]
pos3, ν3 --> pos1 : [mg2] --> [mg3]
Final: {pos1}.

Reduction
path-length(MorphoFSM-mon([aabcaa])) = 6
path-length(MorphoFSM[aabcaa]) = 15

Example2
Diagram MorphoFSM[aabbcc] Diagram
MorphoFSM[mg1, mg2, mg3]

 ==>

Reduction
path-length(MorphoFSM-mon([aabbcc])) = 3
path-length(MorphoFSM[aabbcc]) = 15

Reduction of ENstructure automaton table for MorphoFSM [aabbcc] to
MorphoFSM[mg1, mg2, mg3]

 ==>mon

MorphoFSM(mon([aabbcc])) = MorphoFSM[mg1, mg2, mg3], with mg1 = [aa], mg2 = [bb]
and mg3 = [cc].

3.1.6. Towards a little Zoo of MorphoFSM diagrams

Iterations as alterations

What happens with the kenomic concept of iterability? What we learned elsewhere is:
repeatability is iter/alteration.

Sind bei einer linearen Anordnung beziehungsweise einer Sukzession von Zeichen
immer nur Vorgänger und Nachfolger eines Zeichens als unmittelbare Nachbarn
bestimmbar, so ist bei einer kenogrammatischen Komplexion jedes Kenogramm mit
jedem anderen im Verhältnis der unmittelbaren Nachbarschaft. Die
Nachfolgerrelation eines Zeichens ist unabhängig von der Länge der ihm
vorangehenden Zeichenreihe.
Dagegen ist die unmittelbare Nachbarschaft eines Kenogramms in einer Komplexion
durch deren Komplexität bestimmt. Zeichenreihen können wegen ihrer Abstraktheit
durch potentielle oder aktuale Unendlichkeit bestimmt sein, kenogrammatische
Komplexionen sind dagegen immer finit beziehungsweise ultra-finit. Ein Nachfolger
einer kenogrammatischen Komplexion bestimmt sich retrograd-rekursiv durch die
Materialität seiner Genesis. Diese definiert den Grad der simultanen Parallelität
ihrer Nachfolger. Damit löst sich die Sprechweise der Dichotomie von Operator und

Operand der Nachfolgeroperation und ihrer Linearstruktur auf. Dual zur
dichotomisierenden kann die Terminologie der Selbsterzeugung, der Autopoiese, von
kenogrammatischen Komplexionen, etwa von Morphogrammen, eingbracht
werden.” (Kaehr 1993)
http://www.vordenker.de/heterarchy/b_heterarchy-
e.pdfhttp://www.vordenker.de/heterarchy/b_heterarchy-e.pdf

Hence, the role of iterability in differentiation systems (machines) shall be taken into
the focus for further applications or explications of morphic finite state machines.

With each iteration of a differentiation, the possibility of an alteration and accretion,
independently of a pre-given alphabet, is determined retro-grade recursively by the
path (trace, history) of the previous differentiations of the intrinsic activity of the
machine.

With that, the whole machinery of possible disseminations of machines over a
contextural grid as the system of loci for accretive iterations has to be applied again.

3.2. Palindromes and MorphoFSMs

3.2.1. Palindromes and iteration

"It is impossible to build a finite state machine that accepts all palindromes. The
proof relies on the facts that we can easily build a string that requires an arbitrarily
large number of nodes, namely the string
a^x b a^x (eg., aba, aabaa, aaabaaa, aaaabaaaa,)
where a^x is a repeated x times. This requires at least x nodes because, after seeing
the 'b' we have to count back x times to make sure it is a palindrome."

SUMMARY

Cannot recognize all types of patterns.
- E.g. Cannot build a finite-state machine that unlocks a lock whenever you enter any
palindrome: 3-2-1-1-2-3
- Why? Palindromes can be of any length, and to recognize the 2nd half, you need
to remember every character in the first half.
Because there are infinitely many possible first halves, this would require a machine
with an infinite number of states.
http://www.cs.mcgill.ca/~jpineau/comp102/Lectures/04FiniteStateMachines.pdf

Hence, FSMs are not equipped to recognize palindromes of arbitrary length because
they don’t have a device that works as a memory to store the number of elements
that have to be repeated after reading the first part of the sequence (string) and that
has to be added after the recognition of the ‘centre’ of the word.

The machine MorphoFSM[aabbaa] is accepting the morphic palindrome [aabbaa]. Is
there any chance to generalize this construction for arbitrary morphic ‘palindromes'?

Again, No memory on states or transitions so ‘memory’ is simply the location in the
transition network. Does this hold in the same sense for morphic machines too?

The answer is no!

Because morphograms are build retrograde-recursively over their differentiations,
and not abstractly from a pre-given alphabet and stable rules like regular languages,
they are inscribing their own history by definition. Hence, each “state” of a
MorphoFSM is referring retrogradely to its previous “states”, hence keeping an
account of its history at the location of its last “state”, i.e. differentiation.

The sequence of traces is called in the FSM literature the “history” of the activity of
the machine. But this kind of history seems not to have a memory. A history, free of
any memory, seems to be a quite weak metaphor to describe the behavior of a

machine. Hence, the possible ‘history’ of the machine has to be mentally represented
by an external observer.

Therefore, it is not the case, that the memory capability of morphic machines is
reduced to the simple “location in the network”. Is this giving a hint how to proceed?

Mutual iterations
Some more exercises.

Diagram for MorphoFSM[aabb]

The monomorphy [aa] and [bb] are defined by the self-loops e1 and e6 respectively.
Both monomorphies that are carring the result of the mutual iteration are separated

by the differentiations of v and v respectively. This kind of iteration is faithfull
to the constellation of the differentiations of the repeated original: [aba] = (e1v2v3) to

the iteration iter(e1v2v3) = (e v v) = [aabb].
This corresponds to the classical definition of a machine: the machine is not changing
in the process of its use. Thus, the runs of (e1v2v3) and the runs of iter(e1v2v3) are
strict iterations.

The second presentation with the nil-differentiation, e0, marks even more explicitly
the positioning of the monomorphies [aa] as [aa] and as [bb]. (cf. § 3.4.2)

For a slightly more complex situation, the definition is changing, and a kind of super-
additivity appears. A further iteration of iter(iter(e1v2v3)) is not running 6 plus 3
traces but 15.

Diagram for MorphoFSM[aaabbb]

3.2.2. Palindromes, first

Diagram for MorphoFSM[aba]

Analysis of MorphoFSM[aba]
The machine MorphoFSM[aba] might be taken as a simple example of a morphic
palindrome. With w =[a], wr= [a] and the midpoint c = [b], the machine shows the
intricate mechanism of a mediation of the three parts of the morphic palindrome.
For v1= [a1b0] and for the inverse v2 = [b0a2], the midpoint is marked from both sides
of the palindrome, i.e. [b0] is conceived as an end-point and as a start-point. The
self-loop e2 marks the exchange elements [a1] and [a2], i.e. [a1-a2], based on the
separation by [a1b0] and [b0a1]. This double-function of the midpoint is contradicting
the logical identity of signs. Morphograms are covering this situation by definition.
The classical interpretation has to move this contradictory situation into the mental
domain of an external observer. In other words, the element “c” is (semiotically,
logically and ontologically) the midpoint for semiotic FSM, while for morphic
machines, “c” plays the double-role(s) as a midpoint.

Diagram for MorphoFSM[aabaa]

Palindromes in classical FSM
The classical analysis of palindromes in the context of FSM make much simpler

assumptions: wcwr, with c ∩ w = ⌀ and r(wr) = w.
In short, the midpoint “c” is in no way involved in the definition of w and wr. It is
atomistic, and its role as an ending and as a starting point of the midpoint is of no
relevance. The midpoint is neutral to its environment w and wr. This makes the
construction simple. The consequences are as simple too: it remains in its simplicity.

Comparison
What the difference between the classical and the morphogrammatic understanding
of palindromes?
Independent of the fundamental difference of the type of writing between semiotics
and morphogrammatics, some feature of the difference are easily accessible with the
example of palindromes.

For a semiotic understanding as it is leading for finite state machines, the distinction
between the midpoint and the reversal parts has to be made by an external observer.
There are no features, properties or guidelines implemented in the definition of the
FSA to decide this difference or to indicate the midpoint of the palindrome. As a
consequence of this ‘objectivistic’ definition of the FSM, the inherent limitations of a
retrograde- and history-free machine, i.e. ‘memory-free’ conception follows
naturally.

In contrast, the morphogrammatic definition of the ‘finite differentiation machine’ is
based on an implementation of the features of the palindrome in itself. Hence, an
internal observation or analysis makes it clear that the machines is detecting its
‘midpoint’ without the support of an external interaction. This is supported by the
immanent retrograde understanding of iterability of the machine and its
morphograms.

The complex description of the characteristics and behavior of the morphogrammatic
machines is the result of the implementation of external description properties into
the immanent definition of the machine itself.

Misleading wordings: The new state depends on the old state and the input.

Quick surface-reading of texts is mostly misleading. One example of such habits,
following with quick judgments, is invoked by the wording of the history-
dependence of the chain of events of classical FSMs. Most text-books about FSMs refer
to the this interpretation of the chain of events of FSMs as history-dependence.

On the other hand I try to make clear with the concept and formalism of “retrograde
recursivity” that there is no such concept of history-dependence implied on the level
of formal languages, regular or not, and therefore also not for the behavior of FSMs.
What happens is strictly history-independent. So called history-dependence is, in the
best case, introduced as an interpretation of the behavior of FSMs by an external
observer. And this interpretation has, again, no base in the definitions of the
formalisms and mathematics of FSMs.

A nice example for this understanding of machine-history and its typical
exaggerations is given by the citation of Mike James “Finite State Machines":

"What this means that the entire history of the machine is summarized in its current
state. All that matters is the state that it is in and not how it reached this
state. Before you write off the finite state machine as so feeble as to be not worth
considering as a model of computation it is worth pointing out that as you can have
as many states as you care to invent the machine can record arbitrarily long
histories. All you need is a state for each of the possible past histories and then the
state that you find the machine in is an indication of not only its current state but
how it arrived in that state.

Because a finite state machine can represent any history and a reaction, by regarding
the change of state as a response to the history, it has been argued that it is a
sufficient model of human behavior, i.e. humans are finite state machines."
http://www.i-programmer.info/babbages-bag/223-finite-state-machines.html

Diagram for MorphoFSM[aabbaa]

ENstructure automaton table for MorphoFSM [aabbaa]

ENstructure automaton table for MorphoFSM [aaabbaaa]

3.2.3. Palindromes, again

ENstructure[aaabbaaa]

Procedure
Morphogram (sequence) ==> ENstructure (+ enumeration) ==> MorphoFSM table ==>
MorphoFSM diagram

MorphoFSM table = (ENstructure, AG(Morphogram))
AG(Morphogram) = set of positions posi of MorphoFSM table

Example [aaabbaa]

Morphogram [1,1,1,2,2,1,1,1] =MG [aaabbaaa].

- ENstructure [1,1,1,2,2,1,1,1];
val it =
[[],
[(1,2,E)],
[(1,3,E),(2,3,E)],
[(1,4,N),(2,4,N),(3,4,N)],
[(1,5,N),(2,5,N),(3,5,N),(4,5,E)],
[(1,6,E),(2,6,E),(3,6,E),(4,6,N),(5,6,N)],
[(1,7,E),(2,7,E),(3,7,E),(4,7,N),(5,7,N),(6,7,E)],
[(1,8,E),(2,8,E),(3,8,E),(4,8,N),(5,8,N),(6,8,E),(7,8,E)]]
: (int * int * EN) list list

ENstructure table with enumeration subsystems

Adjusted listing of subsystems
- subsystems 8;
val it =
[(1,[1,2]),
(3,[1,3]),(2,[2,3]),
(6,[1,4]), (5,[2,4]),(4,[3,4]),
(10,[1,5]),(9,[2,5]), (8,[3,5]),(7,[4,5]),
(15,[1,6]),(14,[2,6]),(13,[3,6]),(12,[4,6]),(11,[5,6]),
(21,[1,7]),(20,[2,7]),(19,[3,7],(18,[4,7]),(17,[5,7]),(16,[6,7]),
(28,[1,8]),(27,[2,8]),(26,[3,8]),(25,[4,8]),(24,[5,8]),(23,[6,8]),(22,[7,8])]
: (int * int list) list

ENTable = subsystems ∪ ENstructure
[(1,3,E),(2,3,E)] ∪ (3,[1,3]),(2,[2,3]) = (3,[1,3], E),(2,[2,3], E).

(int * int * EN) list list ∪ (int * int list) list = (int * int list * EN) list list list

=

ENstructure automaton table for MorphoFSM [aaabbaaa]
AG([aaabbaaa]) = 2, table contains pos1 and pos2.

Diagram for MorphoFSM [aaabbaaa]

Discussion

The first monomorphy [aaa] is covert by e .
To distinguish the monomorphy [bb] from the monomorphy [aaa], two differentiations
have to be realized. This happens with v4,6,8 and with v5,7,9. On the background of
this differentiation, the self-loop for [bb] is established with e10.
With that, the machine recognizes the morphogram [aaabb].
The procedure to read the next monomorphy [aaa] happens step-wise.
First, the morphogram [aaabba] has to be recognized.

Second, the morphogram [aaabbaa] has to be recognized.

And finally, the morphogram [aaabbaaa] with its second monomorphy [aaa] has to be
read by the machine.

After this procedure, the machine MorphoFSM[aaabbaaa] is able to read the morphic
palindrom [aaabbaa].

The monomorphy [bb] plays the role of the midpoint, c, of the palindrome.
Obviously, the second monomorphy [aaa], wr, is the reverse of the first monomorphy
[aaa], w. Hence, the morphogram is defind as a morphic palindrome, in analogy with
wcwr.

Generalization
It should now just be a question of simple combinatorics to give a general definition
for a morphic machine MorphoFSM that is able to read all palindromes over the
kenomic ‘alphabet' {a,b}.

A next attempt would have to generalize this result for arbitrary complex morphic
palindromes.

To any morphogrammatic palindrome there is a MorphoFSM that recognizes that
palindrome.
Is there a MorphoFSM that accepts any palindromes?

Obviously, this seems to be in direct contrast to the results for the classical FSM
definition of palindromes.

The argumentation for the impossibility of general FSAs for palindromes is based on
the atomicity and ‘history-free’ concept of the automata, elaborated by a proof of
contradiction.

Palindromes and Finite State Machines

"A regular expression can always be translated into an equivalent finite state
machine.

"It is impossible to build a finite state machine that accepts all palindromes. The
proof relies on the facts that we can easily build a string that requires an arbitrarily
large number of nodes, namely the string
a^x b a^x (eg., aba, aabaa, aaabaaa, aaaabaaaa,) where a^x is a repeated x
times. This requires at least x nodes because, after seeing the 'b' we have to count
back x times to make sure it is a palindrome.”

http://stackoverflow.com/questions/233243/how-to-check-that-a-string-is-a-
palindrome-using-regular-expressions

"A palindrome cannot be recognized by any finite state machine because
(a) a finite state machine cannot remember arbitrary large amount of information
(b) finite state machine cannot deterministically fix the mid-point
(c) even if the mid-point is known, a finite state machine cannot find whether the
second half of the string matches the
 first half.
(d) all of the above.” R. Kumar, Theory of Automata.

"Palindromes with a midpoint indicator are strings of the form wcwr where wr is the
reverse of substring w and c is the special midpoint marker.”
http://www.academic.marist.edu/~jzbv/algorithms/TuringMachine.htm

"A palindrome cannot be recognized by any finite state machine ..." because the
information about the palindrome is located at the position of an external observer
and there is no way available to implement it internally into the system.

In contrast, the morphogrammatic approach is emphasizing the fact that
an internal observer or agent has to deal with the concrete situation or constellation

that is encountered. An internal agent has no superior knowledge at hand - at least
not in the actual situation. The internal agent acts according to the complexity and
the properties of the concrete situation that is encountered. If the encountered
constellation is a palindrome, it will be recognized as a palindrome thanks to the
concrete properties of the encountered constellation. With that, no external
knowledge has to interfere or to be applied.

In other words, the knowledge of the external observer is implemented into the
intrinsic structure of the machine.

Categories and aspects of reflectional observation theory are not genuinely
implemented for classical semiotics, string theory and automata theory.
Morphogrammatics works within the interplay of internal and external observations.

Kaehr, Vom Selbst in der Selbstorganisation. Reflexionen zu den Problemen der
Konzeptionalisierung und Formalisierung selbstbezüglicher Strukturbildungen, 1992
http://www.thinkartlab.com/pkl/media/SelbstB2.frame.pdf

5ENstructure EXAMPLES

3.2.4. Palindromes and Chiasms

"ABA is a palindrome: you can read it both ways, but it is not a chiasm. AB:BA is a
chiasm, and so is of course AB:C:BA. Both are palindromes too, because they are
dreadfully abstract.”

The chiasm AB:C:BA reads form the viewpoint of difference-theory, i.e.
kenogrammatics, in its abstractness as the complex morphogram [abcba]. A machine
interpretation of the palindrome structure of the morphogram [abcba] is given with
MorphoFSM[abcba]. A further modeling also has to contemplate on its
specific chiastic structure that separates it from a simple palindrome.

To characterize palindromes and chiasms as “dreadfully abstract” is not referring to
the topic itself but to the fundamental inability of understanding palindromes and
chiasms as retrograde complexions of differentiations, differences and distinctions
and not as abstract agglomerations of entities, like “A” and “B” or “C”.

A less abstract thematization of chiasms and palindromes entertaines at:
http://www.thinkartlab.com/Chinese%20Challenge%20Pool/How_to_Compose.pdf

Properties of palindromes and chiasms
"palindromes emerge as multilayered, multidirectional, and polytemporal mappings"
Christina Ljungberg, ‘Damn mad’: Palindromic figurations in literary narratives.
"running back again" (palindromos).

Morphogrammatic prolongations of the chiasm [AB:C:BA]

Diagram of MorphoFSM[abba]

Analysis of MorphoFSM[abba]

Grammars for palindromes

Semiotic grammar for palindromes
The morphic pendant to the regular semiotic language for "non-empty odd length
palindromic strings of as and/or bs and/or cs" (Parkes, p. 101), reflecting its
retrograde iterability, is given by the morphogrammatically modified rules for
palindromes.

Semiotic palindrome:
Alphabet = {a, b, c}
Rules = S ==> a | b | c | aSa | bSb | cSc .
Application: S ==> aSa ==> c(aSa)c ==> b(caSac)b ==> a(bcaSacb)a ==> abca b acba.
 S ==> a ==> bab ==> ababa ==> cab a bac ==> acab a baca.

Morphic Grammar for palindromes
Morphic alphabet = {[a]}

Morphic rules = S ==> [a]|[a]S[a] with Siter∈ AG(MG), Saccr∈ AG(MG)+1.

The rule for the morphic S is depending on the string, i.e. morphogram “MG”, already
produced by the rule R for S. The rule [a]S[a] is accepted as a start rule, written in
trito-normal form, tnf, hence with [a]≡[a], thus [a]S[a]. The aggregation, AG, detects
the number of different kenograms of the MG, and the accretive iteration of S, Saccr,
is adding an additional kenogram to the repertoire, while the iterative S, Siteris using
the detected kenograms of the morphogram MG. The kenograms of the ‘alphabet’ are
produced retrogradely by the application of the rules, and are therefor not pre-given
as elements of a sign repertoire, i.e. an alphabet. The rules for S are substitution

rules hence all the kenogrammatic considerations about different types of iteration,
accretion and equivalences apply.

In general, S ==> [a]S |S[a] | [a]S[b] | [S][S] are defined retrogradely over their
‘history’ of traces or runs.
S ==> [S][S] is retrogradely defined as the morphic concatenation of [S] and [S]: [S][S]
==> [SS].

The procedure is well known as the morphogrammatic retrograde recursion scheme:

http://memristors.memristics.com/MorphoReflection/Morphogrammatics%20of%20Re
flection.html

Example
Full development of the first 5 steps for the morphic palindrome grammar (S ==> a |
aSa) with exclusive midpoint.

Hence, the domain of the morphic grammar for “S ==> a|aSa“ with an exclusive
midpoint and a 5-step repetition covers palindromes from[aaaa b aaaa] to[abcd e
dcba]. From the viewpoint of morphogrammatics,this development is complete.
There are no additional palindromes of the same length covered by this grammar.

Unfortunately, this approach is not taking into account the full range of the specific
features of morphogrammatic context-dependence of the production of palindromes.

Again, the classical definition is obviously strictly context-independent: “the kth
leftmost symbol of the input x must be equal to the kth rightmost symbol of x.”
(Ding-Zoo Du, p. 92)

The proposed symmetric approach is considering just a partial aspect of
morphogrammatic context-dependence, i.e., it follows the symbolic definition but
replaces the ‘equality’ of the symbols by the equivalence of the kenograms of the
morphogram. This is combined by the iterative and accretive prolongations of the
application of the production rule “S ==> a|aSa“. It delivers symmetric
morphogrammatic palindromes.

A more appropriate approach seems to cover the full mechanism of morphogrammatic
context-dependence for the production of morphic palindromes.
A first step was covered by the morphic application of the symmetric production rule,
combined with iterative and accretive prolongations.
A second step has to compare the two parts as wholes of the palindrome according to
the rules of morphogrammatic equivalence.

Hence, a case like "[1,2,2,3,3,4]" is considering the morphogrmmatic equivalence of
the first and the reversed second part of the morphogram: [1,2,2] =mg [4,3,3], thus
"[1,2,2,3,3,4]" is a palindrome. That is, [1,2,2,3,3,4] =mg [4,3,3,2,2,1], with
tnf[4,3,3,2,2,1] =mg [1,2,2,3,3,4] .

3.2.5. Appendix about asymmetric palindromes

Comparison with the filtered results
Palindromes are filtered out from the trito-universe TU. The length of the words is 6
and the range spans from [1,1,1,1,1,1] to the saturated morphogram [1,2,3,4,5,6].
The symmetric production rule “S ==> a|aSa“ is not considering
the asymmetric productions that are morphogrammatically accepted as palindromes,
like for example the morphogram [1,2,3,4,1,2] with [1,2,3] =mg [2,1,4], [1,2,3,4,1,2]

= [2,1,4,3,2,1], and tnf[2,1,4,3,2,1] =mg [1,2,3,4,1,2]. Hence, the context-dependence
of the morphic production rule is restricted to symmetric productions with restricted
context-dependence.

The filter-method is not producing constructively the set of palindromes but is
filtering them out of the produced trito-universe TU of morphograms.

Morphogrammatic palindrome:
fun kref ks = tnf(rev ks);
- fun ispalindrome l = (l = kref l);
val ispalindrome = fn : int list -> bool
- ispalindrome [1,1,2,2];
val it = true : bool

Symbolic palindrome
fun palindrome l = (l = rev l);
- palindrome [1,1,2,2];
val it = false : bool

Tests for morphogrammatic palindromes
Examples
- ispalindrome [1,2,2,2,3,3,3,4];
val it = true : bool
- ispalindrome [1,2,3,1,4,3];
val it = true : bool
- tnf [1,2,3,1,4,3];
val it = [1,2,3,1,4,3] : int list
- tnf [3,4,1,3,2,1];
val it = [1,2,3,1,4,3] : int list
- kref [1,2,3,1,4,3];
val it = [1,2,3,1,4,3] : int list
- rev [1,2,3,1,4,3];
val it = [3,4,1,3,2,1] : int list
- tnf(rev [1,2,3,1,4,3]);
val it = [1,2,3,1,4,3] : int list

Filtered results of length 6 from TU
nfirstq(5000, TU)
List.filter ispalindrome “nfirstq(5000, TU)"; 6
- length it;
val it = 180 : int
Results for the 31 morphogrammatic palindromes of length 6 from [1,1,1,1,1,1] to [1,2,3,4,5,6]:
[1,1,1,1,1,1],[1,1,1,2,2,2],[1,1,2,1,2,2],[1,1,2,2,1,1],[1,1,2,2,3,3],[1,1,2,3,1,1],[1,1,2,3,4,4],
[1,2,1,1,2,1],[1,2,1,1,3,1],[1,2,1,2,1,2],[1,2,1,3,2,3],[1,2,1,3,4,3],[1,2,2,1,1,2],[1,2,2,2,2,1],
[1,2,2,2,2,3],[1,2,2,3,3,1],[1,2,2,3,3,4],[1,2,3,1,2,3],[1,2,3,1,4,3],[1,2,3,2,3,1],[1,2,3,2,3,4],
[1,2,3,3,1,2],[1,2,3,3,2,1],[1,2,3,3,2,4],[1,2,3,3,4,1],[1,2,3,3,4,5],[1,2,3,4,1,2],[1,2,3,4,2,1],
[1,2,3,4,2,5],[1,2,3,4,5,1], [1,2,3,4,5,6].
Palindromes(6,6) = 31
Symmetric palindromes(6,6) = 5

Palindromes of length 6 produced by the symmetric production rule “S ==> a|aSa“:

 =num =tnf

Symmetric morphogrammatic palindromes of length 6 filtered out of TU:

val it =
 [[1,1,1,1,1,1],[1,1,2,2,1,1],[1,2,1,1,2,1],[1,2,2,2,2,1],[1,2,3,3,2,1]] : int list list
- length it;
val it = 5 : int

Symmetric morphogrammatic palindromes of length 7 filtered out of TU:

val it =
 [[1,1,1,1,1,1,1],[1,1,1,2,1,1,1],[1,1,2,1,2,1,1],[1,1,2,2,2,1,1],
 [1,1,2,3,2,1,1],[1,2,1,1,1,2,1],[1,2,1,2,1,2,1],[1,2,1,3,1,2,1],
 [1,2,2,1,2,2,1],[1,2,2,2,2,2,1],[1,2,2,3,2,2,1],[1,2,3,1,3,2,1],
 [1,2,3,2,3,2,1],[1,2,3,3,3,2,1],[1,2,3,4,3,2,1]] : int list list
- length it;
val it = 15 : int
Symmetric palindromes(7,7) = 15
Palindromes(7,7) = 59

Palindromes of kmul[1,2,3][1,2,3];
- ispalindrome [1,2,3];
val it = true : bool

List.filter ispalindrome “kmul[1,2,3][1,2,3]";
val it =
 [[1,2,3,2,3,1,3,1,2],[1,2,3,3,1,2,2,3,1],[1,2,3,2,1,4,3,4,1],
 [1,2,3,2,1,4,5,4,1],[1,2,3,2,4,1,3,1,2],[1,2,3,2,4,1,5,1,2],
 [1,2,3,4,1,2,3,4,1],[1,2,3,4,1,2,5,4,1],[1,2,3,3,1,4,4,5,1],
 [1,2,3,4,3,1,3,5,4],[1,2,3,4,1,5,2,3,1],[1,2,3,4,1,5,3,6,1],
 [1,2,3,4,1,5,6,7,1],[1,2,3,4,5,1,2,3,4],[1,2,3,4,5,1,3,6,4],
 [1,2,3,4,5,1,6,7,4],[1,2,3,2,3,4,3,4,1],[1,2,3,2,3,4,3,4,5],
 [1,2,3,3,4,2,2,3,1],[1,2,3,3,4,2,2,3,5],[1,2,3,4,3,2,3,4,1],
 [1,2,3,4,3,2,3,4,5],[1,2,3,2,4,5,3,5,1],[1,2,3,2,4,5,6,5,1],
 [1,2,3,2,4,5,3,5,6],[1,2,3,2,4,5,6,5,7],[1,2,3,4,5,2,3,4,1],
 [1,2,3,4,5,2,6,4,1],[1,2,3,4,5,2,3,4,6],[1,2,3,4,5,2,6,4,7],
 [1,2,3,3,4,5,5,1,2],[1,2,3,3,4,5,5,6,1],[1,2,3,3,4,5,5,6,7],
 [1,2,3,4,3,5,3,1,2],[1,2,3,4,3,5,3,6,1],[1,2,3,4,3,5,3,6,7],
 [1,2,3,4,5,6,2,3,1],[1,2,3,4,5,6,3,1,2],[1,2,3,4,5,6,7,1,2],
 [1,2,3,4,5,6,3,7,1],[1,2,3,4,5,6,7,8,1],[1,2,3,4,5,6,2,3,7],
 [1,2,3,4,5,6,3,7,8],[1,2,3,4,5,6,7,8,9]] : int list list
- length it;
val it = 44 : int
- length(kmul[1,2,3][1,2,3]);
val it = 588 : int
- ispalindrome [1,2,3,4,3,5,3,6,7];
val it = true : bool
Symmetric palindrome for “kmul[1,2,3] [1,2,3]" = 0.
val it = [] : int list list
- palindrome [1,2,3,4,3,5,3,6,7];
val it = false : bool

- kconcat [1,2,3][1,2,3];
- length(kconcat [1,2,3][1,2,3]);
val it = 34 : int
Palindromes:
val it =

 [[1,2,3,1,2,3],[1,2,3,2,3,1],[1,2,3,3,1,2],[1,2,3,3,2,1],[1,2,3,4,1,2],
 [1,2,3,4,2,1],[1,2,3,1,4,3],[1,2,3,3,4,1],[1,2,3,4,5,1],[1,2,3,2,3,4],
 [1,2,3,3,2,4],[1,2,3,4,2,5],[1,2,3,3,4,5],[1,2,3,4,5,6]] : int list list
- length it;
val it = 14 : int
- ispalindrome [1,2,3,4,5,1];
val it = true : bool
Symmetric palindromes:
val it = [[1,2,3,3,2,1]] : int list list
- palindrome [1,2,3,4,5,1];
val it = false : bool

Linguistic example for asymmetric palindromes
"Annabelle"
"anna" : num(anna) = [1,7,7,1]
” b” : num(b) = [2]
"elle” : num(elle) = [4,5,5,4]
num(annabelle) = [1,7,7,1,2,4,5,5,4]
- tnf[1,7,7,1,2,4,5,5,4];
val it = [1,2,2,1,3,4,5,5,4] : int list
ispalindrome[1,2,2,1,3,4,5,5,4]?
val it = true : bool
- kref[4,5,5,4,3,1,2,2,1];
val it = [1,2,2,1,3,4,5,5,4] : int list

Asymmetric palindromes in the morphoSphere
The pheno-structure of palindromes is symmetric. That’s part of the definition. Like
“anna”, “b”, and “elle” as identitive words of the pheno-structure.

The geno-structure is overwhelmingly dominated by asymmetric palindromes.
The genotype word “annabelle” is composed from pheno-type words “anna”, “b” and
“elle”, which are symmetric. But the composition of the parts to the word
“annabelle” delivers an asymmetric palindrome. This asymmetric word “annabelle” is
a palindrome on the genotype level of morphogrammatics but not a palindrome on
the phenotype level of semiotics.

The pheno-words “anna”, “b” and “belle” are therefore involved in a double game.
As pheno-types, and in isolation, they are pheno- and geno-types at once. Both
aspects are overlapping. In the context of composition to the word “annabelle” they
are part of an asymmetric genotypic palindrome.

Results
In the morphosphere, asymmetric palindromes are structurally and quantitatively
dominant.
Enantiomorph, dual and symmetric palindromes belong to the semiophere. Despite
their dialogical and multi-world conception by Juri Lotman palindromes are based on
an atomic and linear sign concept. The identity of the forward and backward reading
is tested step-wise, comparing atomic signs after atomic signs. There are no
considerations about contexts at all.

Palindromes in the morphosphere are a/symmetric, complementary and chiastic.
The morphosphere is a sphere beyond the semiosphere. Like the semiosphere it has
to be distinguished from the noosphere and the biosphere.

Applications
You might lock your door with one key, but you will have to unlock it with another
key.

More about asymmetric palindromes at:
http://memristors.memristics.com/Morphospheres/Asymmetric%20Palindromes.html

6

3.2.6. Chiasm AB:C:BA

MorphoGrammar[abcba]
Alph = {[a]}
Rules= S ==> [a] | [a]S[a].

Application: S ==>accr bSb ==>iter a(bSb)a ==>accr ab c ba, with c∉(S ==> [a]S[a]) .

MorphoFSM[abcba]

http://www.thinkartlab.com/Chinese%20Challenge%20Pool/How_to_Compose.pdf

MorphoFSM[aabcbaa] as an iterative prolongation of [abcba]

MorphoGrammar[aabcbaa]
Alph = {[a]}
Rules= S ==> [a] | [a]S[a].
Application: S ==>accr bSb ==>iter a(bSb)a ==>iter a(abSba)a ==>accr aab c baa, with c∉(S
==> [a]S[a]) .

The morphogram [aabcbaa] deciphered as the number “1123211” in the decimal system is
a prime number. A difference-theoretical interpretation of this prime number as a chiasm might shed
some different light into its mystery.
http://primes.utm.edu/curios/page.php/1123211.html

3.3. Simulation of FSA by MorphoFSA

3.3.1. Relations

Relations to be studied are:
1. Morphogram [MG] to ENstructure of MG: [MG] and ENstructure[MG],

2. ENstructure[MG] to the machine-diagram representation of ENstructure[MG]:
ENstructure[MG] and M-Diagramm[MG],
3. M-Diagram[MG] and machine defintion and implementation of MorphoFSA:
Def(MorphoFSA) and Prgr(MorphoFSA),
4. MorphoFSA and FSA.

3.3.2. Comparisons: MorphoFSA and FSA

To each MorphoFSA there are FSA representations.

FSA1: FSA(abn) with acceptance state “a” is not recognizing a sequence (baa...).
FSA2: FSA(ban) with acceptance state “b” is not recognizing a sequence (abb...).
But an FSA automaton with two acceptance states, “a” and “b”, is recognizing both
sequences.

Hence the two acceptance state machine FSA3 =(FSA1, FSA2)are accepting both
sequences.
FSA(abb..., baaa) with acceptance state “a” and “b” is recognizing the sequences
(abb...) and (baa...).

On the other hand, the MorphoFSA (ν1ν2ε3) with just one acceptance state “pos1” is
simulating FSA3, i.e. FSA1 and FSA2 together.

The accepted sequences of FSA3 are not the results of an equivalence of FSA1 and
FSA2 but are two different applications of the same but two acceptance state
machine, one starting with “a”, the other starting with “b”. But the difference of one
acceptance state to two acceptance states machines is crucial. There are two
different types of machine.

In contrast, the MorphoFSA produces the abstraction from both FSA1 and FSA2 with
just one acceptance state. Hence, to use two acceptance states for MorphoFSA is
producing just an isomorphism between both definitions, and nothing more.

That is, MorphoFSA (ν1ν2) and MorphoFSA (ν2ν1)are isomorph.

Hence, to every MorphoFSM(m,k) there are FSA(m,k).

Each FSA is representable by a MorphoFSA.

This might easily be proven over the recursivity of the construction of both kinds of
automata.

First step

MorphoFSA (ε <==> FSA((q,x --> q), ∀x∈Alph): start state as a 0-transition.

MorphoFSA (ν <==> FSA((q,x --> r), ∀x∈Alph): start transition as a 1-transition

Recursion steps
MorphoFSA (m,k) to MorphoFSA(m+1, k+1) <==> FSA(m, k)to FSA(m+1, k+1):
MorphoFSA((morph(m))∪+ morph(monad)) <==> FSA((m,k) ∪ {∀ atom ∈ Alph})

MorphoFSA((morph(m))∪+ morph(monad))

 MorphoFSA([ab])∪+ morph(monad)) = [aba], [abb], [abc].

From the point of view of formal languages, the combinatorial correlation of both
approaches is given by the observation:
FSA(Str = Σ*) versus MorphoFSA(Str = Stirling2(Σ, *))
Hence, for FSA(|Str| = 23) = 8, MorphoFSA(|Str| = Stirling2(2, 3)) = 4.

3.3.3. Why are MorphoFSMs not just relational systems?

It seems still not easy to grasp the difference
of relational and differential machines.
A diagrammatic representation of MorphoFSM[aabb], Example2, has two self-loops,
automorphism, at position pos1. From a relational point of view, both loops would
have formally to coincide and to represent the pattern [aa], maybe even as an
iteration [aa] and [aa], but never as the two patterns [aa] and [bb] of [aabb].

The case for FSA(0,1) of Example1 shows exactly this, at position q1, the loop with
the element “0” produces sequences of “0”s, and the loop with the element “1” at
position q2 produces sequences of “1"s.

On the other hand, in a relational (category-theoretic, etc.) setting, loops at
different positions (objects), pos1 and pos2, would have to represent different
patterns. The Example3 shows a distribution of the same pattern [bb] at different
positions, pos1 and pos2.

Hence, the identity of the elements are defined by the differential system of
positions of the differences epsilon and nu.

Again, considering the mathematical definition of FSMs as finite automata makes it
more than clear that this definition is based on identical objects (elements), ”finite
non empty set of symbols”, and their relations, defined by transitions.

Example1: FSA{0,1}

Example2: Diagram for MorphoFSM[aabb]

3.4. Pumping lemma, first

3.4.1. The classical scenario

There are significant presumptions to run the argumentation of the decision about
the regularity or nonregularity of formal languages with the help of FSMs.

An application of those arguments for MorphoFSMs goes hand in hand with a
deconstruction of the basic presumption based on FSMs.
From a meta-theoretical point of view it also has to be analyzed if the proof by
contradiction (reductio ad absurdum) is as safe as it is proclaimed.

The general principle to proof the existence of non-regular languages is
using Cantors method of diagonalization.
"The existence of non-regular languages is guaranteed by the fact that the regular
languages of any alphabet are countable, and we know that the set of all subsets of
strings is not countable.” (standard)

The proof of the existence of the non-regularity of specific languages is using
the reductio ad absurdum principle and the pumping lemma.

With the presumptions of monocontextural logic and arithmetic there is nothing to
add to the established argumentations for a limitation of the power of formal
languages.

Treated as monocontextural entities morphogrammatic elaborations get reduced to
what they are not by definition.

If we take the graphematic turn to morphogrammatics seriously there are
fundamental consequences for arithmetic and logic to consider. And the natural
strategies of argumentations will their naturality and will be unmasked as historically
limited.

Correspondence and countability problems
"Since P(Σ*), the set of all languages, is uncountable, whereas the set of regular
languages is countable, some language must be non-regular.”

"A correspondance between words and languages is naturaly established for the
classical case.

"Σ*, the set of all finite strings, is countable:
• We can list all finite strings in order of length, put them in one-to-one
correspondence with N.
• E.g., ε, 0, 1, 00, 01, 10, 11, 000,... “

This correspondace is, at first, slightly disturbed by the morphogrammatic case:
Because,
• There is no atomic alphabet,
• 0 and 1 are morphogrammatically equal,
• 00 and 11 are morphogrammatically equal,
• 01 and 10 are morphogrammatically equal,
• 000... and 111.. are morphogrammatically equal,
and so on.

Hence, the nice correspondance function f for symbolic languages with
f(ε) = L0,

f(0) = L
f(1) = L2,

and so on, is not holding for morphic languages. At least not in this setting.

Thus, the well known diagonal construction gets into trouble with the lack of the
classical one-to-one correspondance:

D = { w ∈ Σ* | w is not in f(w)}}.

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-045j-
automata-computability-and-complexity-spring-2011/lecture-
notes/MIT6_045JS11_lec05.pdf

FSA: finite memory limitation

"A DFA that recognizes L should first count the number of a's in the beginning of the
word. The problem is that a DFA has only finitely many states, so it is bound to get
confused: Some ai and aj take the machine to the same state, and the machine can no
longer remember whether it saw i or j letters a. Since the machine accepts input
word aibj, it also accepts input word ajbi, which is not in the language. So the
machine works incorrectly.”
"There are n + 1 states q0, q1, ..., qn but the machine has only n different states, so
two of the states must be identical.
(Kari, p.29)

"The problem is that we only have finite memory, and so at some point we will
exhaust the number of a's we can remember. The idea is to make precise the finite
memory limitation. It is done so by the following classical Pumping Lemma.”
http://www.cs.wcupa.edu/~rkline/fcs/re-pump.html

3.4.2. The morphogrammatic scenario

Morphic language classification of the morphograms of the trito-universe TU
• [a]
• [aa]
• [ab]
• [aab...]
• [aba...]
• [abb...]

• [abc...]
• [abca...]
and so on.

The question remains: What is a morphogram that doesn’t belong to a
morphogrammatic language (script)?

Nill operator e0
For some analysis it might be useful to augment the set of operations from e=loop
and v=differentiation with the operation nil-differentiation = e0. The machines
represented by DiagrMorphoFSM(e,v) and DiagrMorphoFSM(e,v,e0) are mg-equivalent.

DiagrMorphoFSM(e,v) and DiagrMorphoFSM(e,v, e0) for [aab]

DiagrMorphoFSM(e,v) and DiagrMorphoFSM(e,v, e0) for [aabb]

Is this supporting the structure if the distinctions v2 to v5 are strong enough to hold
the memory of the development together?
In contrast to the FSA concept, there is no such counting process where the result has
to be remembered and used for the continuation of the process of the construction of
the word or morphogram.

For the MorphoFSM the development is not atomic, symbolic and step-wise, one after
the other: (a, aa, aab, aabb). But retrograde recursive as: (aabb, aabb, aabb, aabb,
aabb, aabb). The distinction for the ‘head’ “aa” is not complete with the first
differentiation by “e1”. This would hold only for “aa” alone, as a single and isolated
morphogram. But the differentiation “e1”, represented as [aa] is embedded into the

whole morphogram [aabb]. Hence the monomorphy [aa] is determined additionally by
the distinctions “v2-5” in relation with the ‘tail’ of the morphogram.

Hence, for [aabb] as [a1a2b3b4], "a is defined by “a2”, “b3” and “b4”. The same for
“a2”; “a2” is defined retrogradely by “b3” and “b4”. This process goes ‘forwards’ and
‘backwards’:
e1;a1-> a2, v2;a1-> b3, v3;b3 -> a2, v4;a1-> b4, v5;b4-> a2, e6;b3->b4.

Again, this shows the crucial difference of recursive repetition, i.e. recursion, and
retrograde recursivity, i.e. reflection.
Therefore, the monomorphy [aa] of the palindrome [aabb] is defined by the whole
morphogram and there is no need to count and remember the number of elements of
the ‘head’ of the palindrome to be able to ‘repeat’ it as the ‘tail’. Those
informations are intrinsically included in the procedure of the definition of the
morphogram, i.e. the palindrome.

In other words, the ‘head’ [aa] of the palindrome as such and in isolation has no
completed and definitely defined existence (cf. § 3.2.2). Again, in the case of FSAs,
the ‘head' (aa) in (aabb) is recognized and ‘counted’ as complete in itself.

As a consequence, it has to be seen that “e1” as the first arrow of the diagram
DiagrMorphoFSM(e,v,e0) is retrogradely determined by the whole diagram, and has a
different definition if taken in isolation. The same holds for the last arrow, “e6”. This
might be more obvious because it occurs at the “end” of the morphogram. But again,
this is misleading. A morphogram is despite its step-wise analysis not a string, chain
or sequence but an inter-related whole, morphé. This fact is faithfully represented by
the EN-structure of the morphogram.

Retrogression and anticipation
On the other hand, the ‘tail’ gets its characterization by the characterization of the
‘head’ by the definition of the ‘head’ designed by the ’tail’.

Again, these retrograde recursivity functions, functioning as the ‘counter’ and as the
‘memory’ necessary for the construction of the palindrome are defining the crucial
difference to the classical a-temporal symbolic constructions.

The retrograde movement to characteize the ‘head’ of a palindrome is involved with
a progression ‘into’ the ‘tail’ to define by retro-gression the ‘head’ of the
palindrome.

Retrograde recursivity is always involved, simultaneously, into anticipation.

In fact, this retrograde functionality is a general property of morphograms and their
construction rules.

An application of this surprising fact to automata shows that morphic automata,
MorphoFSM, are defined by their immanent temporality based on their retrograde
recursive characterization.

Classical finite state automata, and all its further developments, up to Turing
machines, are by definition a-temporal. They might have access to a storage function
but they don’t have an intrinsic memory.

As a result the questions of regularity/nonregularity of languages have to be tackled
in a very different light.

3.5. Formal approximations for MorphoFSA

3.5.1. Automata-theoretical approach

Abstract symbolic automaton
"An automaton is a triple A = (S, ->, Sin) where S is a set of states, Sin ⊆ S is a set

of initial states and -> ⊆ S × Σ × S is a transition relation. The automaton is said to be
deterministic if Sin is a singleton and -> is a function from S × Σ to S. “ (M. Mukund)
http://www.cmi.ac.in/~madhavan/papers/pdf/tcs-96-2.pdf

Abstract kenomic automaton MorphA
In contrast to the symbolic abstract automaton, the morphic abstract automaton is
defined, at first, over differences and not over states, represented by symbols.

Hence, a morphic abstract automaton is a triple MorphoA = (Pos, ->, Posin) where Pos

is a set of differences, marked by positions Pos, Posin ⊆ Pos is a set
of initial differences, Δ = {εi, νi, i∈N} and -> ⊆ Pos × Δ × Posin is
a differentiation operation.

This motivate the table notation for MorphoFSA:

Abstract MorphoFSA
MorphoFSA = (Q, Δ, δ, qs, F)
 where
Q is a finite set of positions {qi | i is a non-negative integer}
Δ is the finite input alphabet of differences, Δ ={εi, νi, i∈N}
δ is the differentiation operation, δ : D -> Stirling2(2, Q)where D is a finite subset of
Q × Stirling2(Δ, *)
qs (is member of Q) is the initial position
F (is a subset of Q) is the set of final positions.

MorphoFSA in analogy to FSA
MorphoFSA = (Q, Σ, δ, qs, F)
 where
Q is a finite set of states {qi | i is a non-negative integer}
Σ is the finite input alphabet
δ is the transition function, δ : D -> Stirling2(2, Q)where D is a finite subset of Q ×
Stirling2(Σ, *)
qs (is member of Q) is the initial state
F (is a subset of Q) is the set of final states .

3.5.2. Programming approach

ML-Programming approach

Delta = {εi,νj, 1<=i,j>=s(m), m∈N}
Position: {posi, i∈AG(MG)}

signature Delta = sig eqtype delta end;
signature Position = sig eqtype pos end;

signature Automaton =
sig
 eqtype Delta;
 eqtype Position;
 type dfa;
 val next: delta list * pos * dfa -> delta list * pos * dfa;
 val delta_star: delta list * pos * dfa -> pos;
 val accept: delta list -> dfa -> bool;
end;

(* example Automaton M(2,2) *)
structure two = struct datatype delta = ε1|ε2|ε3| ν1|ν2|ν3 end;
structure two = struct datatype position = pos1 | pos2 end;
structure DFA1 = DFA (structure delta = two; structure position = two);
open two;
open two;
open DFA1;
val delta = fn pos1 => (fn ν1 => pos2)
 | pos2 => (fn ν2 => pos1)
 | pos1 => (fn ε3 => pos1);

val M(2,2) = (pos1, delta, [pos2]);

 accept [abb] M(2,2);
 fn pos1 => (fn ν1 => pos2) ≡ [ab] = start
 | pos2 => (fn ν2 => pos1) ≡ [ab]
 | pos1 => (fn ε3 => pos1) ≡ [abb] = final
 (* | pos2 => (fn ε0 => pos2) *)

 accept [abbb] M(2,2)
 fn pos1 => (fn ν1,4 => pos2) ≡ [ab] = start
 | pos2 => (fn ν2 => pos1) ≡ [ab]
 | pos1 => (fn ε3 => pos1) ≡ [abb]
 | pos2 => (fn ε5,6 => pos2) ≡ [abbb] = final .

 accept [abbbb] M(2,2)
 fn pos1 => (fn ν1,4 => pos2) ≡ [ab] = start
 | pos2 => (fn ν2,7 => pos1) ≡ [ab]
 | pos1 => (fn ε3,8,9,10 => pos1) ≡ [abb]
 | pos2 => (fn ε5,6 => pos2) ≡ [abbb]
 | pos1 => (fn ε3,8,9,10 => pos1) ≡ [abbbb] = final.

3.6. Observations on morphic automata

3.6.1. Iteration and retrogradeness

What happens if M1 is iterating the transition "pos1, ε3 --> pos1"?
Hence, a prolongation from the morphogram [abb] to the morphogram [abbb] would
represent this kind of iteration.
But a prolongation is changing the whole pattern of the morphogram. Therefore it is
not covered by an iteration but by a retrograde repetition.

FSA:
(abb) --> (abbb): The automaton needs just one run more of the transition rule “q2,b
--> q2” to recognize the string (abbb). This additional or iterated run is not changing
retrogradely the definition of the automaton. It is added successively like the
arithmetic step from n to n+1.

MorphoFSA:
[abb] :: (ννε) --> [abbb] :: (ννε νε ε): The additional run “q1,ν4 --> q2” is changing
retrogradely the labels of the transition ε0 to the labeled transitions “q2, ε5,6 -->
q2” and the localization of the final state from pos1 to pos2.

MorphoFSA M1.1

MorphoFSA M1.1.1

Slogans
An iteration of a differentiation is not making a difference. But the differentiation of
a difference is generating a differentiation. (Calculus of differentiation)

This wording is complementary to the wording of the act of distinction:
A distinction made again is a distinction. A distinction inside a distinction is no
distinction (G. Spencer Brown, Calculus of Indication).

Prolongations

[aab] ==> {[aaba], [aabb], [aabc]} ==>
 [aaba] ==> {[aabaa], [aabab], [aabac]}.

prolongations [aabaa], [aabab], [aabac]
The diagrams show the iterative and accretive prolongations of the pattern [aaba] to
the patterns [aabaa], [aabab] and [aabac]. An analysis shows the change of the self-
loop e10 for [aabaa] into a differentiation v10 for the iteration of [b] in [aabab]. An
accretion happens for [aabac] that augments the aggregation to 3. The sub-

constellation (e remains stable. There are no other direct prolongations for the
pattern [aaba].

3.6.2. Operations on MorphoFSM

Several operations on FSM are standard: concatenation, union, difference, star
operation, insertion.

Those operations applies directly to the morphic case. The morphogrammatic
operations of concatenation, insertion, union, are build directly by applying the
results from morphogrammatics to morphic FSMs.

An interesting application is the operation of multiplication (cooperation) of
morphograms and its representation by MorphoFSMs.

Cooperations of MorphoFSMs

fsm-kmul(MorphoFSM[abb], MorphoFSM[abb]): kmul[v1v2e3] [v1v2e3].

e = (3,12,13,15,16,22,26,27,33,34)
v = (1,4,9,13,15,17,19,23,25,28,31,35),
w = (2,8,11,14,18,21,24,30,32),
f = (5,6,7,10,20,21,29,36).

Limits of representations
A more systematic study of the mappings between morphograms and MorphoFSM
diagrams is required to get better insights into the behavior of MorphoFSMs. It seems
that there is still no unambiguous procedure available to map morphograms onto
morphic FSM diagrams. The analogy to FSMs might come to an end, and new methods
shall be applied to continue the study of morphic “ultra-finite differentiation
machines".

There is also a quantitative argument: multiplications (cooperations) of morphic
automata are running quickly into ‘astronomic’ magnitudes.

length(kmul[MG] [MG]):

length(kmul[1,2][1,1]) = 1.
f (n; 0) : 1, 1, 4, 18, 108, 780, 6600, 63840, 693840, · · · , partial derangements (A144085).

Some examples for kmul9

Coalitions of MorphoFSMs: sequential composition

Coalitions in morphogrammatics are corresponding concatenations of morphograms.
But concatenation is not additive for morphograms but super-additive.

"The concatenation of two words is the word obtained by writing the first word
followed by the second one as a single word. For example, the concatenation
of data and base is the word database.
Notation for concatenation is similar to normal multiplication: For example, ab ¢ aab
= abaab: The multiplication sign does not need to be written if the meaning is clear,
i.e., uv is the concatenation of words u and v. So, for example, if v = a and w = ab,
then vw = v ¢ w = aab.” (Kari)

Examples
kconcat[a][a] = {[aa], [ab]} (repetition as iteration and accretion)
kconcat[aa][ab] = {[aaab], [aaba], [aabc]}
kconcat[ab][ab] = {[abab], [abba], [abac], [abca], [abbc], [abcb], [abcd]}

 - kconcat [1,2] [1,2,3];
 val it =
 [[1,2,1,2,3],[1,2,1,3,2],[1,2,2,1,3],[1,2,2,3,1],[1,2,3,1,2],[1,2,3,2,1],
 [1,2,1,3,4],[1,2,3,1,4],[1,2,3,4,1],[1,2,2,3,4],[1,2,3,2,4],[1,2,3,4,2],
 [1,2,3,4,5]] : int list list

Programming in SML/NJ13
System SML/NJ: http://www.smlnj.org/

Morphogrammatics: http://www.thinkartlab.com/pkl/SML-sources.NJ/ALL-MG-

nov2012.sml

Book Morphogrammatik: http://www.thinkartlab.com/pkl/media/mg-book.pdf
The file, ALL-MG-nov2012.sml, contains,
 1. smlcus.sml (alley stoughton),
 2. SML-Basic functions (UEMA),
 3. ALL.sml (Kenogrammatics, Thomas Mahler).

Hence, the nice classical example for the concatenation of “data” with “base”
resulting in “database” is not holding in this restrictive way for morphogrammatic
concatenations.

Following the retrograde recursivity of morphic concatenation, the super-additivity
takes into account the different possible meanings of the terms “data” and “base”
marked by the different realizations of the patterns. In the case of the formal
example, with [aa] and [ab], there are 7 possible interpretations, i.e. realizations of

the pattern [ab] in respect to [aa]. Those different interpretations might be taken
successively, recurring to different meanings of the operation “concatenation”, or
they might be conceived as representing the whole range of the complex meaning of
the concatenation in consideration, and are therefore understood as holding all
together at once by mediation in a complex semantic context.

Not just the added morphogram [ab] is changing in the process of concatenation with
the morphogram [aa] but retrogradely the morphogram [aa] is changing its role in the
‘context’ of the composition too. This holds for the semantic example too. The term
“data” gets a different meaning in the composition with the term “base” as it has in
another context and also as it has in isolation.

Thus the concatenation “kconcat” of the two morphic machines MorphoFSM [aa] and
MorphoFSM[ab], i.e. “e1(pos1)" and “v1(pos1, pos2)", is offering 7 different
sequentially or ‘parallel’ composed automata.14

length(kconcat[MG][MG])

length(kmul[1,2][1,2]): Central polygonal numbers: n^2 - n + 1.
http://oeis.org/A002061

Comparison
length(kmul[1,2][1,2])< length(kconcat[1,2][1,2]).
Some further examples for kconcat15.

3.6.3. Dissemination of MorphoFSMs

Up to this point the possible polycontexturality of the involved languages and
machines had not yet been explicitly thematized.

The analogy to finite state machines and regular languages of morphic languages
(scriptures) and machines with the classical operations on languages and machines
comes to an end with the introduction of transpositional (transjunctional,
rejectional, etc.) strategies of combining languages and machines. Transpositional
operations are exploiting the mechanisms of bifunctoriality of diamond category
theory for the purpose of disseminating classical and non-classical concepts of
languages and machines.
http://www.users.abo.fi/jboling/cdes/op_on_aut.pdf

Taken this way, the complexion of languages and machines under the operation
of transposition implemented by bifunctoriality isn’t regular anymore.

The reason is obvious. The operation of transposition (∐) is not a member of the
standard operations on regular languages and machines of complement, union,
intersection, star, etc. (∪, ∩, ^, \, *) and machine compositions parallel || and
product X, and it isn’t definable by them either.

Hence, the class of regular languages is not closed under
the bifunctorial transposition operation.

But there is an inverse interpretation too: In the framework of polycontexturality,
i.e. the dissemination operations over the kenomic grid, the domain of regular
languages is not complete.

Classical regular languages and their machines are restricted to a linear
(serial/parallel) non-interactive type of composition.

Polycontextural compositions of languages are interactional.

With that, we are finally entering the domain of polycontextural complexions of
interactional, reflectional and interventional morphic finite differentiation machines.

This exercise has to be declinated over all constituents of the combined, i.e.
disseminated MorphoFSMs. Therefore, ‘alphabets’, ‘states’ and ‘transitions’

of and i=1,...,6 are mutually disjunct (discontextural) but mediated and each
is defined autonomously at its place and contexture.

Regular languages are closed under the operation of union, intersection, difference,
etc. The new topic is mediation: Are regular languages closed under mediation?
Mediation of operations that are not involved in negations or permutations are

directly mediated, and are not posing any problems. Hence, a complexion of

mediated union, intersection and concatenation like “ is “closed” under
mediation. While a complexion, containing negational operations is not directly
closed.

Hence, the complexion with union, intersection and difference is violating the
conditions of mediation.

Also mediation as such is a crucial feature of polycontextural structurations, the more
interesting constellations are entering the game as transpositional, reflectional and
interventional operations.

Short reminder of some schemes

Those topics of trans-contextural interactivity had been studied in previous papers
and the results are directly applicable to polycontextural structurations of mediated
languages and machines.
http://memristors.memristics.com/Graphematics%20of%20Multisets/Graphematics%2
0of%20Multisets.html

Criteria of mediation
Polycontextural distribution of machines is one aspect of dissemination, the other
aspect is the mediation of the distributed machines. The most abstract approach is
achieved by the fact that machines are mathematically defined as algebras and
coalgebras. Algebras are naturally conceived as hierarchies of operator- and operand-
systems. With the application of the proemial relation, a mediation of algebras is
achieved as the chiastic mechanism of the deplacement and reversion of the
algebraic hierarchies.

A less abstract approach of mediation of finite state machines, i.e. difference
machines, is accessible by the involvement of the initial start states and the final
acceptance states of the machines. Hence,
a chiasm between initial and final entities or constellation of distributed machines is
defining their mediation. Mediation determines the range of combination of possible
constellations of combinations. This range is specially critical to the combination of
operations and the reversion of those operations.

Classical example of mediation

As well known, a crucial part of morphogrammatics as it was developped by Gunther
in the ‘60s, contains the study of mediating and transforming the morphogrammatic
patterns, i.e. the 15 basic morphograms of polycontextural logical operations into
each other.

The question of the composability of the 15 basic morphograms into a
morphogrammatic compound is answered by the SML-function "exmm"
(Morphogrammatik, p. 103).
Example for composition
Are the morphograms mg1, mg1 and mg2 composable? The answer is no.

- exmm [mg 1, mg 1, mg 2];
val it = false : bool

Are the morphograms mg15, mg2 and mg11 composable? The answer is yes.
- exmm [mg 15, mg 2, mg 11];
val it = true : bool

A reduction of complexity is naturally achieved with the reduction of the
morphograms to the 'values' of its mediating points. This enables a classification of
the sub-diagonals into the same,“C”, or different, “F”, sub-diagonals of the
components of the whole morphogrammatic complexion. Hence, C = fst = lst and F =
fst!= lst of a component.

Examples
- allFCs 3;
val it = [[C,C,C],[C,F,F],[F,F,C],[F,C,F],[F,F,F]] : fc list list

- allFCs 4;
val it =
 [[C,C,C,C,C,C],[C,F,F,C,F,F],[F,F,C,F,C,F],[F,C,F,F,F,C],[C,C,C,F,F,F],
 [C,F,F,F,C,C],[F,F,C,C,F,C],[F,C,F,C,C,F],[C,F,F,F,F,F],[F,F,C,F,F,F],
 [F,F,F,F,F,C],[F,C,F,F,F,F],[F,F,F,F,C,F],[F,F,F,C,F,F],[F,F,F,F,F,F]]
 : fc list list
- length(allFCs 4);
val it = 15 : int

Also well studied are the operations of the so called reflector R on morphogrammatic
complexions.

O M = O1(M1), O2(M), O3(M3):
- subsystems 3;
val it = [(1,[1,2]),(2,[2,3]),(3,[1,3])] : (int * int list) list

The operation “subsystems” is based on the concept of morpogrammatic sequences,
i.e. on the sequential mediation of morphograms to a linear chain of morphograms.
Hence, the distribution of the type “c” of morphograms over 3 places becomes
[c,c,c]. Because there are different realizations of a type, a kind of polysemy is at
work. (polysemy, Morphogrammatik, Chapter 8.4)

In contrast, and as an extension and further concretization of morphogrammatics,
a tabular distribution of morphograms is introduced. With that, polysemy is resolved
as a mode of distribution of a morphogram in the kenomic matrix.
Thus, the general unspecified example [c,c,c] for the distribution of the morphogram

for logical implication in the matrix becomes: [c1.1, -, -; -, -, -; -, c or [c1.1,
c1.2, -; -, -, -; -, -, c3.3].

Tabular matrix

O M = [O1(M1, M2, M3); O2(M1, M2, M3); O3(M1, M2, M3)]:
-submatrices 3;
[1,((1,[1,2]),(2,[2,3]),(3,[1,3]))],[2,((1,[1,2]),(2,[2,3]),(3,[1,3]))],[3,((1,[1,2]),(2,[2,3
]),(3,[1,3]))].

[1,
((1,[1,2]),
(2,[2,3]),
(3,[1,3]))],

[2,
((1,[1,2]),
(2,[2,3]),
(3,[1,3]))],

[3,
((1,[1,2]),
(2,[2,3]),
(3,[1,3]))].

Mediation
The topics and techniques of morphogrammatic de/compositions and reflector-
transformations are directly applicable to the de-compositions of MorphoFSMs.

Combinatorics
The number of FCs for regular quadratic mediations (matrices) is given with the SML
function length(allFCs m), calculcated by the formula for the Bell numbers. 16

.
http://oeis.org/A000110/list

How many reflectors exist for regular matrices nxn?

.

The number series of length(RG n) is part of the Mersenne sequence n -> (2).

Further concretizations of the abstraction procedure are given with the gh- and klor-
analysis (Morphogrammatik, Chapter 7).

GH-abstraction
Considering the side-diagonals of the special example of composed matrices with
second = third element as “G” and second != third element as “H”, a new abstraction
is introduced.

Examples

- allGHs 3;
val it = [[G,G,G],[G,G,H],[G,H,G],[G,H,H],[H,G,G],[H,G,H],[H,H,G],[H,H,H]]
 : gh list list

- allGHs 4;
val it =
 [[G,G,G,G,G,G],[G,G,G,G,G,H],[G,G,G,G,H,G],[G,G,G,G,H,H],[G,G,G,H,G,G],

 [G,G,G,H,G,H],[G,G,G,H,H,G],[G,G,G,H,H,H],[G,G,H,G,G,G],[G,G,H,G,G,H],
 [G,G,H,G,H,G],[G,G,H,G,H,H],[G,G,H,H,G,G],[G,G,H,H,G,H],[G,G,H,H,H,G],
 [G,G,H,H,H,H],[G,H,G,G,G,G],[G,H,G,G,G,H],[G,H,G,G,H,G],[G,H,G,G,H,H],
 [G,H,G,H,G,G],[G,H,G,H,G,H],[G,H,G,H,H,G],[G,H,G,H,H,H],[G,H,H,G,G,G],
 [G,H,H,G,G,H],[G,H,H,G,H,G],[G,H,H,G,H,H],[G,H,H,H,G,G],[G,H,H,H,G,H],
 [G,H,H,H,H,G],[G,H,H,H,H,H],[H,G,G,G,G,G],[H,G,G,G,G,H],[H,G,G,G,H,G],
 [H,G,G,G,H,H],[H,G,G,H,G,G],[H,G,G,H,G,H],[H,G,G,H,H,G],[H,G,G,H,H,H],
 [H,G,H,G,G,G],[H,G,H,G,G,H],[H,G,H,G,H,G],[H,G,H,G,H,H],[H,G,H,H,G,G],
 [H,G,H,H,G,H],[H,G,H,H,H,G],[H,G,H,H,H,H],[H,H,G,G,G,G],[H,H,G,G,G,H],
 [H,H,G,G,H,G],[H,H,G,G,H,H],[H,H,G,H,G,G],[H,H,G,H,G,H],[H,H,G,H,H,G],
 [H,H,G,H,H,H],[H,H,H,G,G,G],[H,H,H,G,G,H],[H,H,H,G,H,G],[H,H,H,G,H,H],
 [H,H,H,H,G,G],[H,H,H,H,G,H],[H,H,H,H,H,G],[H,H,H,H,H,H]] : gh list list
- length(allGHs 4);
val it = 64 : int

KLOR-abstraction
A further concretization of the classsification is achieved with:

Qk = Qf ∩ Qg
Ql = Qf ∩ Qh
Qo = Qc ∩ Qh
Qr = Qc ∩ Qg.

- allKLORs 3;
val it =
 [[O,O,O],[O,O,R],[O,R,O],[O,R,R],[R,O,O],[R,O,R],[R,R,O],[R,R,R],[O,L,L],
 [O,L,K],[O,K,L],[O,K,K],[R,L,L],[R,L,K],[R,K,L],[R,K,K],[L,L,O],[L,L,R],
 [L,K,O],[L,K,R],[K,L,O],[K,L,R],[K,K,O],[K,K,R],[L,O,L],[L,O,K],[L,R,L],
 [L,R,K],[K,O,L],[K,O,K],[K,R,L],[K,R,K],[L,L,L],[L,L,K],[L,K,L],[L,K,K],
 [K,L,L],[K,L,K],[K,K,L],[K,K,K]] : klor list list
val it = 40 : int

- allKLORs 4;17
- length(allKLORs 4);
val it = 960 : int

In other words, the reduction techniques of reflector-morphogrammatics that enable
to handle “astronomic” complexity by structural reductions is easily applied to the
morphogrammatic complexions of MorphoFSMs.

Some more information about the dissemination of logical systems at:
http://memristors.memristics.com/Notes%20on%20Polycontextural%20Logics/Notes%2
0on%20Polycontextural%20Logics.pdf

Some further general construction of bifunctoriality and dissemination are available
at:
http://memristors.memristics.com/Polyverses/Polyverses.pdf

Parallel compositions of FSAs
http://syrcose.ispras.ru/2011/files/syrcose11_submission_016.pdf

3.6.4. Mono- and polysemy

A full determination of the new morphogram (machine) has to take into account all
the differences of the morphogram (machine). Hence, for length(morphogram) = m,

s(m) = differences are defining the morphogram of length m. Otherwise, the
morphogram isn’t fully determined. But morphograms with just two elements might
be written with less than the full range of differences.

[aabc]: (ενν)(νν)(ν)
[aaba]: (ϵνν)(νε)(ε)

Hence, two-element morphic automata might be treated as abstractions of classical
automata. The difference of the definition of the strings (words, morphograms) still

remains. Classical automata are based on identity, morphic automata are based on
kenogrammatic difference.

Therefore, the automaton M1 for [abbbb] is reducible to the eqivalent automaton
M1':

Automaton M1
accept [abbbb] M1
 fn pos1 => (fn ν1,4 => pos2) ≡ [ab] = start, with ν1
 | pos2 => (fn ν2,7 => pos1) ≡ [ab]
 | pos1 => (fn ε3,8,9,10 => pos1) ≡ [abb]
 | pos2 => (fn ε5,6 => pos2) ≡ [abbb]
 | pos1 => (fn ε3,8,9,10 => pos1) ≡ [abbbb] = final.

M1(ν1, ε3) => M1(ν1, ν ε3) for two elements.

Automaton M1’

States: Σ = {νi, εj, i,j∈N}
Positions: {pos1, pos2}
Initial: {pos1}
Transitions:
pos1, ν1 --> pos2

pos2, ν2 --> pos
pos1, ε3 --> pos1
Final: {pos1}.
M1 is accepting : [abb].

3.6.5. Determinism and non-determinism

A FSA is deterministic, DFA, iff its runs are unique, otherwise it is called a non-
deterministic FSA, i.e. NFA.

The DFA machine (A2) has different runs for the word (abbb):
q1, a,b --> q1
q1, b --> q2
q2, b --> q2.

Run one: q1,a --> q1, b -->q1, b --> q2,b --> q2 : (abbb).
Run two: q1,a --> q1, b -->q1, b --> q1,b --> q1 : (abbb).

Trivially, all depends on the self-loop "q1,a --> q1, b -->q1, b” which has two entries.

For morphic FSA the situation is quite different. The semiotic difference of the
elements “a” and “b” are not relevant in this situation. Both are defining a self-
application at the state q1. Therefore, they are difference-theoretically equivalent.
As a consequence, the criterion for the distinction of deterministic and non-
deterministic automata vanishes.

Hence, kenomic automata MorphFSM are neither deterministic nor non-deterministic.

This observation is not excluding iterated self-loops for morphic automata.

Morphic automaton for [abbb]:
[A2] = M1:
q1, ν1,4 --> q2
q2, ν2 --> q1
q1, ε3 --> q1
q2, ε5,6 --> q2.

[A2] has just one single run for the recognition of the morphogram [abbb] albeit there
is a single and a double loop involved.

Because the enumeration of the differences in the matrix of the morphogram are
slightly arbitrary, other runs are possible on the base of different enumerations of the
differences of the runs.

3.6.6. Logic, Categories, FSM and MorphoFSM

FSM have a prominent application in logic and numerous realizations in the design of
logical circuits.

Neither logical nor arithmetical circuits in the sense of the term are topics of
morphogrammatic automata. This is a natural consequence for machines that don’t
have states and state-based transitions.

To keep the analogy alive, a fundamentally different kind of ‘arithmetics’ and ‘logic’
has to be intoduced. This exactly was the project of Gotthard Gunther at the BCL in
the ‘60s.

There is also no chance for micro-electronic realizations of morphic machines. Again,
simulations don’t become realizations. (Pattee)

A real chance for a very different kind of realizations seems to become accessible
with the discovery/invention of memristors and the building of memristive systems.

It seems that the very crucial ‘feature’ of retrograde recursivity holds for both
attempts: the kenogrammatic and the memristic concept and realization of
iterability (Derrida, Gunther, Chua).

3.6.7. Diamond characterization

It is well know that finite state machines are adequately modeled by category-
theoretical methods. The category PATH is mapping the transitions of finite state
machine.

"For the technical definitions, again let R ⊂ X × X or (X,R) denote a (general) relation.
We associate to it the following category denoted by PATH(X,R) or just PATH for
short, if no confusion can arise.” (Pfalzgraf)

Despite the nice formal and diagrammatic analogy to the classical concept of finite
state machines by which the concept of morphogrammatic machines had been
modeled, there are in fact no path involved, modeling the activity of morphic finite
differentiation machines. Differences in the sense of diamond theory are ruled by
jumps, bridges and bridging, and are constituting not categories
but saltatories (jumpoids).

Hence a more sophisticated modeling and formalization is required that is able to
establish the interplay between the category of finite state machines with its “flow
of information” and the saltatory “enaction” of difference machines.

Finite state machines are ruled by the category PATH, morphic differentiation
structurations are involved with the diamond-theoretic journeys JOURN. In a diamond
framework, PATH and JOURN are complementary.
http://www.thinkartlab.com/pkl/lola/Diamond%20Relations/Diamond%20Relations.ht
ml

"What I proposed as diamonds at different places, are structures with very different
laws compared to the laws of categories. That is, diamonds, which consist of a
complementary interplay of categories and saltatories, are as categorical systems,
identitive, commutative and associative in respect to their objects, morphisms and
composition. Therefore, they are inheriting all the laws and methods from category
theory.

In sharp contrast, saltatories as parts of diamonds, are ruled by differences, jumps
(saltisitions) and jump-associativity, etc. Additionally, diamonds as such, are

containing bridges and bridging rules between categories and saltatories.” (Kaehr,
30/01/2009)
http://www.thinkartlab.com/pkl/lola/Interactivity.pdf

A definition of finite state automata FSA implies/replays
the complementary construction/instruction of morphic differentiation machines

MorphoFSM, Diamond(FSA, MorphoFSM) = || MorphoFSM.

This approach is focused on the complementarity of the autonomous types of
machines, FSA and MorphoFSM, and is not involved in any derivations based on
abstractions.

Explicit diagram of the diamond interplay of FSAs and MorphoFSM without hetero-
morphic jumps.

Diamond formula with a hetero-morphic jump ||:

Diamond(FSA, MorphoFSM) = () | MorphoFSM || MorphoFSM.

3.7. Further comparisons

3.7.1. Quotient automata of FSA and MorphoFSA

Are morphic automata not just quotient automata of classical automata? It could be
thought that morphic automata are just classical automata over a morphic quotient
structure of the general alphabet. As mentioned before, morphogrammatically, the
sequence [abbb] and [baaa] are equivalent. Hence, belonging to the equivalence
class Σ/morph.

But things seem to be more intricate.
Take an automaton and an equivalence relation of its words Σ* then following
properties hold.
For ∀ x, y ∈ Σ* and a ∈ Σ:
(a) ≡A is an equivalence relation over Σ*.
(b) x ≡A y ==> ∀ a. xa ≡A ya.

(c) x ≡A y ==> x∈ L(A) <==> y ∈ L(A).||||
(d) ≡A is of finite index.
http://www.tcs.tifr.res.in/~pandya/grad/aut06/lect2.pdf

Example for the morphic situation

[abbb] ≡trito [baaa] ==> ∀ a. [abbb][a] ≡A [baaa][a].
Obviosly, the equivalence relation doesn’t hold. Therefore, the trito-equivalence
relation is not right congruent for x,y and a.
[abbba] !≡trito [baaaa].

There is a chance to save the relation with tritogrammatic monads: [a] ∈ Σ/ .
a = [a], b = [a], c = [a], etc.
[abbb] ≡trito [baaa] ==> ∃ [a]. [abbb][b] ≡A [baaa][a].

Definition:

For ∀ x, y ∈ Σ* and [a] ∈ Σ/ :
x ≡A y <==> [x] ≡trito [y]
(b') x ≡trito y ==> ∀x,y ∃ [a]. [x][a] ≡trito [y][a].

This construction is also working if [a] is not a monad of Σ/ but a language
containing words with length n>=2 has properly to be adjusted. Without that, the
proof of the existence of the equivalence relation, mediated by the third term, is
disturbed.

For n=2, w = {[aa], [ab]}.

If w1= [aa] then w w3 = [bb]
x ≡trito y ==> ∀x,y ∃ [aa]. [x][aa] ≡trito [y][bb].

If w1= [ab] then w w3 = [ba]
x ≡trito y ==> ∀x,y ∃ [ab]. [x][ab] ≡trito [y][ba].

x=[abbb] ≡trito y=[baaa] ==> ∀x,y ∃ [ab]. [abbb][ab] ≡trito [baaa][ba].

n=3:

If w1= [abc] then w w3 = [bac]
x ≡trito y ==> ∀x,y ∃ [abc]. [x][abc] ≡trito [y][bac].
x=[abbb] ≡trito y=[baaa] ==> ∀x,y ∃ [abc]. [abbb][abc] ≡trito [baaa][bac]

If w1= [abc], then w w3 = [bca]

x ≡trito y ==> ∀x,y ∃ [abc]. [x][abc] ≡trito [y][bca].
x=[abbb] ≡trito y=[baaa] ==> ∀x,y ∃ [abc]. [abbb][abc] !≡trito [baaa][bca].

On the other hand it has to be recalled that the concatenation operation in trito-
languages is not unique. There are AG(kseq)+1 different concatenation operations of
a word with a monad.
Hence [abbb][a] = {[abbba], [abbbb], [abbbc]}, and
 [baaa][b] = {[baaaa], [baaab], [baaac]}.

Equivalence:
 [abbba] ≡trito [baaab],
 [abbbb] ≡trito [baaaa],
 [abbbc] ≡trito [baaac].
But, [abbba] !≡trito [baaac], etc.

As a consequence, MorphoFSA are not quotients of FSA: MorphoFSA != FSA/ .

3.7.2. General comparison of automata

Those observations are leading naturally to an interesting comparison between the
basic concepts of DFA, QuotDFA and MorphoDFA.

DFA = A = (Q, Σ, δ, q0, F).

QuotDFA = A/~~ := (Q’, Σ, δ’, [q0], F')
 with
 Q' = {[p] | p ∈ Q}
 δ' ([p], a) = [δ(p,a)]
 F' = {[f] | f∈ F}.
 Congruence
 p ~~ q => ∀a ∈ Σ. δ(p,a) ~~ δ(q,a).
 L(A/~~) = L(A).

MorphoDFA = [A] = (Qtrito, Σtrito, δtrito, q , Ftrito)
 with
 Qtrito = {Q | AG(sign(morphogram))},

 Σtrito = {sign | sign ∈ Stirling2(*, Σ),
 δtrito = {ε, ν | EN(morphogram), N},

 q = q Σtrito,
 Ftrito = F ⊆ Σtrito.

3.7.3. Cellular automata based on differences

A further step towards a purely difference-theoretic approach to kenomic cellular
automata has to consider both, the head and the result of the transition,
as differences. This proper approach to a morphogrammatic notation is technically
complicating the applications of the rules of kenoCA. But it is preserving the ‘history-
dependence’ of its transition rules.

ENtoKS(R7) =
[aab;b]

Differentiation mode of presentation of the basic cellular automata rules for
morphic CA.
ENstructure(rule) = differenitation-rule Rdiff;

The property of ‘history-dependence’ becomes more obvious with the case of rules
with more than two kenomic “states":

http://memristors.memristics.com/CA-
Overview/Short%20Overview%20of%20Cellular%20Automata.pdf

3.8. Classical machines with input and output

3.8.1. Mealy Machine

"JFLAP defines a Mealy machine M as the sextuple M = (Q, Σ, Γ, δ, ω, qs) where
Q is a finite set of states {qi | i is a nonnegative integer}
Σ is the finite input alphabet
Γ is the finite output alphabet
δ is the transition function, δ : Q × Σ -> Q
ω denotes the output function, ω : Q × Σ -> Γ
qs (is a member of Q) is the initial state

Mealy machines are different than Moore machines in the output function, ω. In a
Mealy machine, output is produced by its transitions, while in a Moore machine,
output is produced by its states."

"Instead of accepting or rejecting input, a Mealy machine produces output from an
input string.”
http://www.jflap.org/tutorial/

3.8.2. Moore Machine

"JFLAP defines a Moore machine M as the sextuple M = (Q, Σ, Γ, δ, ω, qs) where
Q is a finite set of states {qi | i is a nonnegative integer}
Σ is the finite input alphabet
Γ is the finite output alphabet
δ is the transition function, δ : Q × Σ -> Q
ω denotes the output function, ω : Q -> Γ
qs (is a member of Q) is the initial state."

"Moore machines are different than Mealy machines in the output function, ω. In a
Moore machine, output is produced by its states, while in a Mealy machine, output is
produced by its transitions."

3.8.3. Turing Machines

"JFLAP defines a Turing Machine M as the septuple M = (Q, Σ, Γ, δ, qs, O, F) where
Q is the set of internal states {qi | i is a nonnegative integer}

Σ is the input alphabet
Γ is the finite set of symbols in the tape alphabet
δ is the transition function
S is Q * Γn -> subset of Q * Γn * {L, S, R}
O is the blank symbol.
qs (is member of Q) is the initial state
F (is a subset of Q) is the set of final states.”

"If the head is under an “a” and the machine is in state “q0”, then replace the “a”
with an “x” and move the head to the right. When done adding input, the area
between q0 and q1 should resemble the example below.”

New symbol
(* The status of the Turing machine is a 4-ple
* (state, left_part, curr_char, right_part)
* A Turing_program (transition-function) is a list of transition_rules, each having the
form
* (curr_state,curr_symbol,new_state,new_symbol)
* where 'new_symbol' may be any symbol of the alphabet plus Move_left and
Move_right
*)

http://www.youtube.com/watch?v=IkYhfk4X47c

For a classical machine, the new symbol is an arbitrary element of the alphabet of
signs. The alphabet is stable, it might be finite or infinite. But it is not changing
during the operation.

Morphic machines are not alphabet-based machines but depend on the actions of the
machine. Therefore, the new symbol is new only in respect of the produced symbols
by the actions and not in respect of a pre-given alphabet.

Limitation of the modeling
As mentioned before, the introduction of the differentiation machines is just a first
step of a deconstruction of symbolic machines. The presented applications of
morphogrammatics onto symbolic machines is not yet considering the necessity of a
deconstruction of further features of the symbolic machines, like the structure
of stacks and tapes.

As much as morphograms are not properly understood as sequences, the read write
actions on morphograms have to be adjusted to the more tabular and holistic
situations of morphic machines.

3.8.4. Examples

morphoTM-A(even)

read “A”: write “A”; goto R
run= AAAA => AAAA => AAAA => AAAA => ^: accepted

Transition rules

morphoTM-AAAA2BBBB

Explanation
read “A”: write “B”; goto R.

read “ write “ goto R = acceptance state “q0”.

Transition rules

Linearized notation, plus EN-structure.
run: [AAAA] to [BBBB]

run= [AAAA] => [BAAA] => [BABA] => [BBBA] => [BBBB] => ^:
accepted.

EN:

Hence, the morphoTM transforms [AAAA} into [BBBB] with

EN[AAAA] = EN[BBBB], therefore [AAAA] = [BBBB].

It might be said that the morphoTM is transforming the morphogram [AAAA] into itself
by changing its semiotic appearance from [AAAA] to [BBBB].
The chain "[AAAA] => [BAAA] => [BBAA] => [BBBA] => [BBBB] =MG [AAAA]" is self-
applicative:
morphoTM([AAAA]) =MG [AAAA].

On more turn:
run= [AAAA] => [BAAA] => [BABA] => [BBBA] => [BBBB] =>
 [BBBB] => [ABBB] => [ABAB] => [AAAB] => [AAAA] => ^: accepted.

morphoTM-e-v

EN-

run: => => =>

run= [AAAA] => [BAAA] => [BACA] => [BACD] => [ABCD
] => ^: accepted

Explanation
read “e”: write “v”; goto R.
read “v”: write “v”; goto R.
EN-notation, plus linearized morphogram in trito-normal form (tnf) with [AAAA] to
[ABCD].
run: [AAAA] to [ABCD].

Elementary morphoTMs for iteration and accretion

morphoTM-iteration

LIN-run: [AA] => [AAA] => [AAAA] => [AAAAA] => ^: accepted

morphoTM-accretion

run= [AB] => [ABC] => [ABCD] => [ACDE] => ^: accepted

morphTM-(v,e)

Accretion
[e,e,e] => [v,v,v]: [AAA]/[e,e,e] => [ABA]/[v,e,v] => [ABC]/[v,v,v].
Alternatively:
[e,e,e] => [v,v,v]: [AAA]/[e,e,e] => [BAA]/[v,v,e] => [BAC]/[v,v,v].

Inversion
[e,v,v] => [v,v,e]: [AAB]/[e,v,v] => [ABA]/[v,e,v] => [ABB]/[v,v,e].

- kref[1,1,2];
val it = [1,2,2] : int list

Mixed iterative and accretive repetitions

Transition rules

run iteratively on {A, B}: AA AAB AABB AABBA AABBAA AABBAAB ...
run accretively on {A, B, C, ...}: AA AAB AABB AABBC AABBCC AABBCCD AABBCCDD
...

Even productions are, trivially, morphic palindromes.

- ispalindrome [1,1,2,2,3,3,4,4,5,5];
val it = true : bool

3.8.5. Representations and combinations

Different types of symbolic machines (FSM, Mealy, Moore, Turing, Gurevitch, etc.)
might be composed on the base of compounds of morphogrammatic machines. This
may be called morphogrammatically based parallelism of semiotic machines. For the
case of mediation, the conditions of mediation have to be accepted additionally to
get the polycontextural types of negations. With that, some nice categorical braids of
machines with Hamilton choreographies and mediated by interchanchability, enter
the game.

Not in the alphabet
This message “Not in the alphabet”, doesn’t apply for morphic automata. Simply
because morphic automata are not alphabet-based. On the other hand it means for
morphic atomata that any identifiable sign (event) is recognized by its kind of
differentiation. In other words, any differentiation is recognized as a “sign" (event)
for calculation.

Hence, a classical automaton, defined by the alphabet {a,b} will not work for another

alphabet, say {
defined on (aaa...). What counts for morphic automata, again, are the
differentiations, differences, distinctions and not the atomic symbols (data)
perceived. Hence, again, morphic automata are information-independent; they are
not processing information as their data.

http://www.cs.duke.edu/~rodger/jflappapers/ChakrabortyX2011.pdf
http://krex.k-
state.edu/dspace/bitstream/handle/2097/1401/SrinivasaAdityaUppu2009.pdf

3.9. Presentations of automata: transition tables and de Brujin
graphs
3.9.1. Transition tables
"If the set of states Q is finite, then the transition functions are commonly
represented as state transition tables. The construction of all possible transitions
driven by strings in the free group has a graphical depiction as de Bruijn
graphs.” (WiKi, Semiautomata)

3.9.2. de Brujin graphs for FSM

4. Critical questions

4.1. Are morphic FSAs Finite State Automata at all?

This proposal tried to sketch the idea of a morphogrammatic analogon to the semiotic
or symbolic concept of FSAs and others. At the end of the journey of analogization it
might turn out that non of the definitorial constituents of those machines where the
journey started could be covered by the morphogrammatic approach to abstract
machines.

In fact, morphoSFA have neither an initial nor a final state. In fact, they don’t have
states neither. They are not really feed by words of a regular language. They don’t
begin and also don't stop. Their transitions are independent of the vocabulary, hence
they are also not transitions in the sense of the definition.

They are differentiations, paradoxically differing and defering the positions of the
structuration that are defining the differences as constellations or “states” of the
machine.

The opposite characterization to the classical concept might give a better insight into
the definition and behavior of morphogrammatic machines.

Instead of a defined start, like for FSA, morphic machines don’t have a start. What
we know about the behavior of the machine is depending on the point of view of an
observer. An observation might take place and a beginning might be postulated.
Any description of the behavior of the machine has to distinguish at least two
possibilities of description: An internal and an external position of an observation.

An external observation might be closer connected with the point of view of classical
automata theory and their concepts and apparatus. From there, the analogy and
deconstruction might take place.
An internal description has to be aware of the non-conventual feature of the morphic
automaton.
This approach might be supported by the well known ‘experimental’ intervention
with automata and the co-algebraic structures involved.

Some lessons could be learned from the construction and application of other
morphogrammatic systems and ‘machines’. It seems, that the morphic approach
to cellular automata is still a novelty and worth to be studied.

4.2. Is there any use for morphic automata?

The usefulness of classical machine models like FSA, DFA, Mealy and Moore and Turing
Machines, and many others, for computation, linguistics, modal logics and AI is well
known, established, proven and documented. A further elaboration shall consider
omega-languages and Büchi-automata in comparison to MorphoAutomata.

It is also well known that such automata concepts had been crucial for the
development of modern theoretical linguistics. Noam Chomsky’s hierarchies are still
governing the field.

On the other hand, it is not well known and only vaguely understood that the
difference-theoretical approach to semiotics and linguistics of Ferdinand de Saussure
might uncover structures and processes, i.e. structurations, that are closer to the
functioning of language than the Leibniz-Chomsky paradigm, founded by the concept
of abstract calculi, based on atomic signs, concatenation/substitution and linearity,
could be. Obviously, de Saussure's approach doesn’t fit into the Leibniz-Chomsky
paradigm of computation.

Dealing with differences, and differences only, in a system of differences, where the
loci of the differences in a complexion are themselves distinguished by differences in
the system of differences, hence, self-referentially and classically paradoxical,
determines the ‘value’ of the difference, might get a fundamentally new and
interesting conceptualization, ‘formalization’ and programming towards a
determination of the “values” of differences by morphogrammatics and morphic
machines.

De Saussure wasn’t well recognized by the academic linguists, especially by the
German school, and was then later successfully denied by the international Chomsky
movement of generative linguistics.

"In language there are only differences. Even more important: a difference generally
implies positive terms between which the difference is set up; but in language there
are only differences without positive terms.” F. de Saussure

Jaques Derrida discovered the deep difference-theoretical endeavour of de Saussure's
semiotics (sémiologie), not just for a theory of language but for an understanding of
thinking at all. This post-philosophical approach got some recognition and determined
the international movements of deconstructionism and deconstructivism.

Unfortunately, despite the radical insight into a pre-logical structure of de Saussure’s
understanding of differences and system, différance, any attempts to connect this
movement with more formal and operative achievements had not only been denied
but harshly criticized, and institutionally killed.

Today, it could be a chance to begin to study this promising approach again. Might be
with the help of morphogrammatics and morphogrammatic automata as formal and
inspirational models.
At least, this could be one answer to the question: What are difference-based
automata for?

Morphic automata, desinged and understood as closed automata without input nor
output in the strict sense are also giving some operational help to understand
Humberto Maturana’s concept of autopoiesis. Despite the fact that morphic automata
are just in their very beginning, morphic automata should nevertheless be contrasted

with the classical, first- and second order cybernetic approaches, to a theory of living
systems.

Additional approaches: Peirce versus de Saussure

"Final summary: The Saussurean dyadic sign model can be mapped on 48 dyadic sign
models as 3×3 sub-matrices in 4 contextures, based on the 3-adic Peircean sign
model.” (A. Toth)
Alfred Toth, The Saussurean sign model and its formal representation
http://www.mathematical-semiotics.com/pdf/Saussure.pdf

Object theory
Freud’s difference of “Wortvorstellung” and “Sachvorstellung".
The rationality of the “Wortvorstellung” in its logical form is covered by the
‘propositions' (apophansis) of two-valued logic. The rationality of the Sachvorstellung
is not logical at all but is covered by transformation laws (Umformungsgesetze) of
morphogrammatics. (Kaehr, Mitterauer)
"Die Sache selbst”, the object as such, is ruled by differentiations, the handling of
the notions of the object is ruled by the laws of representation.

"Was wir die unbewußte Objektvorstellung heißen, zerlegt sich uns in die
'Wortvorstellung' und in die 'Sachvorstellung', die in der Besetzung, wenn nicht der
direkten Sacherinnerungsbilder, doch entfernterer und von innen abgeleiteter
Erinnerungsspuren besteht. Mit einem Male glauben wir nun zu wissen, wodurch sich
eine bewußte Vorstellung von einer unbewußten unterscheidet. Die beiden sind
nicht, wie wir gemeint haben, verschiedene Niederschriften desselben Inhaltes an
verschiedenen psychischen Orten, auch nicht verschiedene funktionelle
Besetzungszustände an demselben Orte, sondern die bewußte Vorstellung umfaßt die
'Sachvorstellung' plus der zugehörigen 'Wortvorstellung', die unbewußte ist die
Sachvorstellung allein.” (S. Freud)
http://www.gleichsatz.de/b-u-t/spdk/freud.html

Abstractions versus differences
Abstractions to define quotient automata, or general quotient structures, are build
over “positive terms” of an algebraic structure, i.e. a system. Such an abstraction
applies over a relational system (algebra), and relations are holding between
“positive terms”. Mathematically, a relation is introduced as a set of a Cartesian

product, Rel ⊆ Set x Set, for binary relations, with positive elements, Pos∈Set.
Hence, quotient automata are derived as abstractions over their relational structure
(algebra) and are not defined by differences building differentiations of different
actions, behaviors or events.

Differentiations, differences and distinctions in the sense of morphogrammatics and
their interactional play are defining elements of relations, sets and operations as
special, frozen, activities of differentiations.

De Saussure

But the paradox is that: In the language, there are only differences, without positive
terms. That is the paradoxical truth. At least, there are only differences if you are
speaking either of meanings, or of signified or signifying elements.

"Strictly speaking there are no signs but differences between signs.

"There are only differences; no positive terms at all.

Here I am speaking of a difference in the signifying element.
The mechanism of signifying elements is based on differences.”

"At first sight, no relation between the a) and the b) arrows. The value of a word
will be the result only of the coexistence of the different terms. The value is the
counterpart of the coexisting terms. How does that come to be confused with the
counterpart of the auditory image?”

"In a language, as in every other semiological system, what distinguishes a sign is
what constitutes it”.

Ferdinand de Saussure (1910), Third Course of Lectures on General Linguistics
http://www.marxists.org/reference/subject/philosophy/works/fr/saussure.htm

In the language itself, there are only differences. Even more important than that is
the fact that although in general a difference presupposes positive terms between
which the difference holds, in language there are only differences, and no positive
terms. Whether we take the signification or the signal, the language includes neither
ideas nor sounds existing prior to the linguistic system, but only conceptual and
phonetic differences arising out of that system. In a sign, what matters more than
any idea or sound associated with it is what other sounds surround it (Course in
General Linguistics 166).
http://semioticsoflaw.com/site/derrida.php

" Dans la langue, comme dans tout système sémiologique, ce qui distingue un signe,
voilà tout ce qui le constitue. C'est la différence qui fait le caractère, comme elle
fait la valeur et l'unité. " (p.168.)
" la langue est pour ainsi dire une algèbre qui n'aurait que des termes complexes "
(p.168).

Manuel Gustavo Isaac, Les paradoxes de l’arbitraire. Le négatif, la différence,
l’opposition dans le signe saussurien.
"Le paradoxe est double : premièrement, la sémiologie saussurienne est en
contradiction avec le bon sens extensionnel de la théorie des ensembles définissant
une relation comme un sous-ensemble d’un produit cartésien (R ⊆ a×a), donc par ses
éléments ; deuxièmement, parce qu’elle est non-extensionnelle et dérive les unités
sémiotiques d’une relation d’inégalité (négativité, différence, oppositivité), la
sémiologie exige une caractérisation intensionnelle de la négation. Comme l’abolition
d’un paradoxe exige un changement de perspective sur les principes, on modifie le
système des ‘axiomes’ sémiologiques en inversant ses règles de dérivation :
l’arbitraire n’est plus principe, il a une raison. Passer de l’arbitraire comme principe
au principe de l’arbitraire, autrement dit le renverser par le biais de l’analyse de ses
trois notions cardinales, implique de le motiver. C’est là le paradoxe.”
"L’objet linguistique est complexe.
http://www.rifl.unical.it/articoli/rifl032010/010isaac.pdf

Derrida/Searle

"Every concept is necessarily and essential inscribed in a chain or a system, within
which it refers to another and to other concepts by the systematic play of
differences. Such a play, then--difference is no longer simply a concept, but the
possibility of conceptuality.” (Derrida)

Thinking just the ‘obvious’ surface structure of thinking and writing and escaping
prominently tedious “deep-structure” analysis is still a dominant strategy in
established contemporary philosophy. Searle’s surface argument, could easily be
radicalized by a surface-understanding of computer programming languages, and
obviously with a reasonable reference to Chomsky too. It seems not easy to grasp that
formal languages are faithfully realizing the atomistic and linear structure of

phonological language with its proper hierarchy of the dominant dichotomy of
operator and operand.

"On Derrida's account, however, it is essential not only to Husserl, but to philosophy,
and indeed to "the history of the world during an entire epoch," including the
present, that speech should be mistakenly privileged over writing. If Derrida's claim
were to be taken at its face value, I believe that a contrary argument could be given
equal or even greater plausibility.

"From the medieval development of Aristotle's logic through Leibniz's Characteristica
Universalis through Frege and Russell and up to the present development of symbolic
logic, it could be argued that exactly the reverse is the case; that by emphasizing
logic and rationality, philosophers have tended to emphasize written language as the
more perspicuous vehicle of logical relations.

"Indeed, as far as the present era in philosophy is concerned, it wasn't until the
1950s that serious claims were made on behalf of the ordinary spoken vernacular
languages, against the written ideal symbolic languages of mathematical logic. [..]

"When Derrida makes sweeping claims about "the history of the world during an
entire epoch,"the effect is not so much apocalyptic as simply misinformed.”
John Searle, “Reiterating the Differences: A Reply to Derrida”, Glyph 1:198-208

Différance, differentiation

"Les différences sont donc <<produites>> -- différées -- par la différance. Mais
qu’est-ce qui diffère ou qui diffère ? Autrement dit, qu’est-ce que la différance?
Avec cette question nous atteignons un autre lieu et une autre ressource de la
problématique. Qu’est-ce qui diffère? Qui diffère? Qu’est-ce que la différance?

"Les deux valeurs apparemment différentes de la différance se nouent dans la
théorie freudienne: le différer comme discernabilité, distinction, écart, diastème,
espacement, et le différer comme détour, délai, réserve, temporisation.”

http://www.jacquesderrida.com.ar/frances/differance.htm

Derrida, Cybernetics, Graphematics
"If the theory of cybernetics is by itself to oust all metaphysical concepts -- including
the concepts of soul, of life, of value, of choice, of memory -- which until recently
served to separate the machine from man, it must conserve the notion of writing,
trace, written mark, or grapheme, until its own historico-metaphysical character is
also exposed.

[...[E]ven before being determined as human... or nonhuman, the gramme -- or the
grapheme -- would thus name the element. An element without simplicity. An
element, whether it is understood as the medium or irreducible atom, of the arche-
synthesis in general, of what one must forbid oneself to define within the system of
oppositions in metaphysics, of what consequently one should not even call
experience in general, that is to say the origin of meaning in general.]
(Jacques Derrida, Of Grammatology 9)
http://fractalontology.wordpress.com/2008/01/16/systems-of-control-derrida-and-
machines/

Further differences

Rodolpe Gasché, “The Eclipse of Difference”
http://www.dif-ferance.org/The%20Eclipse%20of%20Difference.pdf

Maturana, Varela and Heinz von Foerster

Von Foerster’s “Memory without records”

Maturana’s Autopoiesis

Varela’s Closure Thesis

The focus of Varela’s Extended Calculus of Indication was on the closure of a formal
system, hence self-referentiality and re-entry as attempts to conceptualize it
’beyond’ logical paradoxes, and not on structuration. Structuration is the ‘process’ of
building new structures as ‘answers’ to the interactions of the structured system,
morphé, to the ‘perturbations’ by its environment.

http://memristors.memristics.com/MorphoProgramming/Morphogrammatic%20Progra
mming.html

Some stuff has to be repeated millions of times until our brain gets hold of it.

4.2.1. Semiotics of palindromes and anagrammatics

"The idea of the palindrome is closely associated with the material and corporeal
aspect of verbal signification. Animal images are used for symbolizing the palindromic
processes of regression and circularity: the crab or cancer, and the snake biting its
own tail (the gnostic image of Ouroboros).

"Likewise, the mirror metaphor has been applied to palindrome structures. Largely a
visual phenomenon, the palindrome epitomizes the spatiality of language and
scripture, something indicated already on the metaphorological plane of classical
terminology: "running back again" (palindromos), "stepping back" (versus retrogradus)
-- a temporal motion in space.

"Allowing for reversibility of the linear discourse, the palindrome represents the very
idea of transformation and metamorphosis.

"Palindromic reversion is a device for breaking up the linearity of speech and, by
implication, the irreversibility of time. Irreversibility "thematizes itself in the
palindrome form by eating itself up" (a quotation from Oskar Pastior, the outstanding
contemporary German palindrome poet).

"Sequentiality and causality of time and space are annihilated in the palindromic
motion. Thus, the palindrome can be conceived of as a chronotope of revolution.
('chrono-topos': time-space)."
Erika Greber, PALINDROMON - ANAGRAMMATISMOS - REVOLUTIO: The Palindrome from
the Perspective of Cultural Semiotics
http://realchange.org/pal/semiotic.htm

Christina Ljungberg, ‘Damn mad’: Palindromic figurations in literary narratives
"Palindromes are chiastic figurations that arrest the habitual tempo-linear sequence
of language and, in so doing, focus attention on the very act of signification. In
narrative, they often prove pivotal for the overall structure of the text, going far
beyond mere wordplay or verbal virtuosity. Because they can be read both backwards
and forwards, palindromes emerge as multilayered, multidirectional,
and polytemporal mappings reflecting the notorious instability of human lives, where
the ever shifting present oscillates between the past and the future. In contemporary
fiction, such palindromic vacillation becomes an iconic representation of temporal
shifting, allowing us to discern the texture of temporality, not as abstractly
conceived but as concretely lived and hence as innovatively performing an unstable
present.”
http://benjamins.com/#catalog/books/ill.5.21lju

All the emphasis made about the temporality of palindromes and chiasms is the result
of interpretations, some hermeneutics and wild semiotic and culture-theoretical
speculations. They might find some legitimation in the context of the whole corpus,
texts, paintings, graphics, musical compositions, etc. but not at all in the figure of
the chiasm and its derivation, the semiotic palindrome as such.

It seems that the difference-theoretical thematization, formalization and
implementation of chiasms and palindromes by MorphoFSMs gives a much more
comprehensive and convincing understanding of its ‘deviant’ logical structure.

Base Infinity
"Computer poetry is warfare carried out by other means, a warfare against
conventionality and language that has become automatized. Strange as it seems,
our finite state automata have become the poet’s allies in this struggle, the long
historical battle by which mankind pries into the surface of language to reveal its
latent mysteries...”, R.W. Bailey, Computer Poems (1973)

Sunday, December 11, 2011

Generated from this Source:
www.thinkartlab.com/pkl/media/DERRIDA/DERRIDA.htm
Posted by Rollie Bollocks at 3:51 PM
Labels: codework, n-grams
http://baseinfinity.blogspot.co.uk/2011/12/derridas-machines-machine.html

Notes
1
 Deconstructing beginnings

"Einerseits lassen sich Kenogrammsequenzen rekursiv konstruieren, wenn auch nur in Analogie zu semiotischen

Systemen, fehlt ihnen doch ein echtes initiales Objekt. Sie haben somit eine Objekt-Struktur. Andererseits sind

komplementär zur rekursiven Konstruktion, Kenogrammkomplexionen nicht als vorfindliche Objekte zu

verstehen. Sie sind verdeckt und lassen sich nicht direkt beschreiben, bzw. charakterisieren.

Es gibt, genau betrachtet, kein Anfangskenogramm für einen induktiven bzw. rekursiven Aufbau der

Kenogramm-Komplexionen. Die Kenogrammsequenzen sind somit als solche nicht in einer Wortalgebra

beschreibbar.

Bisdahin wurde in der Literatur zur Kenogrammatik das Problem des fehlenden Anfangskenogramms zum

rekursiven Aufbau der Kenogrammsequenzen bewusst mehr oder weniger trickreich zu Gunsten einer

Konstruktion ausgeklammert.

Eine positive Lösung des Anfangsproblems könnte darin liegen, einen behavioral viewpoint einzunehmen und

mit dem Konzept der Co-Induktion zu arbeiten. Eine Methode für die Formalisierung könnte sein, ausgewogen

zwischen Konstruktion und Dekonstruktion, zwischen streng finaler und streng terminaler Ausrichtung

einzusetzen.

Ein weiterer Schritt müsste dann allerdings darin bestehen, diesen Gegensatz als solchen zu verwerfen und ihn

als monokontextural zu identifizieren, zu dekonstruieren und entsprechend neue Formalismen zu entwickeln.”

(SKIZZE-0.9.5, 2003)

Aufbau : Konstruktoren

Abbau : Selektoren

Observatoren

Algebra: Induktion

Co-Algebra: Coinduktion

Dualität

Systemwechsel

Weder Text noch Formel noch Programm

"Die Kenogrammatik ist weder durch Zeichenreihen konstruktiver Art, noch durch Zeichenströme koinduktiver

Art zu bestimmen. Im Gegensatz zu mathematischen und programmiersprachlichen Verschriftungen erzeugen

kenomische Ereignisse keinen Text, weder einen rein linearen noch einen vernetzt-tabularen. Sowohl

Zeichenreihen wie auch Zeichenströme sind über einem Alphabet definiert, sei es durch Induktion oder durch

Koinduktion und sind in einer fundierten oder unfundierten Tektonik hierarchischer oder zirkulärer Strukturen

versammelt.”

1
 Deconstructing beginnings

"Einerseits lassen sich Kenogrammsequenzen rekursiv konstruieren, wenn auch nur in Analogie zu semiotischen

Systemen, fehlt ihnen doch ein echtes initiales Objekt. Sie haben somit eine Objekt-Struktur. Andererseits sind

komplementär zur rekursiven Konstruktion, Kenogrammkomplexionen nicht als vorfindliche Objekte zu

verstehen. Sie sind verdeckt und lassen sich nicht direkt beschreiben, bzw. charakterisieren.

Es gibt, genau betrachtet, kein Anfangskenogramm für einen induktiven bzw. rekursiven Aufbau der

Kenogramm-Komplexionen. Die Kenogrammsequenzen sind somit als solche nicht in einer Wortalgebra

beschreibbar.

Bisdahin wurde in der Literatur zur Kenogrammatik das Problem des fehlenden Anfangskenogramms zum

rekursiven Aufbau der Kenogrammsequenzen bewusst mehr oder weniger trickreich zu Gunsten einer

Konstruktion ausgeklammert.

Eine positive Lösung des Anfangsproblems könnte darin liegen, einen behavioral viewpoint einzunehmen und

mit dem Konzept der Co-Induktion zu arbeiten. Eine Methode für die Formalisierung könnte sein, ausgewogen

zwischen Konstruktion und Dekonstruktion, zwischen streng finaler und streng terminaler Ausrichtung

einzusetzen.

Ein weiterer Schritt müsste dann allerdings darin bestehen, diesen Gegensatz als solchen zu verwerfen und ihn

als monokontextural zu identifizieren, zu dekonstruieren und entsprechend neue Formalismen zu entwickeln.”

(SKIZZE-0.9.5, 2003)

Aufbau : Konstruktoren

Abbau : Selektoren

Observatoren

Algebra: Induktion

Co-Algebra: Coinduktion

Dualität

Systemwechsel

Weder Text noch Formel noch Programm

"Die Kenogrammatik ist weder durch Zeichenreihen konstruktiver Art, noch durch Zeichenströme koinduktiver

Art zu bestimmen. Im Gegensatz zu mathematischen und programmiersprachlichen Verschriftungen erzeugen

kenomische Ereignisse keinen Text, weder einen rein linearen noch einen vernetzt-tabularen. Sowohl

Zeichenreihen wie auch Zeichenströme sind über einem Alphabet definiert, sei es durch Induktion oder durch

Koinduktion und sind in einer fundierten oder unfundierten Tektonik hierarchischer oder zirkulärer Strukturen

versammelt.”

3
 http://www.tcs.tifr.res.in/~pandya/grad/aut06/lect4.pdf

http://coalg.org/cmcs12/slides/ciancia.pdf

http://www.math.uni-hamburg.de/home/loewe/2006-07-I/Venema.pdf

http://coalg.org/cmcs12/slides/ciancia.pdf

4
 - nfirstq (55, TU);

val it =

 [[1],[1,1],[1,2],[1,1,1],[1,1,2],[1,2,1],[1,2,2],[1,2,3],[1,1,1,1],

 [1,1,1,2],[1,1,2,1],[1,1,2,2],[1,1,2,3],[1,2,1,1],[1,2,1,2],[1,2,1,3],

 [1,2,2,1],[1,2,2,2],[1,2,2,3],[1,2,3,1],[1,2,3,2],[1,2,3,3],[1,2,3,4],

 [1,1,1,1,1],[1,1,1,1,2],[1,1,1,2,1],[1,1,1,2,2],[1,1,1,2,3],[1,1,2,1,1],

 [1,1,2,1,2],[1,1,2,1,3],[1,1,2,2,1],[1,1,2,2,2],[1,1,2,2,3],[1,1,2,3,1],

 [1,1,2,3,2],[1,1,2,3,3],[1,1,2,3,4],[1,2,1,1,1],[1,2,1,1,2],[1,2,1,1,3],

 [1,2,1,2,1],[1,2,1,2,2],[1,2,1,2,3],[1,2,1,3,1],[1,2,1,3,2],[1,2,1,3,3],

 [1,2,1,3,4],[1,2,2,1,1],[1,2,2,1,2],[1,2,2,1,3],[1,2,2,2,1],[1,2,2,2,2],

 [1,2,2,2,3],[1,2,2,3,1]] : int list list

5
 - ENstructure [1,1,1,2,2,1,1,1];

val it =

[[],

[(1,2,E)],

[(1,3,E),(2,3,E)],

[(1,4,N),(2,4,N),(3,4,N)],

[(1,5,N),(2,5,N),(3,5,N),(4,5,E)],

[(1,6,E),(2,6,E),(3,6,E),(4,6,N),(5,6,N)],

[(1,7,E),(2,7,E),(3,7,E),(4,7,N),(5,7,N),(6,7,E)],

[(1,8,E),(2,8,E),(3,8,E),(4,8,N),(5,8,N),(6,8,E),(7,8,E)]]

: (int * int * EN) list list

- ENstructure[1,1,1,1,2,2,1,1,1,1];

val it =

[[],

[(1,2,E)],

[(1,3,E),(2,3,E)],

[(1,4,E),(2,4,E),(3,4,E)],

[(1,5,N),(2,5,N),(3,5,N),(4,5,N)],

[(1,6,N),(2,6,N),(3,6,N),(4,6,N),(5,6,E)],

[(1,7,E),(2,7,E),(3,7,E),(4,7,E),(5,7,N),(6,7,N)],

[(1,8,E),(2,8,E),(3,8,E),(4,8,E),(5,8,N),(6,8,N),(7,8,E)],

[(1,9,E),(2,9,E),(3,9,E),(4,9,E),(5,9,N),(6,9,N),(7,9,E),(8,9,E)],

[(1,10,E),(2,10,E),(3,10,E),(4,10,E),(5,10,N),(6,10,N),(7,10,E),(8,10,E),(9,10,E)]]

: (int * int * EN) list list

- ENstructure[1,1,1,1,2,2,2,1,1,1,1];

val it =

[[],

[(1,2,E)],

[(1,3,E),(2,3,E)],

[(1,4,E),(2,4,E),(3,4,E)],

[(1,5,N),(2,5,N),(3,5,N),(4,5,N)],

[(1,6,N),(2,6,N),(3,6,N),(4,6,N),(5,6,E)],

[(1,7,N),(2,7,N),(3,7,N),(4,7,N),(5,7,E),(6,7,E)],

[(1,8,E),(2,8,E),(3,8,E),(4,8,E),(5,8,N),(6,8,N),(7,8,N)],

[(1,9,E),(2,9,E),(3,9,E),(4,9,E),(5,9,N),(6,9,N),(7,9,N),(8,9,E)],

[(1,10,E),(2,10,E),(3,10,E),(4,10,E),(5,10,N),(6,10,N),(7,10,N),(8,10,E),(9,10,E)],

[(1,11,E),(2,11,E),(3,11,E),(4,11,E),(5,11,N),(6,11,N),(7,11,N),(8,11,E),(9,11,E),(10,11,E)]]

: (int * int * EN) list list

6
 nfirstq(5000, TU)

List.filter palindrome “nfirstq(5000, TU)";

- length it;

val it = 180 : int

val it =

[[1],[1,1],[1,2],

[1,1,1],[1,2,1],[1,2,3],

[1,1,1,1],[1,1,2,2],[1,2,1,2], [1,2,2,1],[1,2,2,3],[1,2,3,1],[1,2,3,4],

[1,1,1,1,1],[1,1,2,1,1], [1,1,2,3,3],[1,2,1,2,1],[1,2,1,3,1],[1,2,2,2,1],

[1,2,2,2,3],[1,2,3,1,2], [1,2,3,2,1],[1,2,3,2,4],[1,2,3,4,1],[1,2,3,4,5],

[1,1,1,1,1,1],[1,1,1,2,2,2],[1,1,2,1,2,2],[1,1,2,2,1,1],[1,1,2,2,3,3],[1,1,2,3,1,1],

 [1,1,2,3,4,4],[1,2,1,1,2,1],[1,2,1,1,3,1],[1,2,1,2,1,2],[1,2,1,3,2,3],

 [1,2,1,3,4,3],[1,2,2,1,1,2],[1,2,2,2,2,1],[1,2,2,2,2,3],[1,2,2,3,3,1],

 [1,2,2,3,3,4],[1,2,3,1,2,3],[1,2,3,1,4,3],[1,2,3,2,3,1],[1,2,3,2,3,4],

 [1,2,3,3,1,2],[1,2,3,3,2,1],[1,2,3,3,2,4],[1,2,3,3,4,1],[1,2,3,3,4,5],

 [1,2,3,4,1,2],[1,2,3,4,2,1],[1,2,3,4,2,5],[1,2,3,4,5,1], [1,2,3,4,5,6],

[1,1,1,1,1,1,1],[1,1,1,2,1,1,1],[1,1,1,2,3,3,3],[1,1,2,1,2,1,1],

 [1,1,2,1,3,1,1],[1,1,2,2,2,1,1],[1,1,2,2,2,3,3],[1,1,2,3,1,2,2],

 [1,1,2,3,2,1,1],[1,1,2,3,2,4,4],[1,1,2,3,4,1,1],[1,1,2,3,4,5,5],

 [1,2,1,1,1,2,1],[1,2,1,1,1,3,1],[1,2,1,2,1,2,1],[1,2,1,2,3,2,3],

 [1,2,1,3,1,2,1],[1,2,1,3,1,4,1],[1,2,1,3,2,1,2],[1,2,1,3,4,2,4],

 [1,2,1,3,4,5,4],[1,2,2,1,2,2,1],[1,2,2,1,3,3,1],[1,2,2,2,2,2,1],

 [1,2,2,2,2,2,3],[1,2,2,3,1,1,2],[1,2,2,3,2,2,1],[1,2,2,3,2,2,4],

 [1,2,2,3,4,4,1],[1,2,2,3,4,4,5],[1,2,3,1,2,3,1],[1,2,3,1,3,2,1],

 [1,2,3,1,3,4,1],[1,2,3,1,4,2,1],[1,2,3,1,4,5,1],[1,2,3,2,1,2,3],

 [1,2,3,2,3,2,1],[1,2,3,2,3,2,4],[1,2,3,2,4,2,1],[1,2,3,2,4,2,5],

 [1,2,3,3,3,1,2],[1,2,3,3,3,2,1],[1,2,3,3,3,2,4],[1,2,3,3,3,4,1],

 [1,2,3,3,3,4,5],[1,2,3,4,1,2,3],[1,2,3,4,1,5,3],[1,2,3,4,2,3,1],

 [1,2,3,4,2,3,5],[1,2,3,4,3,1,2],[1,2,3,4,3,2,1],[1,2,3,4,3,2,5],

 [1,2,3,4,3,5,1],[1,2,3,4,3,5,6],[1,2,3,4,5,1,2],[1,2,3,4,5,2,1],

 [1,2,3,4,5,2,6],[1,2,3,4,5,6,1], [1,2,3,4,5,6,7],

[1,1,1,1,1,1,1,1], [1,1,1,1,2,2,2,2],[1,1,1,2,1,2,2,2],[1,1,1,2,2,1,1,1],[1,1,1,2,2,3,3,3],

 [1,1,1,2,3,1,1,1],[1,1,1,2,3,4,4,4],[1,1,2,1,1,2,1,1],[1,1,2,1,1,3,1,1],

 [1,1,2,1,2,1,2,2],[1,1,2,1,3,2,3,3],[1,1,2,1,3,4,3,3],[1,1,2,2,1,1,2,2],

 [1,1,2,2,2,2,1,1],[1,1,2,2,2,2,3,3],[1,1,2,2,3,3,1,1],[1,1,2,2,3,3,4,4],

 [1,1,2,3,1,2,3,3],[1,1,2,3,1,4,3,3],[1,1,2,3,2,3,1,1],[1,1,2,3,2,3,4,4],

 [1,1,2,3,3,1,2,2],[1,1,2,3,3,2,1,1],[1,1,2,3,3,2,4,4],[1,1,2,3,3,4,1,1],

 [1,1,2,3,3,4,5,5],[1,1,2,3,4,1,2,2],[1,1,2,3,4,2,1,1],[1,1,2,3,4,2,5,5],

 [1,1,2,3,4,5,1,1],[1,1,2,3,4,5,6,6],[1,2,1,1,1,1,2,1],[1,2,1,1,1,1,3,1],

 [1,2,1,1,2,2,1,2],[1,2,1,1,3,3,2,3],[1,2,1,1,3,3,4,3],[1,2,1,2,1,2,1,2],

 [1,2,1,2,2,1,2,1],[1,2,1,2,2,3,2,3],[1,2,1,2,3,1,3,1],[1,2,1,2,3,4,3,4],

 [1,2,1,3,1,3,2,3],[1,2,1,3,1,3,4,3],[1,2,1,3,2,1,3,1],[1,2,1,3,2,4,3,4],

 [1,2,1,3,3,1,2,1],[1,2,1,3,3,1,4,1],[1,2,1,3,3,2,1,2],[1,2,1,3,3,4,2,4],

 [1,2,1,3,3,4,5,4],[1,2,1,3,4,1,2,1],[1,2,1,3,4,1,5,1],[1,2,1,3,4,2,1,2],

 [1,2,1,3,4,5,2,5],[1,2,1,3,4,5,6,5],[1,2,2,1,1,2,2,1],[1,2,2,1,1,3,3,1],

 [1,2,2,1,2,1,1,2],[1,2,2,1,3,2,2,3],[1,2,2,1,3,4,4,3],[1,2,2,2,1,1,1,2],

 [1,2,2,2,2,2,2,1],[1,2,2,2,2,2,2,3],[1,2,2,2,3,3,3,1],[1,2,2,2,3,3,3,4], ...]

 : int list list

9
 - kmul [1,2,3][1,2,3];

val it =

 [[1,2,3,2,3,1,3,1,2],[1,2,3,2,3,1,4,1,2],[1,2,3,2,3,1,3,1,4],

 [1,2,3,2,3,1,4,1,5],[1,2,3,2,3,1,3,4,2],[1,2,3,2,3,1,4,5,2],

 [1,2,3,2,3,1,3,4,5],[1,2,3,2,3,1,4,5,6],[1,2,3,3,1,2,2,3,1],

 [1,2,3,3,1,2,2,4,1],[1,2,3,3,1,2,4,3,1],[1,2,3,3,1,2,4,5,1],

 [1,2,3,3,1,2,2,3,4],[1,2,3,3,1,2,2,4,5],[1,2,3,3,1,2,4,3,5],

 [1,2,3,3,1,2,4,5,6],[1,2,3,2,1,4,3,4,1],[1,2,3,2,1,4,4,3,1],

 [1,2,3,2,1,4,3,5,1],[1,2,3,2,1,4,5,3,1],[1,2,3,2,1,4,4,5,1],

 [1,2,3,2,1,4,5,4,1],[1,2,3,2,1,4,5,6,1],[1,2,3,2,1,4,3,4,2],

 [1,2,3,2,1,4,4,3,2],[1,2,3,2,1,4,3,5,2],[1,2,3,2,1,4,5,3,2],

 [1,2,3,2,1,4,4,5,2],[1,2,3,2,1,4,5,4,2],[1,2,3,2,1,4,5,6,2],

 [1,2,3,2,1,4,3,4,5],[1,2,3,2,1,4,4,3,5],[1,2,3,2,1,4,3,5,6],

 [1,2,3,2,1,4,5,3,6],[1,2,3,2,1,4,4,5,6],[1,2,3,2,1,4,5,4,6],

 [1,2,3,2,1,4,5,6,7],[1,2,3,2,4,1,3,1,2],[1,2,3,2,4,1,4,1,2],

 [1,2,3,2,4,1,5,1,2],[1,2,3,2,4,1,3,1,4],[1,2,3,2,4,1,3,1,5],

 [1,2,3,2,4,1,4,1,5],[1,2,3,2,4,1,5,1,4],[1,2,3,2,4,1,5,1,6],

 [1,2,3,2,4,1,4,3,2],[1,2,3,2,4,1,3,5,2],[1,2,3,2,4,1,5,3,2],

 [1,2,3,2,4,1,4,5,2],[1,2,3,2,4,1,5,6,2],[1,2,3,2,4,1,3,5,4],

 [1,2,3,2,4,1,4,3,5],[1,2,3,2,4,1,5,3,4],[1,2,3,2,4,1,3,5,6],

 [1,2,3,2,4,1,5,3,6],[1,2,3,2,4,1,4,5,6],[1,2,3,2,4,1,5,6,4],

 [1,2,3,2,4,1,5,6,7],[1,2,3,4,1,2,2,3,1],[1,2,3,4,1,2,2,4,1],

 [1,2,3,4,1,2,2,5,1],[1,2,3,4,1,2,3,4,1],[1,2,3,4,1,2,3,5,1],

 [1,2,3,4,1,2,5,3,1],[1,2,3,4,1,2,5,4,1],[1,2,3,4,1,2,5,6,1],

 [1,2,3,4,1,2,2,3,4],[1,2,3,4,1,2,2,3,5],[1,2,3,4,1,2,2,4,5],

 [1,2,3,4,1,2,2,5,4],[1,2,3,4,1,2,2,5,6],[1,2,3,4,1,2,3,4,5],

 [1,2,3,4,1,2,3,5,4],[1,2,3,4,1,2,5,3,4],[1,2,3,4,1,2,3,5,6],

 [1,2,3,4,1,2,5,3,6],[1,2,3,4,1,2,5,4,6],[1,2,3,4,1,2,5,6,4],

 [1,2,3,4,1,2,5,6,7],[1,2,3,3,1,4,2,3,1],[1,2,3,3,1,4,2,4,1],

 [1,2,3,3,1,4,2,5,1],[1,2,3,3,1,4,4,3,1],[1,2,3,3,1,4,5,3,1],

 [1,2,3,3,1,4,4,5,1],[1,2,3,3,1,4,5,4,1],[1,2,3,3,1,4,5,6,1],

 [1,2,3,3,1,4,4,3,2],[1,2,3,3,1,4,2,3,5],[1,2,3,3,1,4,5,3,2],

 [1,2,3,3,1,4,2,4,5],[1,2,3,3,1,4,4,5,2],[1,2,3,3,1,4,5,4,2],

 [1,2,3,3,1,4,2,5,6],[1,2,3,3,1,4,5,6,2],[1,2,3,3,1,4,4,3,5],

 [1,2,3,3,1,4,5,3,6],[1,2,3,3,1,4,4,5,6],[1,2,3,3,1,4,5,4,6],

 [1,2,3,3,1,4,5,6,7],[1,2,3,3,4,1,2,1,4],[1,2,3,3,4,1,4,1,2],

 [1,2,3,3,4,1,2,1,5],[1,2,3,3,4,1,5,1,2],[1,2,3,3,4,1,4,1,5],

 [1,2,3,3,4,1,5,1,4],[1,2,3,3,4,1,5,1,6],[1,2,3,3,4,1,2,3,4],

 [1,2,3,3,4,1,4,3,2],[1,2,3,3,4,1,2,3,5],[1,2,3,3,4,1,5,3,2],

 [1,2,3,3,4,1,2,5,4],[1,2,3,3,4,1,4,5,2],[1,2,3,3,4,1,2,5,6],

 [1,2,3,3,4,1,5,6,2],[1,2,3,3,4,1,4,3,5],[1,2,3,3,4,1,5,3,4],

 [1,2,3,3,4,1,5,3,6],[1,2,3,3,4,1,4,5,6],[1,2,3,3,4,1,5,6,4],

 [1,2,3,3,4,1,5,6,7],[1,2,3,4,3,1,3,1,2],[1,2,3,4,3,1,2,1,4],

 [1,2,3,4,3,1,2,1,5],[1,2,3,4,3,1,5,1,2],[1,2,3,4,3,1,3,1,4],

 [1,2,3,4,3,1,3,1,5],[1,2,3,4,3,1,5,1,4],[1,2,3,4,3,1,5,1,6],

 [1,2,3,4,3,1,3,4,2],[1,2,3,4,3,1,3,5,2],[1,2,3,4,3,1,2,4,5],

 [1,2,3,4,3,1,2,5,4],[1,2,3,4,3,1,5,4,2],[1,2,3,4,3,1,2,5,6],

 [1,2,3,4,3,1,5,6,2],[1,2,3,4,3,1,3,4,5],[1,2,3,4,3,1,3,5,4],

 [1,2,3,4,3,1,3,5,6],[1,2,3,4,3,1,5,4,6],[1,2,3,4,3,1,5,6,4],

 [1,2,3,4,3,1,5,6,7],[1,2,3,4,1,5,2,3,1],[1,2,3,4,1,5,2,4,1],

 [1,2,3,4,1,5,2,5,1],[1,2,3,4,1,5,2,6,1],[1,2,3,4,1,5,3,4,1],

 [1,2,3,4,1,5,3,5,1],[1,2,3,4,1,5,5,3,1],[1,2,3,4,1,5,3,6,1],

 [1,2,3,4,1,5,6,3,1],[1,2,3,4,1,5,5,4,1],[1,2,3,4,1,5,6,4,1],

 [1,2,3,4,1,5,5,6,1],[1,2,3,4,1,5,6,5,1],[1,2,3,4,1,5,6,7,1],

 [1,2,3,4,1,5,2,3,4],[1,2,3,4,1,5,3,4,2],[1,2,3,4,1,5,3,5,2],

 [1,2,3,4,1,5,5,3,2],[1,2,3,4,1,5,2,3,6],[1,2,3,4,1,5,3,6,2],

 [1,2,3,4,1,5,6,3,2],[1,2,3,4,1,5,2,5,4],[1,2,3,4,1,5,5,4,2],

 [1,2,3,4,1,5,2,4,6],[1,2,3,4,1,5,2,6,4],[1,2,3,4,1,5,6,4,2],

 [1,2,3,4,1,5,2,5,6],[1,2,3,4,1,5,5,6,2],[1,2,3,4,1,5,6,5,2],

 [1,2,3,4,1,5,2,6,7],[1,2,3,4,1,5,6,7,2],[1,2,3,4,1,5,3,5,4],

 [1,2,3,4,1,5,5,3,4],[1,2,3,4,1,5,3,4,6],[1,2,3,4,1,5,3,6,4],

 [1,2,3,4,1,5,6,3,4],[1,2,3,4,1,5,3,5,6],[1,2,3,4,1,5,5,3,6],

 [1,2,3,4,1,5,3,6,7],[1,2,3,4,1,5,6,3,7],[1,2,3,4,1,5,5,4,6],

 [1,2,3,4,1,5,5,6,4],[1,2,3,4,1,5,6,5,4],[1,2,3,4,1,5,6,4,7],

 [1,2,3,4,1,5,6,7,4],[1,2,3,4,1,5,5,6,7],[1,2,3,4,1,5,6,5,7],

 [1,2,3,4,1,5,6,7,8],[1,2,3,4,5,1,3,1,2],[1,2,3,4,5,1,2,1,4],

 [1,2,3,4,5,1,2,1,5],[1,2,3,4,5,1,5,1,2],[1,2,3,4,5,1,2,1,6],

 [1,2,3,4,5,1,6,1,2],[1,2,3,4,5,1,3,1,4],[1,2,3,4,5,1,3,1,5],

 [1,2,3,4,5,1,3,1,6],[1,2,3,4,5,1,5,1,4],[1,2,3,4,5,1,6,1,4],

 [1,2,3,4,5,1,5,1,6],[1,2,3,4,5,1,6,1,5],[1,2,3,4,5,1,6,1,7],

 [1,2,3,4,5,1,2,3,4],[1,2,3,4,5,1,3,4,2],[1,2,3,4,5,1,2,3,5],

 [1,2,3,4,5,1,5,3,2],[1,2,3,4,5,1,2,3,6],[1,2,3,4,5,1,3,6,2],

 [1,2,3,4,5,1,6,3,2],[1,2,3,4,5,1,2,4,5],[1,2,3,4,5,1,5,4,2],

 [1,2,3,4,5,1,2,4,6],[1,2,3,4,5,1,2,6,4],[1,2,3,4,5,1,6,4,2],

 [1,2,3,4,5,1,2,6,5],[1,2,3,4,5,1,5,6,2],[1,2,3,4,5,1,2,6,7],

 [1,2,3,4,5,1,6,7,2],[1,2,3,4,5,1,3,4,5],[1,2,3,4,5,1,5,3,4],

 [1,2,3,4,5,1,3,4,6],[1,2,3,4,5,1,3,6,4],[1,2,3,4,5,1,6,3,4],

 [1,2,3,4,5,1,3,6,5],[1,2,3,4,5,1,5,3,6],[1,2,3,4,5,1,6,3,5],

 [1,2,3,4,5,1,3,6,7],[1,2,3,4,5,1,6,3,7],[1,2,3,4,5,1,5,4,6],

 [1,2,3,4,5,1,5,6,4],[1,2,3,4,5,1,6,4,5],[1,2,3,4,5,1,6,4,7],

 [1,2,3,4,5,1,6,7,4],[1,2,3,4,5,1,5,6,7],[1,2,3,4,5,1,6,7,5],

 [1,2,3,4,5,1,6,7,8],[1,2,3,2,3,4,3,1,2],[1,2,3,2,3,4,4,1,2],

 [1,2,3,2,3,4,5,1,2],[1,2,3,2,3,4,3,4,1],[1,2,3,2,3,4,3,1,5],

 [1,2,3,2,3,4,3,5,1],[1,2,3,2,3,4,4,1,5],[1,2,3,2,3,4,4,5,1],

 [1,2,3,2,3,4,5,4,1],[1,2,3,2,3,4,5,1,6],[1,2,3,2,3,4,5,6,1],

 [1,2,3,2,3,4,3,4,2],[1,2,3,2,3,4,3,5,2],[1,2,3,2,3,4,4,5,2],

 [1,2,3,2,3,4,5,4,2],[1,2,3,2,3,4,5,6,2],[1,2,3,2,3,4,3,4,5],

 [1,2,3,2,3,4,3,5,6],[1,2,3,2,3,4,4,5,6],[1,2,3,2,3,4,5,4,6],

 [1,2,3,2,3,4,5,6,7],[1,2,3,3,4,2,2,3,1],[1,2,3,3,4,2,2,1,4],

 [1,2,3,3,4,2,2,1,5],[1,2,3,3,4,2,2,5,1],[1,2,3,3,4,2,4,3,1],

 [1,2,3,3,4,2,5,3,1],[1,2,3,3,4,2,4,1,5],[1,2,3,3,4,2,4,5,1],

 [1,2,3,3,4,2,5,1,4],[1,2,3,3,4,2,5,1,6],[1,2,3,3,4,2,5,6,1],

 [1,2,3,3,4,2,2,3,4],[1,2,3,3,4,2,2,3,5],[1,2,3,3,4,2,2,5,4],

 [1,2,3,3,4,2,2,5,6],[1,2,3,3,4,2,4,3,5],[1,2,3,3,4,2,5,3,4],

 [1,2,3,3,4,2,5,3,6],[1,2,3,3,4,2,4,5,6],[1,2,3,3,4,2,5,6,4],

 [1,2,3,3,4,2,5,6,7],[1,2,3,4,3,2,2,1,4],[1,2,3,4,3,2,2,4,1],

 [1,2,3,4,3,2,2,1,5],[1,2,3,4,3,2,2,5,1],[1,2,3,4,3,2,3,1,4],

 [1,2,3,4,3,2,3,4,1],[1,2,3,4,3,2,3,1,5],[1,2,3,4,3,2,3,5,1],

 [1,2,3,4,3,2,5,1,4],[1,2,3,4,3,2,5,4,1],[1,2,3,4,3,2,5,1,6],

 [1,2,3,4,3,2,5,6,1],[1,2,3,4,3,2,2,4,5],[1,2,3,4,3,2,2,5,4],

 [1,2,3,4,3,2,2,5,6],[1,2,3,4,3,2,3,4,5],[1,2,3,4,3,2,3,5,4],

 [1,2,3,4,3,2,3,5,6],[1,2,3,4,3,2,5,4,6],[1,2,3,4,3,2,5,6,4],

 [1,2,3,4,3,2,5,6,7],[1,2,3,2,4,5,3,1,2],[1,2,3,2,4,5,4,1,2],

 [1,2,3,2,4,5,5,1,2],[1,2,3,2,4,5,6,1,2],[1,2,3,2,4,5,3,1,4],

 [1,2,3,2,4,5,4,3,1],[1,2,3,2,4,5,3,5,1],[1,2,3,2,4,5,5,3,1],

 [1,2,3,2,4,5,3,1,6],[1,2,3,2,4,5,3,6,1],[1,2,3,2,4,5,6,3,1],

 [1,2,3,2,4,5,4,5,1],[1,2,3,2,4,5,5,1,4],[1,2,3,2,4,5,4,1,6],

 [1,2,3,2,4,5,4,6,1],[1,2,3,2,4,5,6,1,4],[1,2,3,2,4,5,5,1,6],

 [1,2,3,2,4,5,5,6,1],[1,2,3,2,4,5,6,5,1],[1,2,3,2,4,5,6,1,7],

 [1,2,3,2,4,5,6,7,1],[1,2,3,2,4,5,4,3,2],[1,2,3,2,4,5,3,5,2],

 [1,2,3,2,4,5,5,3,2],[1,2,3,2,4,5,3,6,2],[1,2,3,2,4,5,6,3,2],

 [1,2,3,2,4,5,4,5,2],[1,2,3,2,4,5,4,6,2],[1,2,3,2,4,5,5,6,2],

 [1,2,3,2,4,5,6,5,2],[1,2,3,2,4,5,6,7,2],[1,2,3,2,4,5,3,5,4],

 [1,2,3,2,4,5,5,3,4],[1,2,3,2,4,5,3,6,4],[1,2,3,2,4,5,4,3,6],

 [1,2,3,2,4,5,6,3,4],[1,2,3,2,4,5,3,5,6],[1,2,3,2,4,5,5,3,6],

 [1,2,3,2,4,5,3,6,7],[1,2,3,2,4,5,6,3,7],[1,2,3,2,4,5,4,5,6],

 [1,2,3,2,4,5,5,6,4],[1,2,3,2,4,5,6,5,4],[1,2,3,2,4,5,4,6,7],

 [1,2,3,2,4,5,6,7,4],[1,2,3,2,4,5,5,6,7],[1,2,3,2,4,5,6,5,7],

 [1,2,3,2,4,5,6,7,8],[1,2,3,4,5,2,2,3,1],[1,2,3,4,5,2,2,1,4],

 [1,2,3,4,5,2,2,4,1],[1,2,3,4,5,2,2,1,5],[1,2,3,4,5,2,2,1,6],

 [1,2,3,4,5,2,2,6,1],[1,2,3,4,5,2,3,1,4],[1,2,3,4,5,2,3,4,1],

 [1,2,3,4,5,2,3,1,5],[1,2,3,4,5,2,5,3,1],[1,2,3,4,5,2,3,1,6],

 [1,2,3,4,5,2,3,6,1],[1,2,3,4,5,2,6,3,1],[1,2,3,4,5,2,5,1,4],

 [1,2,3,4,5,2,5,4,1],[1,2,3,4,5,2,6,1,4],[1,2,3,4,5,2,6,4,1],

 [1,2,3,4,5,2,5,1,6],[1,2,3,4,5,2,5,6,1],[1,2,3,4,5,2,6,1,5],

 [1,2,3,4,5,2,6,1,7],[1,2,3,4,5,2,6,7,1],[1,2,3,4,5,2,2,3,4],

 [1,2,3,4,5,2,2,3,5],[1,2,3,4,5,2,2,3,6],[1,2,3,4,5,2,2,4,5],

 [1,2,3,4,5,2,2,4,6],[1,2,3,4,5,2,2,6,4],[1,2,3,4,5,2,2,6,5],

 [1,2,3,4,5,2,2,6,7],[1,2,3,4,5,2,3,4,5],[1,2,3,4,5,2,5,3,4],

 [1,2,3,4,5,2,3,4,6],[1,2,3,4,5,2,3,6,4],[1,2,3,4,5,2,6,3,4],

 [1,2,3,4,5,2,3,6,5],[1,2,3,4,5,2,5,3,6],[1,2,3,4,5,2,6,3,5],

 [1,2,3,4,5,2,3,6,7],[1,2,3,4,5,2,6,3,7],[1,2,3,4,5,2,5,4,6],

 [1,2,3,4,5,2,5,6,4],[1,2,3,4,5,2,6,4,5],[1,2,3,4,5,2,6,4,7],

 [1,2,3,4,5,2,6,7,4],[1,2,3,4,5,2,5,6,7],[1,2,3,4,5,2,6,7,5],

 [1,2,3,4,5,2,6,7,8],[1,2,3,3,4,5,2,3,1],[1,2,3,3,4,5,2,1,4],

 [1,2,3,3,4,5,4,1,2],[1,2,3,3,4,5,2,5,1],[1,2,3,3,4,5,5,1,2],

 [1,2,3,3,4,5,2,1,6],[1,2,3,3,4,5,2,6,1],[1,2,3,3,4,5,6,1,2],

 [1,2,3,3,4,5,4,3,1],[1,2,3,3,4,5,5,3,1],[1,2,3,3,4,5,6,3,1],

 [1,2,3,3,4,5,4,5,1],[1,2,3,3,4,5,5,1,4],[1,2,3,3,4,5,4,1,6],

 [1,2,3,3,4,5,4,6,1],[1,2,3,3,4,5,6,1,4],[1,2,3,3,4,5,5,1,6],

 [1,2,3,3,4,5,5,6,1],[1,2,3,3,4,5,6,5,1],[1,2,3,3,4,5,6,1,7],

 [1,2,3,3,4,5,6,7,1],[1,2,3,3,4,5,2,3,4],[1,2,3,3,4,5,4,3,2],

 [1,2,3,3,4,5,5,3,2],[1,2,3,3,4,5,2,3,6],[1,2,3,3,4,5,6,3,2],

 [1,2,3,3,4,5,2,5,4],[1,2,3,3,4,5,4,5,2],[1,2,3,3,4,5,2,6,4],

 [1,2,3,3,4,5,4,6,2],[1,2,3,3,4,5,2,5,6],[1,2,3,3,4,5,5,6,2],

 [1,2,3,3,4,5,6,5,2],[1,2,3,3,4,5,2,6,7],[1,2,3,3,4,5,6,7,2],

 [1,2,3,3,4,5,5,3,4],[1,2,3,3,4,5,4,3,6],[1,2,3,3,4,5,6,3,4],

 [1,2,3,3,4,5,5,3,6],[1,2,3,3,4,5,6,3,7],[1,2,3,3,4,5,4,5,6],

 [1,2,3,3,4,5,5,6,4],[1,2,3,3,4,5,6,5,4],[1,2,3,3,4,5,4,6,7],

 [1,2,3,3,4,5,6,7,4],[1,2,3,3,4,5,5,6,7],[1,2,3,3,4,5,6,5,7],

 [1,2,3,3,4,5,6,7,8],[1,2,3,4,3,5,3,1,2],[1,2,3,4,3,5,2,1,4],

 [1,2,3,4,3,5,2,4,1],[1,2,3,4,3,5,2,5,1],[1,2,3,4,3,5,5,1,2],

 [1,2,3,4,3,5,2,1,6],[1,2,3,4,3,5,2,6,1],[1,2,3,4,3,5,6,1,2],

 [1,2,3,4,3,5,3,1,4],[1,2,3,4,3,5,3,4,1],[1,2,3,4,3,5,3,5,1],

 [1,2,3,4,3,5,3,1,6],[1,2,3,4,3,5,3,6,1],[1,2,3,4,3,5,5,1,4],

 [1,2,3,4,3,5,5,4,1],[1,2,3,4,3,5,6,1,4],[1,2,3,4,3,5,6,4,1],

 [1,2,3,4,3,5,5,1,6],[1,2,3,4,3,5,5,6,1],[1,2,3,4,3,5,6,5,1],

 [1,2,3,4,3,5,6,1,7],[1,2,3,4,3,5,6,7,1],[1,2,3,4,3,5,3,4,2],

 [1,2,3,4,3,5,3,5,2],[1,2,3,4,3,5,3,6,2],[1,2,3,4,3,5,2,5,4],

 [1,2,3,4,3,5,5,4,2],[1,2,3,4,3,5,2,4,6],[1,2,3,4,3,5,2,6,4],

 [1,2,3,4,3,5,6,4,2],[1,2,3,4,3,5,2,5,6],[1,2,3,4,3,5,5,6,2],

 [1,2,3,4,3,5,6,5,2],[1,2,3,4,3,5,2,6,7],[1,2,3,4,3,5,6,7,2],

 [1,2,3,4,3,5,3,5,4],[1,2,3,4,3,5,3,4,6],[1,2,3,4,3,5,3,6,4],

 [1,2,3,4,3,5,3,5,6],[1,2,3,4,3,5,3,6,7],[1,2,3,4,3,5,5,4,6],

 [1,2,3,4,3,5,5,6,4],[1,2,3,4,3,5,6,5,4],[1,2,3,4,3,5,6,4,7],

 [1,2,3,4,3,5,6,7,4],[1,2,3,4,3,5,5,6,7],[1,2,3,4,3,5,6,5,7],

 [1,2,3,4,3,5,6,7,8],[1,2,3,4,5,6,2,3,1],[1,2,3,4,5,6,3,1,2],

 [1,2,3,4,5,6,2,1,4],[1,2,3,4,5,6,2,4,1],[1,2,3,4,5,6,2,1,5],

 [1,2,3,4,5,6,5,1,2],[1,2,3,4,5,6,2,6,1],[1,2,3,4,5,6,6,1,2],

 [1,2,3,4,5,6,2,1,7],[1,2,3,4,5,6,2,7,1],[1,2,3,4,5,6,7,1,2],

 [1,2,3,4,5,6,3,1,4],[1,2,3,4,5,6,3,4,1],[1,2,3,4,5,6,3,1,5],

 [1,2,3,4,5,6,5,3,1],[1,2,3,4,5,6,3,6,1],[1,2,3,4,5,6,6,3,1],

 [1,2,3,4,5,6,3,1,7],[1,2,3,4,5,6,3,7,1],[1,2,3,4,5,6,7,3,1],

 [1,2,3,4,5,6,5,1,4],[1,2,3,4,5,6,5,4,1],[1,2,3,4,5,6,6,1,4],

 [1,2,3,4,5,6,6,4,1],[1,2,3,4,5,6,7,1,4],[1,2,3,4,5,6,7,4,1],

 [1,2,3,4,5,6,5,6,1],[1,2,3,4,5,6,6,1,5],[1,2,3,4,5,6,5,1,7],

 [1,2,3,4,5,6,5,7,1],[1,2,3,4,5,6,7,1,5],[1,2,3,4,5,6,6,1,7],

 [1,2,3,4,5,6,6,7,1],[1,2,3,4,5,6,7,6,1],[1,2,3,4,5,6,7,1,8],

 [1,2,3,4,5,6,7,8,1],[1,2,3,4,5,6,2,3,4],[1,2,3,4,5,6,3,4,2],

 [1,2,3,4,5,6,2,3,5],[1,2,3,4,5,6,5,3,2],[1,2,3,4,5,6,3,6,2],

 [1,2,3,4,5,6,6,3,2],[1,2,3,4,5,6,2,3,7],[1,2,3,4,5,6,3,7,2],

 [1,2,3,4,5,6,7,3,2],[1,2,3,4,5,6,2,4,5],[1,2,3,4,5,6,5,4,2],

 [1,2,3,4,5,6,2,6,4],[1,2,3,4,5,6,6,4,2],[1,2,3,4,5,6,2,4,7],

 [1,2,3,4,5,6,2,7,4],[1,2,3,4,5,6,7,4,2],[1,2,3,4,5,6,2,6,5],

 [1,2,3,4,5,6,5,6,2],[1,2,3,4,5,6,2,7,5],[1,2,3,4,5,6,5,7,2],

 [1,2,3,4,5,6,2,6,7],[1,2,3,4,5,6,6,7,2],[1,2,3,4,5,6,7,6,2],

 [1,2,3,4,5,6,2,7,8],[1,2,3,4,5,6,7,8,2],[1,2,3,4,5,6,3,4,5],

 [1,2,3,4,5,6,5,3,4],[1,2,3,4,5,6,3,6,4],[1,2,3,4,5,6,6,3,4],

 [1,2,3,4,5,6,3,4,7],[1,2,3,4,5,6,3,7,4],[1,2,3,4,5,6,7,3,4],

 [1,2,3,4,5,6,3,6,5],[1,2,3,4,5,6,6,3,5],[1,2,3,4,5,6,3,7,5],

 [1,2,3,4,5,6,5,3,7],[1,2,3,4,5,6,7,3,5],[1,2,3,4,5,6,3,6,7],

 [1,2,3,4,5,6,6,3,7],[1,2,3,4,5,6,3,7,8],[1,2,3,4,5,6,7,3,8],

 [1,2,3,4,5,6,5,6,4],[1,2,3,4,5,6,6,4,5],[1,2,3,4,5,6,5,4,7],

 [1,2,3,4,5,6,5,7,4],[1,2,3,4,5,6,7,4,5],[1,2,3,4,5,6,6,4,7],

 [1,2,3,4,5,6,6,7,4],[1,2,3,4,5,6,7,6,4],[1,2,3,4,5,6,7,4,8],

 [1,2,3,4,5,6,7,8,4],[1,2,3,4,5,6,5,6,7],[1,2,3,4,5,6,6,7,5],

 [1,2,3,4,5,6,7,6,5],[1,2,3,4,5,6,5,7,8],[1,2,3,4,5,6,7,8,5],

 [1,2,3,4,5,6,6,7,8],[1,2,3,4,5,6,7,6,8],[1,2,3,4,5,6,7,8,9]]

 : int list list

- kmul [1,2,2][1,2,3,1];

val it =

 [[1,2,2,2,1,1,3,4,4,1,2,2],[1,2,2,3,1,1,2,3,3,1,2,2],

 [1,2,2,3,1,1,2,4,4,1,2,2],[1,2,2,3,1,1,4,3,3,1,2,2],

 [1,2,2,3,1,1,4,5,5,1,2,2],[1,2,2,2,3,3,3,1,1,1,2,2],

 [1,2,2,2,3,3,4,1,1,1,2,2],[1,2,2,2,3,3,3,4,4,1,2,2],

 [1,2,2,2,3,3,4,5,5,1,2,2],[1,2,2,3,4,4,2,1,1,1,2,2],

 [1,2,2,3,4,4,4,1,1,1,2,2],[1,2,2,3,4,4,5,1,1,1,2,2],

 [1,2,2,3,4,4,2,3,3,1,2,2],[1,2,2,3,4,4,2,5,5,1,2,2],

 [1,2,2,3,4,4,4,3,3,1,2,2],[1,2,2,3,4,4,5,3,3,1,2,2],

 [1,2,2,3,4,4,4,5,5,1,2,2],[1,2,2,3,4,4,5,6,6,1,2,2]] : int list list

- kmul [1,2,2,1][1,2,3,3,1,4];

val it =

 [[1,2,2,1,2,1,1,2,3,4,4,3,3,4,4,3,1,2,2,1,4,3,3,4],

 [1,2,2,1,2,1,1,2,3,4,4,3,3,4,4,3,1,2,2,1,5,3,3,5],

 [1,2,2,1,2,1,1,2,3,4,4,3,3,4,4,3,1,2,2,1,4,5,5,4],

 [1,2,2,1,2,1,1,2,3,4,4,3,3,4,4,3,1,2,2,1,5,6,6,5],

 [1,2,2,1,3,1,1,3,2,3,3,2,2,3,3,2,1,2,2,1,4,5,5,4],

 [1,2,2,1,3,1,1,3,2,4,4,2,2,4,4,2,1,2,2,1,4,3,3,4],

 [1,2,2,1,3,1,1,3,2,4,4,2,2,4,4,2,1,2,2,1,5,3,3,5],

 [1,2,2,1,3,1,1,3,2,4,4,2,2,4,4,2,1,2,2,1,4,5,5,4],

 [1,2,2,1,3,1,1,3,2,4,4,2,2,4,4,2,1,2,2,1,5,6,6,5],

 [1,2,2,1,3,1,1,3,4,3,3,4,4,3,3,4,1,2,2,1,2,4,4,2],

 [1,2,2,1,3,1,1,3,4,3,3,4,4,3,3,4,1,2,2,1,2,5,5,2],

 [1,2,2,1,3,1,1,3,4,3,3,4,4,3,3,4,1,2,2,1,5,4,4,5],

 [1,2,2,1,3,1,1,3,4,3,3,4,4,3,3,4,1,2,2,1,5,6,6,5],

 [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,2,3,3,2],

 [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,2,4,4,2],

 [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,2,6,6,2],

 [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,5,3,3,5],

 [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,6,3,3,6],

 [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,5,4,4,5],

 [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,6,4,4,6],

 [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,5,6,6,5],

 [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,6,7,7,6],

 [1,2,2,1,2,3,3,2,3,1,1,3,3,1,1,3,1,2,2,1,4,5,5,4],

 [1,2,2,1,2,3,3,2,4,1,1,4,4,1,1,4,1,2,2,1,3,4,4,3],

 [1,2,2,1,2,3,3,2,4,1,1,4,4,1,1,4,1,2,2,1,3,5,5,3],

 [1,2,2,1,2,3,3,2,4,1,1,4,4,1,1,4,1,2,2,1,5,4,4,5],

 [1,2,2,1,2,3,3,2,4,1,1,4,4,1,1,4,1,2,2,1,5,6,6,5],

 [1,2,2,1,2,3,3,2,3,4,4,3,3,4,4,3,1,2,2,1,4,1,1,4],

 [1,2,2,1,2,3,3,2,3,4,4,3,3,4,4,3,1,2,2,1,5,1,1,5],

 [1,2,2,1,2,3,3,2,3,4,4,3,3,4,4,3,1,2,2,1,4,5,5,4],

 [1,2,2,1,2,3,3,2,3,4,4,3,3,4,4,3,1,2,2,1,5,6,6,5],

 [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,3,1,1,3],

 [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,5,1,1,5],

 [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,6,1,1,6],

 [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,3,4,4,3],

 [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,3,6,6,3],

 [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,5,4,4,5],

 [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,6,4,4,6],

 [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,5,6,6,5],

 [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,6,7,7,6],

 [1,2,2,1,3,4,4,3,2,1,1,2,2,1,1,2,1,2,2,1,4,3,3,4],

 [1,2,2,1,3,4,4,3,2,1,1,2,2,1,1,2,1,2,2,1,5,3,3,5],

 [1,2,2,1,3,4,4,3,2,1,1,2,2,1,1,2,1,2,2,1,4,5,5,4],

 [1,2,2,1,3,4,4,3,2,1,1,2,2,1,1,2,1,2,2,1,5,6,6,5],

 [1,2,2,1,3,4,4,3,4,1,1,4,4,1,1,4,1,2,2,1,2,3,3,2],

 [1,2,2,1,3,4,4,3,4,1,1,4,4,1,1,4,1,2,2,1,2,5,5,2],

 [1,2,2,1,3,4,4,3,4,1,1,4,4,1,1,4,1,2,2,1,5,3,3,5],

 [1,2,2,1,3,4,4,3,4,1,1,4,4,1,1,4,1,2,2,1,5,6,6,5],

 [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,2,3,3,2],

 [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,2,5,5,2],

 [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,2,6,6,2],

 [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,4,3,3,4],

 [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,6,3,3,6],

 [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,4,5,5,4],

 [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,4,6,6,4],

 [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,6,5,5,6],

 [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,6,7,7,6],

 [1,2,2,1,3,4,4,3,2,3,3,2,2,3,3,2,1,2,2,1,4,1,1,4],

 [1,2,2,1,3,4,4,3,2,3,3,2,2,3,3,2,1,2,2,1,5,1,1,5],

 [1,2,2,1,3,4,4,3,2,3,3,2,2,3,3,2,1,2,2,1,4,5,5,4],

 [1,2,2,1,3,4,4,3,2,3,3,2,2,3,3,2,1,2,2,1,5,6,6,5],

 [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,4,1,1,4],

 [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,5,1,1,5],

 [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,6,1,1,6],

 [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,4,3,3,4],

 [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,5,3,3,5],

 [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,6,3,3,6],

 [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,4,6,6,4],

 [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,5,6,6,5],

 [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,6,7,7,6],

 [1,2,2,1,3,4,4,3,4,3,3,4,4,3,3,4,1,2,2,1,2,1,1,2],

 [1,2,2,1,3,4,4,3,4,3,3,4,4,3,3,4,1,2,2,1,5,1,1,5],

 [1,2,2,1,3,4,4,3,4,3,3,4,4,3,3,4,1,2,2,1,2,5,5,2],

 [1,2,2,1,3,4,4,3,4,3,3,4,4,3,3,4,1,2,2,1,5,6,6,5],

 [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,2,1,1,2],

 [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,4,1,1,4],

 [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,6,1,1,6],

 [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,2,5,5,2],

 [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,2,6,6,2],

 [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,4,5,5,4],

 [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,4,6,6,4],

 [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,6,5,5,6],

 [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,6,7,7,6],

 [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,2,1,1,2],

 [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,5,1,1,5],

 [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,6,1,1,6],

 [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,2,3,3,2],

 [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,2,6,6,2],

 [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,5,3,3,5],

 [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,6,3,3,6],

 [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,5,6,6,5],

 [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,6,7,7,6],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,2,1,1,2],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,4,1,1,4],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,6,1,1,6],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,7,1,1,7],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,2,3,3,2],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,2,5,5,2],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,2,7,7,2],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,4,3,3,4],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,6,3,3,6],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,7,3,3,7],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,4,5,5,4],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,4,7,7,4],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,6,5,5,6],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,7,5,5,7],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,6,7,7,6],

 [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,7,8,8,7]] : int list list

length it;

val it = 108 : int

13
 Programming

The calculation of the examples for nfirstq, kconcat, kmul, etc. are based on the SML/NJ-program All.sml.

For programmers it will be easy to run the SML/NJ- program All.sml and others.

For non-programmers it might be a challenge to try to install the stuff on an actual machine.

The package runs well on a NeXT machine with SML/NJ v.0.9.8, Feb 11, 1993

Sources are at:

http://www.thinkartlab.com/pkl/SML-sources.NJ/All.sml

http://www.thinkartlab.com/pkl/pcl-lab.htm

http://www.thinkartlab.com/pkl/tm/mg-buch.htm

 Finally, the file: ALL-MG-nov2012.sml, will run on all SML/NJ versions higher 110.40.

http://www.thinkartlab.com/pkl/SML-sources.NJ/ALL-MG-nov2012.sml

Downloads

System SML/NJ: http://www.smlnj.org/

Morphogrammatics: http://www.thinkartlab.com/pkl/SML-sources.NJ/ALL-MG-nov2012.sml

Book Morphogrammatik: http://www.thinkartlab.com/pkl/media/mg-book.pdf

14
 http://www.cs.bham.ac.uk/~sjv/teaching/models/handout1.pdf

http://www.cs.jhu.edu/~jason/465/PDFSlides/lect17-fsmbuild.pdf

http://www.cs.brown.edu/~jes/book/pdfs/ModelsOfComputation_Chapter4.pdf

www.mgt.ncu.edu.tw/~ylchen/dismath/chap06.ppt

http://www.eecs.berkeley.edu/~bh/v3ch1/fsm.html

http://www.mmnt.net/db/0/0/ftp5.gwdg.de/pub/languages/funet.fi/ml/sml/75

ftp://ftp.cis.upenn.edu/pub/sml%23/smlnj.readme

15
 - kconcat [1,2][1,2,3,1];

val it =

 [[1,2,1,2,3,1],[1,2,1,3,2,1],[1,2,2,1,3,2],[1,2,2,3,1,2],[1,2,3,1,2,3],

 [1,2,3,2,1,3],[1,2,1,3,4,1],[1,2,3,1,4,3],[1,2,3,4,1,3],[1,2,2,3,4,2],

 [1,2,3,2,4,3],[1,2,3,4,2,3],[1,2,3,4,5,3]] : int list list

- kconcat [1,2,3][1,2,3];

val it =

 [[1,2,3,1,2,3],[1,2,3,1,3,2],[1,2,3,2,1,3],[1,2,3,2,3,1],[1,2,3,3,1,2],

 [1,2,3,3,2,1],[1,2,3,1,2,4],[1,2,3,1,4,2],[1,2,3,2,1,4],[1,2,3,2,4,1],

 [1,2,3,4,1,2],[1,2,3,4,2,1],[1,2,3,1,3,4],[1,2,3,1,4,3],[1,2,3,3,1,4],

 [1,2,3,3,4,1],[1,2,3,4,1,3],[1,2,3,4,3,1],[1,2,3,1,4,5],[1,2,3,4,1,5],

 [1,2,3,4,5,1],[1,2,3,2,3,4],[1,2,3,2,4,3],[1,2,3,3,2,4],[1,2,3,3,4,2],

 [1,2,3,4,2,3],[1,2,3,4,3,2],[1,2,3,2,4,5],[1,2,3,4,2,5],[1,2,3,4,5,2],

 [1,2,3,3,4,5],[1,2,3,4,3,5],[1,2,3,4,5,3],[1,2,3,4,5,6]] : int list list

- kconcat[1,2,3] [1,2,3,4];

val it =

 [[1,2,3,1,2,3,4],[1,2,3,1,2,4,3],[1,2,3,1,3,2,4],[1,2,3,1,3,4,2],

 [1,2,3,1,4,2,3],[1,2,3,1,4,3,2],[1,2,3,2,1,3,4],[1,2,3,2,1,4,3],

 [1,2,3,2,3,1,4],[1,2,3,2,3,4,1],[1,2,3,2,4,1,3],[1,2,3,2,4,3,1],

 [1,2,3,3,1,2,4],[1,2,3,3,1,4,2],[1,2,3,3,2,1,4],[1,2,3,3,2,4,1],

 [1,2,3,3,4,1,2],[1,2,3,3,4,2,1],[1,2,3,4,1,2,3],[1,2,3,4,1,3,2],

 [1,2,3,4,2,1,3],[1,2,3,4,2,3,1],[1,2,3,4,3,1,2],[1,2,3,4,3,2,1],

 [1,2,3,1,2,4,5],[1,2,3,1,4,2,5],[1,2,3,1,4,5,2],[1,2,3,2,1,4,5],

 [1,2,3,2,4,1,5],[1,2,3,2,4,5,1],[1,2,3,4,1,2,5],[1,2,3,4,1,5,2],

 [1,2,3,4,2,1,5],[1,2,3,4,2,5,1],[1,2,3,4,5,1,2],[1,2,3,4,5,2,1],

 [1,2,3,1,3,4,5],[1,2,3,1,4,3,5],[1,2,3,1,4,5,3],[1,2,3,3,1,4,5],

 [1,2,3,3,4,1,5],[1,2,3,3,4,5,1],[1,2,3,4,1,3,5],[1,2,3,4,1,5,3],

 [1,2,3,4,3,1,5],[1,2,3,4,3,5,1],[1,2,3,4,5,1,3],[1,2,3,4,5,3,1],

 [1,2,3,1,4,5,6],[1,2,3,4,1,5,6],[1,2,3,4,5,1,6],[1,2,3,4,5,6,1],

 [1,2,3,2,3,4,5],[1,2,3,2,4,3,5],[1,2,3,2,4,5,3],[1,2,3,3,2,4,5],

 [1,2,3,3,4,2,5],[1,2,3,3,4,5,2],[1,2,3,4,2,3,5],[1,2,3,4,2,5,3],

 [1,2,3,4,3,2,5],[1,2,3,4,3,5,2],[1,2,3,4,5,2,3],[1,2,3,4,5,3,2],

 [1,2,3,2,4,5,6],[1,2,3,4,2,5,6],[1,2,3,4,5,2,6],[1,2,3,4,5,6,2],

 [1,2,3,3,4,5,6],[1,2,3,4,3,5,6],[1,2,3,4,5,3,6],[1,2,3,4,5,6,3],

 [1,2,3,4,5,6,7]] : int list list

16
 - allFCs 4;

val it =

 [[C,C,C,C,C,C],[C,F,F,C,F,F],[F,F,C,F,C,F],[F,C,F,F,F,C],[C,C,C,F,F,F],

 [C,F,F,F,C,C],[F,F,C,C,F,C],[F,C,F,C,C,F],[C,F,F,F,F,F],[F,F,C,F,F,F],

 [F,F,F,F,F,C],[F,C,F,F,F,F],[F,F,F,F,C,F],[F,F,F,C,F,F],[F,F,F,F,F,F]]

 : fc list list

- allFCs 5;

val it =

 [[C,C,C,C,C,C,C,C,C,C],[C,C,C,F,F,F,C,F,F,F],[C,F,F,F,C,C,F,C,F,F],

 [C,F,F,C,F,F,F,F,C,C],[F,F,C,C,F,C,F,F,C,F],[F,F,C,F,C,F,F,C,F,C],

 [F,C,F,F,F,C,C,F,F,C],[F,C,F,C,C,F,F,F,F,C],[F,C,F,F,F,C,F,C,C,F],

 [F,F,C,F,C,F,C,F,C,F],[C,F,F,C,F,F,C,C,F,F],[C,C,C,C,C,C,F,F,F,F],

 [C,C,C,F,F,F,F,C,C,C],[C,F,F,F,C,C,C,F,C,C],[F,F,C,C,F,C,C,C,F,C],

 [F,C,F,C,C,F,C,C,C,F],[C,F,F,C,F,F,F,F,F,F],[C,F,F,F,F,F,F,C,F,F],

 [C,F,F,F,F,F,C,F,F,F],[F,F,C,F,C,F,F,F,F,F],[F,F,C,F,F,F,F,F,C,F],

 [F,C,F,F,F,C,F,F,F,F],[F,C,F,F,F,F,F,F,F,C],[F,F,F,F,F,C,F,F,C,F],

 [F,F,F,F,C,F,F,F,F,C],[F,F,C,F,F,F,C,F,F,F],[F,F,F,F,F,C,F,C,F,F],

 [F,F,F,C,F,F,F,F,F,C],[F,C,F,F,F,F,C,F,F,F],[F,F,F,F,C,F,F,C,F,F],

 [F,F,F,C,F,F,F,F,C,F],[C,C,C,F,F,F,F,F,F,F],[C,F,F,F,C,C,F,F,F,F],

 [C,F,F,F,F,F,F,F,C,C],[F,F,C,C,F,C,F,F,F,F],[F,F,C,F,F,F,F,C,F,C],

 [F,F,F,F,F,C,C,F,F,C],[F,C,F,C,C,F,F,F,F,F],[F,C,F,F,F,F,F,C,C,F],

 [F,F,F,F,C,F,C,F,C,F],[F,F,F,C,F,F,C,C,F,F],[C,F,F,F,F,F,F,F,F,F],

 [F,F,C,F,F,F,F,F,F,F],[F,F,F,F,F,C,F,F,F,F],[F,F,F,F,F,F,F,F,F,C],

 [F,C,F,F,F,F,F,F,F,F],[F,F,F,F,C,F,F,F,F,F],[F,F,F,F,F,F,F,F,C,F],

 [F,F,F,C,F,F,F,F,F,F],[F,F,F,F,F,F,F,C,F,F],[F,F,F,F,F,F,C,F,F,F],

 [F,F,F,F,F,F,F,F,F,F]] : fc list list

- allFCs 6;

val it =

 [[C,C,C,C,C,C,C,C,C,C,C,C,C,C,C],[C,C,C,F,F,F,C,F,F,F,C,C,F,F,F],

 [C,F,F,F,C,C,F,C,F,F,C,F,C,F,F],[C,F,F,C,F,F,F,F,C,C,F,C,C,F,F],

 [C,F,F,C,F,F,C,C,F,F,F,F,F,C,C],[F,F,C,C,F,C,F,F,C,F,C,F,F,C,F],

 [F,F,C,F,C,F,F,C,F,C,F,C,F,C,F],[F,F,C,F,C,F,C,F,C,F,F,F,C,F,C],

 [F,C,F,F,F,C,C,F,F,C,F,F,C,C,F],[F,C,F,F,F,C,F,C,C,F,F,C,F,F,C],

 [F,C,F,C,C,F,F,F,F,C,C,F,F,F,C],[C,C,C,C,C,C,F,F,F,F,C,F,F,F,F],

 [C,C,C,F,F,F,F,C,C,C,F,C,F,F,F],[C,C,C,F,F,F,C,F,F,F,F,F,C,C,C],

 [C,F,F,F,C,C,C,F,C,C,F,F,C,F,F],[C,F,F,F,C,C,F,C,F,F,F,C,F,C,C],

 [C,F,F,C,F,F,F,F,C,C,C,F,F,C,C],[F,F,C,C,F,C,C,C,F,C,F,F,F,C,F],

 [F,F,C,C,F,C,F,F,C,F,F,C,C,F,C],[F,F,C,F,C,F,F,C,F,C,C,F,C,F,C],

 [F,C,F,F,F,C,C,F,F,C,C,C,F,F,C],[F,C,F,C,C,F,C,C,C,F,F,F,F,F,C],

 [F,C,F,C,C,F,F,F,F,C,F,C,C,C,F],[F,C,F,F,F,C,F,C,C,F,C,F,C,C,F],

 [F,F,C,F,C,F,C,F,C,F,C,C,F,C,F],[C,F,F,C,F,F,C,C,F,F,C,C,C,F,F],

 [C,C,C,C,C,C,C,C,C,C,F,F,F,F,F],[C,C,C,C,C,C,F,F,F,F,F,C,C,C,C],

 [C,C,C,F,F,F,F,C,C,C,C,F,C,C,C],[C,F,F,F,C,C,C,F,C,C,C,C,F,C,C],

 [F,F,C,C,F,C,C,C,F,C,C,C,C,F,C],[F,C,F,C,C,F,C,C,C,F,C,C,C,C,F],

 [C,F,F,C,F,F,F,F,F,F,C,F,F,F,F],[C,F,F,F,F,F,F,C,F,F,F,C,F,F,F],

 [C,F,F,F,F,F,C,F,F,F,F,F,C,F,F],[F,F,C,F,C,F,F,F,F,F,C,F,F,F,F],

 [F,F,C,F,F,F,F,F,C,F,F,C,F,F,F],[F,F,C,F,F,F,C,F,F,F,F,F,F,C,F],

 [F,C,F,F,F,C,F,F,F,F,C,F,F,F,F],[F,C,F,F,F,F,F,F,F,C,F,C,F,F,F],

 [F,C,F,F,F,F,C,F,F,F,F,F,F,F,C],[F,F,F,F,F,C,F,F,C,F,F,F,C,F,F],

 [F,F,F,F,F,C,F,C,F,F,F,F,F,C,F],[F,F,F,F,C,F,F,F,F,C,F,F,C,F,F],

 [F,F,F,F,C,F,F,C,F,F,F,F,F,F,C],[F,F,F,C,F,F,F,F,F,C,F,F,F,C,F],

 [F,F,F,C,F,F,F,F,C,F,F,F,F,F,C],[C,C,C,F,F,F,C,F,F,F,F,F,F,F,F],

 [C,C,C,F,F,F,F,F,F,F,F,C,F,F,F],[C,C,C,F,F,F,F,F,F,F,C,F,F,F,F],

 [C,F,F,F,C,C,F,C,F,F,F,F,F,F,F],[C,F,F,F,C,C,F,F,F,F,F,F,C,F,F],

 [C,F,F,C,F,F,F,F,C,C,F,F,F,F,F],[C,F,F,C,F,F,F,F,F,F,F,F,F,C,C],

 [C,F,F,F,F,F,F,F,C,C,F,F,C,F,F],[C,F,F,F,F,F,F,C,F,F,F,F,F,C,C],

 [C,F,F,F,C,C,F,F,F,F,C,F,F,F,F],[C,F,F,F,F,F,F,F,C,C,F,C,F,F,F],

 [C,F,F,F,F,F,C,F,F,F,F,F,F,C,C],[F,F,C,C,F,C,F,F,C,F,F,F,F,F,F],

 [F,F,C,C,F,C,F,F,F,F,F,F,F,C,F],[F,F,C,F,C,F,F,C,F,C,F,F,F,F,F],

 [F,F,C,F,C,F,F,F,F,F,F,F,C,F,C],[F,F,C,F,F,F,F,C,F,C,F,F,F,C,F],

 [F,F,C,F,F,F,F,F,C,F,F,F,C,F,C],[F,C,F,F,F,C,C,F,F,C,F,F,F,F,F],

 [F,C,F,F,F,C,F,F,F,F,F,C,F,F,C],[F,C,F,F,F,F,F,F,F,C,C,F,F,F,C],

 [F,F,F,F,F,C,C,F,F,C,F,F,F,C,F],[F,F,F,F,F,C,F,F,C,F,F,C,F,F,C],

 [F,F,F,F,C,F,F,F,F,C,C,F,F,F,C],[F,F,C,C,F,C,F,F,F,F,C,F,F,F,F],

 [F,F,C,F,F,F,F,C,F,C,F,C,F,F,F],[F,F,C,F,F,F,C,F,F,F,F,F,C,F,C],

 [F,F,F,F,F,C,C,F,F,C,F,F,C,F,F],[F,F,F,F,F,C,F,C,F,F,F,C,F,F,C],

 [F,F,F,C,F,F,F,F,F,C,C,F,F,F,C],[F,C,F,C,C,F,F,F,F,C,F,F,F,F,F],

 [F,C,F,C,C,F,F,F,F,F,F,F,F,F,C],[F,C,F,F,F,C,F,C,C,F,F,F,F,F,F],

 [F,C,F,F,F,C,F,F,F,F,F,F,C,C,F],[F,C,F,F,F,F,F,C,C,F,F,F,F,F,C],

 [F,C,F,F,F,F,F,F,F,C,F,F,C,C,F],[F,F,C,F,C,F,C,F,C,F,F,F,F,F,F],

 [F,F,C,F,C,F,F,F,F,F,F,C,F,C,F],[F,F,C,F,F,F,F,F,C,F,C,F,F,C,F],

 [F,F,F,F,C,F,C,F,C,F,F,F,F,F,C],[F,F,F,F,C,F,F,F,F,C,F,C,F,C,F],

 [F,F,F,F,F,C,F,F,C,F,C,F,F,C,F],[C,F,F,C,F,F,C,C,F,F,F,F,F,F,F],

 [C,F,F,C,F,F,F,F,F,F,F,C,C,F,F],[C,F,F,F,F,F,F,C,F,F,C,F,C,F,F],

 [C,F,F,F,F,F,C,F,F,F,C,C,F,F,F],[F,F,F,C,F,F,C,C,F,F,F,F,F,F,C],

 [F,F,F,C,F,F,F,F,F,C,F,C,C,F,F],[F,F,F,F,F,C,F,C,F,F,C,F,C,F,F],

 [F,F,C,F,F,F,C,F,F,F,C,C,F,F,F],[F,C,F,C,C,F,F,F,F,F,C,F,F,F,F],

 [F,C,F,F,F,F,F,C,C,F,F,C,F,F,F],[F,C,F,F,F,F,C,F,F,F,F,F,C,C,F],

 [F,F,F,F,C,F,C,F,C,F,F,F,C,F,F],[F,F,F,F,C,F,F,C,F,F,F,C,F,C,F],

 [F,F,F,C,F,F,F,F,C,F,C,F,F,C,F],[F,F,F,C,F,F,C,C,F,F,F,F,F,C,F],

 [F,F,F,C,F,F,F,F,C,F,F,C,C,F,F],[F,F,F,F,C,F,F,C,F,F,C,F,C,F,F],

 [F,C,F,F,F,F,C,F,F,F,C,C,F,F,F],[C,C,C,C,C,C,F,F,F,F,F,F,F,F,F],

 [C,C,C,F,F,F,F,C,C,C,F,F,F,F,F],[C,C,C,F,F,F,F,F,F,F,F,F,C,C,C],

 [C,F,F,F,C,C,C,F,C,C,F,F,F,F,F],[C,F,F,F,C,C,F,F,F,F,F,C,F,C,C],

 [C,F,F,F,F,F,F,F,C,C,C,F,F,C,C],[F,F,C,C,F,C,C,C,F,C,F,F,F,F,F],

 [F,F,C,C,F,C,F,F,F,F,F,C,C,F,C],[F,F,C,F,F,F,F,C,F,C,C,F,C,F,C],

 [F,F,F,F,F,C,C,F,F,C,C,C,F,F,C],[F,C,F,C,C,F,C,C,C,F,F,F,F,F,F],

 [F,C,F,C,C,F,F,F,F,F,F,C,C,C,F],[F,C,F,F,F,F,F,C,C,F,C,F,C,C,F],

 [F,F,F,F,C,F,C,F,C,F,C,C,F,C,F],[F,F,F,C,F,F,C,C,F,F,C,C,C,F,F],

 [C,F,F,C,F,F,F,F,F,F,F,F,F,F,F],[C,F,F,F,F,F,F,C,F,F,F,F,F,F,F],

 [C,F,F,F,F,F,F,F,F,F,F,F,C,F,F],[C,F,F,F,F,F,C,F,F,F,F,F,F,F,F],

 [C,F,F,F,F,F,F,F,F,F,F,C,F,F,F],[C,F,F,F,F,F,F,F,F,F,C,F,F,F,F],

 [F,F,C,F,C,F,F,F,F,F,F,F,F,F,F],[F,F,C,F,F,F,F,F,C,F,F,F,F,F,F],

 [F,F,C,F,F,F,F,F,F,F,F,F,F,C,F],[F,C,F,F,F,C,F,F,F,F,F,F,F,F,F],

 [F,C,F,F,F,F,F,F,F,C,F,F,F,F,F],[F,C,F,F,F,F,F,F,F,F,F,F,F,F,C],

 [F,F,F,F,F,C,F,F,C,F,F,F,F,F,F],[F,F,F,F,F,C,F,F,F,F,F,F,F,C,F],

 [F,F,F,F,C,F,F,F,F,C,F,F,F,F,F],[F,F,F,F,C,F,F,F,F,F,F,F,F,F,C],

 [F,F,F,F,F,F,F,F,F,C,F,F,F,C,F],[F,F,F,F,F,F,F,F,C,F,F,F,F,F,C],

 [F,F,C,F,F,F,C,F,F,F,F,F,F,F,F],[F,F,C,F,F,F,F,F,F,F,F,C,F,F,F],

 [F,F,C,F,F,F,F,F,F,F,C,F,F,F,F],[F,F,F,F,F,C,F,C,F,F,F,F,F,F,F],

 [F,F,F,F,F,C,F,F,F,F,F,F,C,F,F],[F,F,F,C,F,F,F,F,F,C,F,F,F,F,F],

 [F,F,F,C,F,F,F,F,F,F,F,F,F,F,C],[F,F,F,F,F,F,F,F,F,C,F,F,C,F,F],

 [F,F,F,F,F,F,F,C,F,F,F,F,F,F,C],[F,F,F,F,F,C,F,F,F,F,C,F,F,F,F],

 [F,F,F,F,F,F,F,F,F,C,F,C,F,F,F],[F,F,F,F,F,F,C,F,F,F,F,F,F,F,C],

 [F,C,F,F,F,F,C,F,F,F,F,F,F,F,F],[F,C,F,F,F,F,F,F,F,F,F,C,F,F,F],

 [F,C,F,F,F,F,F,F,F,F,C,F,F,F,F],[F,F,F,F,C,F,F,C,F,F,F,F,F,F,F],

 [F,F,F,F,C,F,F,F,F,F,F,F,C,F,F],[F,F,F,C,F,F,F,F,C,F,F,F,F,F,F],

 [F,F,F,C,F,F,F,F,F,F,F,F,F,C,F],[F,F,F,F,F,F,F,F,C,F,F,F,C,F,F],

 [F,F,F,F,F,F,F,C,F,F,F,F,F,C,F],[F,F,F,F,C,F,F,F,F,F,C,F,F,F,F],

 [F,F,F,F,F,F,F,F,C,F,F,C,F,F,F],[F,F,F,F,F,F,C,F,F,F,F,F,F,C,F],

 [F,F,F,C,F,F,F,F,F,F,C,F,F,F,F],[F,F,F,F,F,F,F,C,F,F,F,C,F,F,F],

 [F,F,F,F,F,F,C,F,F,F,F,F,C,F,F],[C,C,C,F,F,F,F,F,F,F,F,F,F,F,F],

 [C,F,F,F,C,C,F,F,F,F,F,F,F,F,F],[C,F,F,F,F,F,F,F,C,C,F,F,F,F,F],

 [C,F,F,F,F,F,F,F,F,F,F,F,F,C,C],[F,F,C,C,F,C,F,F,F,F,F,F,F,F,F],

 [F,F,C,F,F,F,F,C,F,C,F,F,F,F,F],[F,F,C,F,F,F,F,F,F,F,F,F,C,F,C],

 [F,F,F,F,F,C,C,F,F,C,F,F,F,F,F],[F,F,F,F,F,C,F,F,F,F,F,C,F,F,C],

 [F,F,F,F,F,F,F,F,F,C,C,F,F,F,C],[F,C,F,C,C,F,F,F,F,F,F,F,F,F,F],

 [F,C,F,F,F,F,F,C,C,F,F,F,F,F,F],[F,C,F,F,F,F,F,F,F,F,F,F,C,C,F],

 [F,F,F,F,C,F,C,F,C,F,F,F,F,F,F],[F,F,F,F,C,F,F,F,F,F,F,C,F,C,F],

 [F,F,F,F,F,F,F,F,C,F,C,F,F,C,F],[F,F,F,C,F,F,C,C,F,F,F,F,F,F,F],

 [F,F,F,C,F,F,F,F,F,F,F,C,C,F,F],[F,F,F,F,F,F,F,C,F,F,C,F,C,F,F],

 [F,F,F,F,F,F,C,F,F,F,C,C,F,F,F],[C,F,F,F,F,F,F,F,F,F,F,F,F,F,F],

 [F,F,C,F,F,F,F,F,F,F,F,F,F,F,F],[F,F,F,F,F,C,F,F,F,F,F,F,F,F,F],

 [F,F,F,F,F,F,F,F,F,C,F,F,F,F,F],[F,F,F,F,F,F,F,F,F,F,F,F,F,F,C],

 [F,C,F,F,F,F,F,F,F,F,F,F,F,F,F],[F,F,F,F,C,F,F,F,F,F,F,F,F,F,F],

 [F,F,F,F,F,F,F,F,C,F,F,F,F,F,F],[F,F,F,F,F,F,F,F,F,F,F,F,F,C,F],

 [F,F,F,C,F,F,F,F,F,F,F,F,F,F,F],[F,F,F,F,F,F,F,C,F,F,F,F,F,F,F],

 [F,F,F,F,F,F,F,F,F,F,F,F,C,F,F],[F,F,F,F,F,F,C,F,F,F,F,F,F,F,F],

 [F,F,F,F,F,F,F,F,F,F,F,C,F,F,F],[F,F,F,F,F,F,F,F,F,F,C,F,F,F,F],

 [F,F,F,F,F,F,F,F,F,F,F,F,F,F,F]] : fc list list

length it;

val it = 203 : int

-

17
 - allKLORs 4;

val it =

 [[O,O,O,O,O,O],[O,O,O,O,O,R],[O,O,O,O,R,O],[O,O,O,O,R,R],[O,O,O,R,O,O],

 [O,O,O,R,O,R],[O,O,O,R,R,O],[O,O,O,R,R,R],[O,O,R,O,O,O],[O,O,R,O,O,R],

 [O,O,R,O,R,O],[O,O,R,O,R,R],[O,O,R,R,O,O],[O,O,R,R,O,R],[O,O,R,R,R,O],

 [O,O,R,R,R,R],[O,R,O,O,O,O],[O,R,O,O,O,R],[O,R,O,O,R,O],[O,R,O,O,R,R],

 [O,R,O,R,O,O],[O,R,O,R,O,R],[O,R,O,R,R,O],[O,R,O,R,R,R],[O,R,R,O,O,O],

 [O,R,R,O,O,R],[O,R,R,O,R,O],[O,R,R,O,R,R],[O,R,R,R,O,O],[O,R,R,R,O,R],

 [O,R,R,R,R,O],[O,R,R,R,R,R],[R,O,O,O,O,O],[R,O,O,O,O,R],[R,O,O,O,R,O],

 [R,O,O,O,R,R],[R,O,O,R,O,O],[R,O,O,R,O,R],[R,O,O,R,R,O],[R,O,O,R,R,R],

 [R,O,R,O,O,O],[R,O,R,O,O,R],[R,O,R,O,R,O],[R,O,R,O,R,R],[R,O,R,R,O,O],

 [R,O,R,R,O,R],[R,O,R,R,R,O],[R,O,R,R,R,R],[R,R,O,O,O,O],[R,R,O,O,O,R],

 [R,R,O,O,R,O],[R,R,O,O,R,R],[R,R,O,R,O,O],[R,R,O,R,O,R],[R,R,O,R,R,O],

 [R,R,O,R,R,R],[R,R,R,O,O,O],[R,R,R,O,O,R],[R,R,R,O,R,O],[R,R,R,O,R,R],

 [R,R,R,R,O,O],[R,R,R,R,O,R],[R,R,R,R,R,O],[R,R,R,R,R,R],[O,L,L,O,L,L],

 [O,L,L,O,L,K],[O,L,L,O,K,L],[O,L,L,O,K,K],[O,L,L,R,L,L],[O,L,L,R,L,K],

 [O,L,L,R,K,L],[O,L,L,R,K,K],[O,L,K,O,L,L],[O,L,K,O,L,K],[O,L,K,O,K,L],

 [O,L,K,O,K,K],[O,L,K,R,L,L],[O,L,K,R,L,K],[O,L,K,R,K,L],[O,L,K,R,K,K],

 [O,K,L,O,L,L],[O,K,L,O,L,K],[O,K,L,O,K,L],[O,K,L,O,K,K],[O,K,L,R,L,L],

 [O,K,L,R,L,K],[O,K,L,R,K,L],[O,K,L,R,K,K],[O,K,K,O,L,L],[O,K,K,O,L,K],

 [O,K,K,O,K,L],[O,K,K,O,K,K],[O,K,K,R,L,L],[O,K,K,R,L,K],[O,K,K,R,K,L],

 [O,K,K,R,K,K],[R,L,L,O,L,L],[R,L,L,O,L,K],[R,L,L,O,K,L],[R,L,L,O,K,K],

 [R,L,L,R,L,L],[R,L,L,R,L,K],[R,L,L,R,K,L],[R,L,L,R,K,K],[R,L,K,O,L,L],

 [R,L,K,O,L,K],[R,L,K,O,K,L],[R,L,K,O,K,K],[R,L,K,R,L,L],[R,L,K,R,L,K],

 [R,L,K,R,K,L],[R,L,K,R,K,K],[R,K,L,O,L,L],[R,K,L,O,L,K],[R,K,L,O,K,L],

 [R,K,L,O,K,K],[R,K,L,R,L,L],[R,K,L,R,L,K],[R,K,L,R,K,L],[R,K,L,R,K,K],

 [R,K,K,O,L,L],[R,K,K,O,L,K],[R,K,K,O,K,L],[R,K,K,O,K,K],[R,K,K,R,L,L],

 [R,K,K,R,L,K],[R,K,K,R,K,L],[R,K,K,R,K,K],[L,L,O,L,O,L],[L,L,O,L,O,K],

 [L,L,O,L,R,L],[L,L,O,L,R,K],[L,L,O,K,O,L],[L,L,O,K,O,K],[L,L,O,K,R,L],

 [L,L,O,K,R,K],[L,L,R,L,O,L],[L,L,R,L,O,K],[L,L,R,L,R,L],[L,L,R,L,R,K],

 [L,L,R,K,O,L],[L,L,R,K,O,K],[L,L,R,K,R,L],[L,L,R,K,R,K],[L,K,O,L,O,L],

 [L,K,O,L,O,K],[L,K,O,L,R,L],[L,K,O,L,R,K],[L,K,O,K,O,L],[L,K,O,K,O,K],

 [L,K,O,K,R,L],[L,K,O,K,R,K],[L,K,R,L,O,L],[L,K,R,L,O,K],[L,K,R,L,R,L],

 [L,K,R,L,R,K],[L,K,R,K,O,L],[L,K,R,K,O,K],[L,K,R,K,R,L],[L,K,R,K,R,K],

 [K,L,O,L,O,L],[K,L,O,L,O,K],[K,L,O,L,R,L],[K,L,O,L,R,K],[K,L,O,K,O,L],

 [K,L,O,K,O,K],[K,L,O,K,R,L],[K,L,O,K,R,K],[K,L,R,L,O,L],[K,L,R,L,O,K],

 [K,L,R,L,R,L],[K,L,R,L,R,K],[K,L,R,K,O,L],[K,L,R,K,O,K],[K,L,R,K,R,L],

 [K,L,R,K,R,K],[K,K,O,L,O,L],[K,K,O,L,O,K],[K,K,O,L,R,L],[K,K,O,L,R,K],

 [K,K,O,K,O,L],[K,K,O,K,O,K],[K,K,O,K,R,L],[K,K,O,K,R,K],[K,K,R,L,O,L],

 [K,K,R,L,O,K],[K,K,R,L,R,L],[K,K,R,L,R,K],[K,K,R,K,O,L],[K,K,R,K,O,K],

 [K,K,R,K,R,L],[K,K,R,K,R,K],[L,O,L,L,L,O],[L,O,L,L,L,R],[L,O,L,L,K,O],

 [L,O,L,L,K,R],[L,O,L,K,L,O],[L,O,L,K,L,R],[L,O,L,K,K,O],[L,O,L,K,K,R],

 [L,O,K,L,L,O],[L,O,K,L,L,R],[L,O,K,L,K,O],[L,O,K,L,K,R],[L,O,K,K,L,O],

 [L,O,K,K,L,R],[L,O,K,K,K,O],[L,O,K,K,K,R],[L,R,L,L,L,O],[L,R,L,L,L,R],

 [L,R,L,L,K,O],[L,R,L,L,K,R],[L,R,L,K,L,O],[L,R,L,K,L,R],[L,R,L,K,K,O],

 [L,R,L,K,K,R],[L,R,K,L,L,O],[L,R,K,L,L,R],[L,R,K,L,K,O],[L,R,K,L,K,R],

 [L,R,K,K,L,O],[L,R,K,K,L,R],[L,R,K,K,K,O],[L,R,K,K,K,R],[K,O,L,L,L,O],

 [K,O,L,L,L,R],[K,O,L,L,K,O],[K,O,L,L,K,R],[K,O,L,K,L,O],[K,O,L,K,L,R],

 [K,O,L,K,K,O],[K,O,L,K,K,R],[K,O,K,L,L,O],[K,O,K,L,L,R],[K,O,K,L,K,O],

 [K,O,K,L,K,R],[K,O,K,K,L,O],[K,O,K,K,L,R],[K,O,K,K,K,O],[K,O,K,K,K,R],

 [K,R,L,L,L,O],[K,R,L,L,L,R],[K,R,L,L,K,O],[K,R,L,L,K,R],[K,R,L,K,L,O],

 [K,R,L,K,L,R],[K,R,L,K,K,O],[K,R,L,K,K,R],[K,R,K,L,L,O],[K,R,K,L,L,R],

 [K,R,K,L,K,O],[K,R,K,L,K,R],[K,R,K,K,L,O],[K,R,K,K,L,R],[K,R,K,K,K,O],

 [K,R,K,K,K,R],[O,O,O,L,L,L],[O,O,O,L,L,K],[O,O,O,L,K,L],[O,O,O,L,K,K],

 [O,O,O,K,L,L],[O,O,O,K,L,K],[O,O,O,K,K,L],[O,O,O,K,K,K],[O,O,R,L,L,L],

 [O,O,R,L,L,K],[O,O,R,L,K,L],[O,O,R,L,K,K],[O,O,R,K,L,L],[O,O,R,K,L,K],

 [O,O,R,K,K,L],[O,O,R,K,K,K],[O,R,O,L,L,L],[O,R,O,L,L,K],[O,R,O,L,K,L],

 [O,R,O,L,K,K],[O,R,O,K,L,L],[O,R,O,K,L,K],[O,R,O,K,K,L],[O,R,O,K,K,K],

 [O,R,R,L,L,L],[O,R,R,L,L,K],[O,R,R,L,K,L],[O,R,R,L,K,K],[O,R,R,K,L,L],

 [O,R,R,K,L,K],[O,R,R,K,K,L],[O,R,R,K,K,K],[R,O,O,L,L,L],[R,O,O,L,L,K],

 [R,O,O,L,K,L],[R,O,O,L,K,K],[R,O,O,K,L,L],[R,O,O,K,L,K],[R,O,O,K,K,L],

 [R,O,O,K,K,K],[R,O,R,L,L,L],[R,O,R,L,L,K],[R,O,R,L,K,L],[R,O,R,L,K,K],

 [R,O,R,K,L,L],[R,O,R,K,L,K],[R,O,R,K,K,L],[R,O,R,K,K,K],[R,R,O,L,L,L],

 [R,R,O,L,L,K],[R,R,O,L,K,L],[R,R,O,L,K,K],[R,R,O,K,L,L],[R,R,O,K,L,K],

 [R,R,O,K,K,L],[R,R,O,K,K,K],[R,R,R,L,L,L],[R,R,R,L,L,K],[R,R,R,L,K,L],

 [R,R,R,L,K,K],[R,R,R,K,L,L],[R,R,R,K,L,K],[R,R,R,K,K,L],[R,R,R,K,K,K],

 [O,L,L,L,O,O],[O,L,L,L,O,R],[O,L,L,L,R,O],[O,L,L,L,R,R],[O,L,L,K,O,O],

 [O,L,L,K,O,R],[O,L,L,K,R,O],[O,L,L,K,R,R],[O,L,K,L,O,O],[O,L,K,L,O,R],

 [O,L,K,L,R,O],[O,L,K,L,R,R],[O,L,K,K,O,O],[O,L,K,K,O,R],[O,L,K,K,R,O],

 [O,L,K,K,R,R],[O,K,L,L,O,O],[O,K,L,L,O,R],[O,K,L,L,R,O],[O,K,L,L,R,R],

 [O,K,L,K,O,O],[O,K,L,K,O,R],[O,K,L,K,R,O],[O,K,L,K,R,R],[O,K,K,L,O,O],

 [O,K,K,L,O,R],[O,K,K,L,R,O],[O,K,K,L,R,R],[O,K,K,K,O,O],[O,K,K,K,O,R],

 [O,K,K,K,R,O],[O,K,K,K,R,R],[R,L,L,L,O,O],[R,L,L,L,O,R],[R,L,L,L,R,O],

 [R,L,L,L,R,R],[R,L,L,K,O,O],[R,L,L,K,O,R],[R,L,L,K,R,O],[R,L,L,K,R,R],

 [R,L,K,L,O,O],[R,L,K,L,O,R],[R,L,K,L,R,O],[R,L,K,L,R,R],[R,L,K,K,O,O],

 [R,L,K,K,O,R],[R,L,K,K,R,O],[R,L,K,K,R,R],[R,K,L,L,O,O],[R,K,L,L,O,R],

 [R,K,L,L,R,O],[R,K,L,L,R,R],[R,K,L,K,O,O],[R,K,L,K,O,R],[R,K,L,K,R,O],

 [R,K,L,K,R,R],[R,K,K,L,O,O],[R,K,K,L,O,R],[R,K,K,L,R,O],[R,K,K,L,R,R],

 [R,K,K,K,O,O],[R,K,K,K,O,R],[R,K,K,K,R,O],[R,K,K,K,R,R],[L,L,O,O,L,O],

 [L,L,O,O,L,R],[L,L,O,O,K,O],[L,L,O,O,K,R],[L,L,O,R,L,O],[L,L,O,R,L,R],

 [L,L,O,R,K,O],[L,L,O,R,K,R],[L,L,R,O,L,O],[L,L,R,O,L,R],[L,L,R,O,K,O],

 [L,L,R,O,K,R],[L,L,R,R,L,O],[L,L,R,R,L,R],[L,L,R,R,K,O],[L,L,R,R,K,R],

 [L,K,O,O,L,O],[L,K,O,O,L,R],[L,K,O,O,K,O],[L,K,O,O,K,R],[L,K,O,R,L,O],

 [L,K,O,R,L,R],[L,K,O,R,K,O],[L,K,O,R,K,R],[L,K,R,O,L,O],[L,K,R,O,L,R],

 [L,K,R,O,K,O],[L,K,R,O,K,R],[L,K,R,R,L,O],[L,K,R,R,L,R],[L,K,R,R,K,O],

 [L,K,R,R,K,R],[K,L,O,O,L,O],[K,L,O,O,L,R],[K,L,O,O,K,O],[K,L,O,O,K,R],

 [K,L,O,R,L,O],[K,L,O,R,L,R],[K,L,O,R,K,O],[K,L,O,R,K,R],[K,L,R,O,L,O],

 [K,L,R,O,L,R],[K,L,R,O,K,O],[K,L,R,O,K,R],[K,L,R,R,L,O],[K,L,R,R,L,R],

 [K,L,R,R,K,O],[K,L,R,R,K,R],[K,K,O,O,L,O],[K,K,O,O,L,R],[K,K,O,O,K,O],

 [K,K,O,O,K,R],[K,K,O,R,L,O],[K,K,O,R,L,R],[K,K,O,R,K,O],[K,K,O,R,K,R],

 [K,K,R,O,L,O],[K,K,R,O,L,R],[K,K,R,O,K,O],[K,K,R,O,K,R],[K,K,R,R,L,O],

 [K,K,R,R,L,R],[K,K,R,R,K,O],[K,K,R,R,K,R],[L,O,L,O,O,L],[L,O,L,O,O,K],

 [L,O,L,O,R,L],[L,O,L,O,R,K],[L,O,L,R,O,L],[L,O,L,R,O,K],[L,O,L,R,R,L],

 [L,O,L,R,R,K],[L,O,K,O,O,L],[L,O,K,O,O,K],[L,O,K,O,R,L],[L,O,K,O,R,K],

 [L,O,K,R,O,L],[L,O,K,R,O,K],[L,O,K,R,R,L],[L,O,K,R,R,K],[L,R,L,O,O,L],

 [L,R,L,O,O,K],[L,R,L,O,R,L],[L,R,L,O,R,K],[L,R,L,R,O,L],[L,R,L,R,O,K],

 [L,R,L,R,R,L],[L,R,L,R,R,K],[L,R,K,O,O,L],[L,R,K,O,O,K],[L,R,K,O,R,L],

 [L,R,K,O,R,K],[L,R,K,R,O,L],[L,R,K,R,O,K],[L,R,K,R,R,L],[L,R,K,R,R,K],

 [K,O,L,O,O,L],[K,O,L,O,O,K],[K,O,L,O,R,L],[K,O,L,O,R,K],[K,O,L,R,O,L],

 [K,O,L,R,O,K],[K,O,L,R,R,L],[K,O,L,R,R,K],[K,O,K,O,O,L],[K,O,K,O,O,K],

 [K,O,K,O,R,L],[K,O,K,O,R,K],[K,O,K,R,O,L],[K,O,K,R,O,K],[K,O,K,R,R,L],

 [K,O,K,R,R,K],[K,R,L,O,O,L],[K,R,L,O,O,K],[K,R,L,O,R,L],[K,R,L,O,R,K],

 [K,R,L,R,O,L],[K,R,L,R,O,K],[K,R,L,R,R,L],[K,R,L,R,R,K],[K,R,K,O,O,L],

 [K,R,K,O,O,K],[K,R,K,O,R,L],[K,R,K,O,R,K],[K,R,K,R,O,L],[K,R,K,R,O,K],

 [K,R,K,R,R,L],[K,R,K,R,R,K],[O,L,L,L,L,L],[O,L,L,L,L,K],[O,L,L,L,K,L],

 [O,L,L,L,K,K],[O,L,L,K,L,L],[O,L,L,K,L,K],[O,L,L,K,K,L],[O,L,L,K,K,K],

 [O,L,K,L,L,L],[O,L,K,L,L,K],[O,L,K,L,K,L],[O,L,K,L,K,K],[O,L,K,K,L,L],

 [O,L,K,K,L,K],[O,L,K,K,K,L],[O,L,K,K,K,K],[O,K,L,L,L,L],[O,K,L,L,L,K],

 [O,K,L,L,K,L],[O,K,L,L,K,K],[O,K,L,K,L,L],[O,K,L,K,L,K],[O,K,L,K,K,L],

 [O,K,L,K,K,K],[O,K,K,L,L,L],[O,K,K,L,L,K],[O,K,K,L,K,L],[O,K,K,L,K,K],

 [O,K,K,K,L,L],[O,K,K,K,L,K],[O,K,K,K,K,L],[O,K,K,K,K,K],[R,L,L,L,L,L],

 [R,L,L,L,L,K],[R,L,L,L,K,L],[R,L,L,L,K,K],[R,L,L,K,L,L],[R,L,L,K,L,K],

 [R,L,L,K,K,L],[R,L,L,K,K,K],[R,L,K,L,L,L],[R,L,K,L,L,K],[R,L,K,L,K,L],

 [R,L,K,L,K,K],[R,L,K,K,L,L],[R,L,K,K,L,K],[R,L,K,K,K,L],[R,L,K,K,K,K],

 [R,K,L,L,L,L],[R,K,L,L,L,K],[R,K,L,L,K,L],[R,K,L,L,K,K],[R,K,L,K,L,L],

 [R,K,L,K,L,K],[R,K,L,K,K,L],[R,K,L,K,K,K],[R,K,K,L,L,L],[R,K,K,L,L,K],

 [R,K,K,L,K,L],[R,K,K,L,K,K],[R,K,K,K,L,L],[R,K,K,K,L,K],[R,K,K,K,K,L],

 [R,K,K,K,K,K],[L,L,O,L,L,L],[L,L,O,L,L,K],[L,L,O,L,K,L],[L,L,O,L,K,K],

 [L,L,O,K,L,L],[L,L,O,K,L,K],[L,L,O,K,K,L],[L,L,O,K,K,K],[L,L,R,L,L,L],

 [L,L,R,L,L,K],[L,L,R,L,K,L],[L,L,R,L,K,K],[L,L,R,K,L,L],[L,L,R,K,L,K],

 [L,L,R,K,K,L],[L,L,R,K,K,K],[L,K,O,L,L,L],[L,K,O,L,L,K],[L,K,O,L,K,L],

 [L,K,O,L,K,K],[L,K,O,K,L,L],[L,K,O,K,L,K],[L,K,O,K,K,L],[L,K,O,K,K,K],

 [L,K,R,L,L,L],[L,K,R,L,L,K],[L,K,R,L,K,L],[L,K,R,L,K,K],[L,K,R,K,L,L],

 [L,K,R,K,L,K],[L,K,R,K,K,L],[L,K,R,K,K,K],[K,L,O,L,L,L],[K,L,O,L,L,K],

 [K,L,O,L,K,L],[K,L,O,L,K,K],[K,L,O,K,L,L],[K,L,O,K,L,K],[K,L,O,K,K,L],

 [K,L,O,K,K,K],[K,L,R,L,L,L],[K,L,R,L,L,K],[K,L,R,L,K,L],[K,L,R,L,K,K],

 [K,L,R,K,L,L],[K,L,R,K,L,K],[K,L,R,K,K,L],[K,L,R,K,K,K],[K,K,O,L,L,L],

 [K,K,O,L,L,K],[K,K,O,L,K,L],[K,K,O,L,K,K],[K,K,O,K,L,L],[K,K,O,K,L,K],

 [K,K,O,K,K,L],[K,K,O,K,K,K],[K,K,R,L,L,L],[K,K,R,L,L,K],[K,K,R,L,K,L],

 [K,K,R,L,K,K],[K,K,R,K,L,L],[K,K,R,K,L,K],[K,K,R,K,K,L],[K,K,R,K,K,K],

 [L,L,L,L,L,O],[L,L,L,L,L,R],[L,L,L,L,K,O],[L,L,L,L,K,R],[L,L,L,K,L,O],

 [L,L,L,K,L,R],[L,L,L,K,K,O],[L,L,L,K,K,R],[L,L,K,L,L,O],[L,L,K,L,L,R],

 [L,L,K,L,K,O],[L,L,K,L,K,R],[L,L,K,K,L,O],[L,L,K,K,L,R],[L,L,K,K,K,O],

 [L,L,K,K,K,R],[L,K,L,L,L,O],[L,K,L,L,L,R],[L,K,L,L,K,O],[L,K,L,L,K,R],

 [L,K,L,K,L,O],[L,K,L,K,L,R],[L,K,L,K,K,O],[L,K,L,K,K,R],[L,K,K,L,L,O],

 [L,K,K,L,L,R],[L,K,K,L,K,O],[L,K,K,L,K,R],[L,K,K,K,L,O],[L,K,K,K,L,R],

 [L,K,K,K,K,O],[L,K,K,K,K,R],[K,L,L,L,L,O],[K,L,L,L,L,R],[K,L,L,L,K,O],

 [K,L,L,L,K,R],[K,L,L,K,L,O],[K,L,L,K,L,R],[K,L,L,K,K,O],[K,L,L,K,K,R],

 [K,L,K,L,L,O],[K,L,K,L,L,R],[K,L,K,L,K,O],[K,L,K,L,K,R],[K,L,K,K,L,O],

 [K,L,K,K,L,R],[K,L,K,K,K,O],[K,L,K,K,K,R],[K,K,L,L,L,O],[K,K,L,L,L,R],

 [K,K,L,L,K,O],[K,K,L,L,K,R],[K,K,L,K,L,O],[K,K,L,K,L,R],[K,K,L,K,K,O],

 [K,K,L,K,K,R],[K,K,K,L,L,O],[K,K,K,L,L,R],[K,K,K,L,K,O],[K,K,K,L,K,R],

 [K,K,K,K,L,O],[K,K,K,K,L,R],[K,K,K,K,K,O],[K,K,K,K,K,R],[L,O,L,L,L,L],

 [L,O,L,L,L,K],[L,O,L,L,K,L],[L,O,L,L,K,K],[L,O,L,K,L,L],[L,O,L,K,L,K],

 [L,O,L,K,K,L],[L,O,L,K,K,K],[L,O,K,L,L,L],[L,O,K,L,L,K],[L,O,K,L,K,L],

 [L,O,K,L,K,K],[L,O,K,K,L,L],[L,O,K,K,L,K],[L,O,K,K,K,L],[L,O,K,K,K,K],

 [L,R,L,L,L,L],[L,R,L,L,L,K],[L,R,L,L,K,L],[L,R,L,L,K,K],[L,R,L,K,L,L],

 [L,R,L,K,L,K],[L,R,L,K,K,L],[L,R,L,K,K,K],[L,R,K,L,L,L],[L,R,K,L,L,K],

 [L,R,K,L,K,L],[L,R,K,L,K,K],[L,R,K,K,L,L],[L,R,K,K,L,K],[L,R,K,K,K,L],

 [L,R,K,K,K,K],[K,O,L,L,L,L],[K,O,L,L,L,K],[K,O,L,L,K,L],[K,O,L,L,K,K],

 [K,O,L,K,L,L],[K,O,L,K,L,K],[K,O,L,K,K,L],[K,O,L,K,K,K],[K,O,K,L,L,L],

 [K,O,K,L,L,K],[K,O,K,L,K,L],[K,O,K,L,K,K],[K,O,K,K,L,L],[K,O,K,K,L,K],

 [K,O,K,K,K,L],[K,O,K,K,K,K],[K,R,L,L,L,L],[K,R,L,L,L,K],[K,R,L,L,K,L],

 [K,R,L,L,K,K],[K,R,L,K,L,L],[K,R,L,K,L,K],[K,R,L,K,K,L],[K,R,L,K,K,K],

 [K,R,K,L,L,L],[K,R,K,L,L,K],[K,R,K,L,K,L],[K,R,K,L,K,K],[K,R,K,K,L,L],

 [K,R,K,K,L,K],[K,R,K,K,K,L],[K,R,K,K,K,K],[L,L,L,L,O,L],[L,L,L,L,O,K],

 [L,L,L,L,R,L],[L,L,L,L,R,K],[L,L,L,K,O,L],[L,L,L,K,O,K],[L,L,L,K,R,L],

 [L,L,L,K,R,K],[L,L,K,L,O,L],[L,L,K,L,O,K],[L,L,K,L,R,L],[L,L,K,L,R,K],

 [L,L,K,K,O,L],[L,L,K,K,O,K],[L,L,K,K,R,L],[L,L,K,K,R,K],[L,K,L,L,O,L],

 [L,K,L,L,O,K],[L,K,L,L,R,L],[L,K,L,L,R,K],[L,K,L,K,O,L],[L,K,L,K,O,K],

 [L,K,L,K,R,L],[L,K,L,K,R,K],[L,K,K,L,O,L],[L,K,K,L,O,K],[L,K,K,L,R,L],

 [L,K,K,L,R,K],[L,K,K,K,O,L],[L,K,K,K,O,K],[L,K,K,K,R,L],[L,K,K,K,R,K],

 [K,L,L,L,O,L],[K,L,L,L,O,K],[K,L,L,L,R,L],[K,L,L,L,R,K],[K,L,L,K,O,L],

 [K,L,L,K,O,K],[K,L,L,K,R,L],[K,L,L,K,R,K],[K,L,K,L,O,L],[K,L,K,L,O,K],

 [K,L,K,L,R,L],[K,L,K,L,R,K],[K,L,K,K,O,L],[K,L,K,K,O,K],[K,L,K,K,R,L],

 [K,L,K,K,R,K],[K,K,L,L,O,L],[K,K,L,L,O,K],[K,K,L,L,R,L],[K,K,L,L,R,K],

 [K,K,L,K,O,L],[K,K,L,K,O,K],[K,K,L,K,R,L],[K,K,L,K,R,K],[K,K,K,L,O,L],

 [K,K,K,L,O,K],[K,K,K,L,R,L],[K,K,K,L,R,K],[K,K,K,K,O,L],[K,K,K,K,O,K],

 [K,K,K,K,R,L],[K,K,K,K,R,K],[L,L,L,O,L,L],[L,L,L,O,L,K],[L,L,L,O,K,L],

 [L,L,L,O,K,K],[L,L,L,R,L,L],[L,L,L,R,L,K],[L,L,L,R,K,L],[L,L,L,R,K,K],

 [L,L,K,O,L,L],[L,L,K,O,L,K],[L,L,K,O,K,L],[L,L,K,O,K,K],[L,L,K,R,L,L],

 [L,L,K,R,L,K],[L,L,K,R,K,L],[L,L,K,R,K,K],[L,K,L,O,L,L],[L,K,L,O,L,K],

 [L,K,L,O,K,L],[L,K,L,O,K,K],[L,K,L,R,L,L],[L,K,L,R,L,K],[L,K,L,R,K,L],

 [L,K,L,R,K,K],[L,K,K,O,L,L],[L,K,K,O,L,K],[L,K,K,O,K,L],[L,K,K,O,K,K],

 [L,K,K,R,L,L],[L,K,K,R,L,K],[L,K,K,R,K,L],[L,K,K,R,K,K],[K,L,L,O,L,L],

 [K,L,L,O,L,K],[K,L,L,O,K,L],[K,L,L,O,K,K],[K,L,L,R,L,L],[K,L,L,R,L,K],

 [K,L,L,R,K,L],[K,L,L,R,K,K],[K,L,K,O,L,L],[K,L,K,O,L,K],[K,L,K,O,K,L],

 [K,L,K,O,K,K],[K,L,K,R,L,L],[K,L,K,R,L,K],[K,L,K,R,K,L],[K,L,K,R,K,K],

 [K,K,L,O,L,L],[K,K,L,O,L,K],[K,K,L,O,K,L],[K,K,L,O,K,K],[K,K,L,R,L,L],

 [K,K,L,R,L,K],[K,K,L,R,K,L],[K,K,L,R,K,K],[K,K,K,O,L,L],[K,K,K,O,L,K],

 [K,K,K,O,K,L],[K,K,K,O,K,K],[K,K,K,R,L,L],[K,K,K,R,L,K],[K,K,K,R,K,L],

 [K,K,K,R,K,K],[L,L,L,L,L,L],[L,L,L,L,L,K],[L,L,L,L,K,L],[L,L,L,L,K,K],

 [L,L,L,K,L,L],[L,L,L,K,L,K],[L,L,L,K,K,L],[L,L,L,K,K,K],[L,L,K,L,L,L],

 [L,L,K,L,L,K],[L,L,K,L,K,L],[L,L,K,L,K,K],[L,L,K,K,L,L],[L,L,K,K,L,K],

 [L,L,K,K,K,L],[L,L,K,K,K,K],[L,K,L,L,L,L],[L,K,L,L,L,K],[L,K,L,L,K,L],

 [L,K,L,L,K,K],[L,K,L,K,L,L],[L,K,L,K,L,K],[L,K,L,K,K,L],[L,K,L,K,K,K],

 [L,K,K,L,L,L],[L,K,K,L,L,K],[L,K,K,L,K,L],[L,K,K,L,K,K],[L,K,K,K,L,L],

 [L,K,K,K,L,K],[L,K,K,K,K,L],[L,K,K,K,K,K],[K,L,L,L,L,L],[K,L,L,L,L,K],

 [K,L,L,L,K,L],[K,L,L,L,K,K],[K,L,L,K,L,L],[K,L,L,K,L,K],[K,L,L,K,K,L],

 [K,L,L,K,K,K],[K,L,K,L,L,L],[K,L,K,L,L,K],[K,L,K,L,K,L],[K,L,K,L,K,K],

 [K,L,K,K,L,L],[K,L,K,K,L,K],[K,L,K,K,K,L],[K,L,K,K,K,K],[K,K,L,L,L,L],

 [K,K,L,L,L,K],[K,K,L,L,K,L],[K,K,L,L,K,K],[K,K,L,K,L,L],[K,K,L,K,L,K],

 [K,K,L,K,K,L],[K,K,L,K,K,K],[K,K,K,L,L,L],[K,K,K,L,L,K],[K,K,K,L,K,L],

 [K,K,K,L,K,K],[K,K,K,K,L,L],[K,K,K,K,L,K],[K,K,K,K,K,L],[K,K,K,K,K,K]]

 : klor list list

