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Interplay of Elementary Graphe-
matic Calculi
Graphematic Fourfoldness of semiotics, Indication, Differ-
entiation and Kenogrammatics 
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Abstract
Extended Notes  on the interplay of graphematic calculi:  George Spencer Brown’s Laws
of  Form,  Mersenne calculi  and Gunther’s  trito-  and deutero-grammatic  systems.  Moshe
Klein’s  second-level  partitions,  numeric  represention  of  calculi,  “serial”,  “parallel”  and
intermediary  number  concepts.  Non-contradiction  of  Mersenne  self-referentiality.
Further elaboration of the “Stirling Turn”. Complementarity of Brownian and Mersenne
calculi.

1. Complementarity of Mersenne and Brown 
calculi

1.1. Discussion
1.1.1. General situation

This paper is proposing some loosely connected notes about the con-
nections between different graphematic systems, like Brownian, the 
newly postulated Mersenne calculus and calculi in the context of Stir-
ling numbers of the second kind. Aspects of combinatorics are as far 
elaborated as necessary to understand the concepts and possible cal-
culi, formal languages and cellular automata  
     
For the special case of complexity and complication of value two, i.e. 
m=n=2, some interesting conceptual distinctions between Brownian 
(George Spencer Brown 1923 - )indication (multisets, bags) and 
Mersenne numbers (Marin Mersenne 1588 - 1648) might be to 
observed.

Types                   Example                  Combinatorics
Leibniz space      = {aa, bb, ab, ba},       SemHm, nL = mn

Brownian space  = {aa, ab, bb},             IndHn, mL = J n+m-1

n
N

Mersenne space  = {aa, ab, ba},            M n = 2 n - 1
Stirling space       = {aa, ab}.                 ⁄k=1

M S Hn, kL
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Leibniz space      = {aa, bb, ab, ba},       SemHm, nL = mn

Brownian space  = {aa, ab, bb},             IndHn, mL = J n+m-1
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This study “Interplay of Elementary Graphematic Calculi” is a direct 
continuation of the previous paper “Graphematic System of Cellular 
Automata” which is studying 9 levels of graphematical inscription.
http://memristors.memristics.com/Graphematics/Graphematics%20of%20Cellular%2

0Automata.html  

Stirling vs. Mersenne
Recursive Stirling numbers of the second kind :

:
n

k
> = :

n-1

k-1
> + k :

n-1

k
>with :

n

0
> = 0, for n > 0 and :

n

n
> = 1

Mersenne numbers

M n = 2 n-1-1

:
n

2
> = Sn Jn, 2N = Mers JnN

Hence, Mersenne numbers appear as a subset of Stirling numbers of 
the second kind. This purely combinatorial fact shows the combinato-
rial dependency between the Stirling and the Mersenne space. Again, 
combinatorial studies are not telling much about the conceptual charac-
teristics of the specific types of calculi and their computational space.

Example

n : 2 3 4 5 6

:
n

2
> : 1, 3, 7, 15, 31

2 n-1-1 : 1, 3, 7, 15, 31

Stirling vs. Mersenne via primes
Another interesting way to compare Stirling  and Mersenne numbers is 
possible by an indirect comparison mediated by the concept of prime 
numbers of both types of numbers.
http://mathworld.wolfram.com/MersennePrime.html

 
Joe DeMaio , Stirling Numbers of the Second Kind and Primality 
http://science.kennesaw.edu/~jdemaio/stirling%20second%20primes.pdf 
http://cs.fit.edu/~wds/classes/adm/Slides/StirlingSecond.pdf
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Mersenne vs. Brown numbers
In fact, there are still no specific Brown numbers.
Numbers in Brown systems like the calculus of indication are modeling 
classical natural numbers in the framework of the Calculus of Indica-
tion (CI). 

The crucial fact, that the CI is defined on the base of a 2-dimensional 
semiotics with serial and parallel constructions is not yet understood 
for a genuine Brownian number concept and arithmetic. The case that 
the Brownian don’t wont to accept their own invention might also be 
considered. In this case the big claim seems to vaporize to a rather 
harmless endeavour.

Moshe Klein started some ideas to introduce genuine Brownian num-
bers but seems to have abandoned his trial.

This study “Interplay of Elementary Graphematic Calculi” is a direct 
continuation of the previous paper “Graphematic System of Cellular 
Automata” which is studying 9 levels of graphematical inscription.
http://memristors.memristics.com/Graphematics/Graphematics%20of%20Cellular%2
0Automata.html  

1.1.2. Indicational calculi

Indication (differentiation): heaps, multisets
The interest is in the differentiation of the elements on an identive 
level in contrast to a kenogrammatic level, hence (aa) ≠ (bb), while 
the differences of permutations of the elements are not of interest for 
the differentiation of the constellation, hence (ab)=(ba). This points to 
the fact that indicational terms are not sequences or sets of atomic 
signs but heaps (Matzka) of signs: {{a, b}} = {{b, a}}. 

Multisets (heaps, bags) as models for indicational calculi 
"There are for example 4 multisets of cardinality 3 with elements 
taken from the set {1,2} of cardinality 2 (n=2, k=3), namely : 
{1,1,1}, {1,1,2}, {1,2,2}, {2,2,2}. 
And there are also 4 subsets of cardinality 3 in the set {1,2,3,4} of 
cardinality 4 (n+k-1 = 4), namely : 
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}." WiKi
In multisets, as in sets and in contrast to tuples, the order of elements 
is irrelevant: The multisets {a, b} and {b, a} are equal." WiKi

Article Title  3

http://mathworld.wolfram.com/MersennePrime.html
http://science.kennesaw.edu/~jdemaio/stirling%20second%20primes.pdf
http://cs.fit.edu/~wds/classes/adm/Slides/StirlingSecond.pdf
http://memristors.memristics.com/Graphematics/Graphematics%20of%20Cellular%2


Indication (differentiation): heaps, multisets
The interest is in the differentiation of the elements on an identive 
level in contrast to a kenogrammatic level, hence (aa) ≠ (bb), while 
the differences of permutations of the elements are not of interest for 
the differentiation of the constellation, hence (ab)=(ba). This points to 
the fact that indicational terms are not sequences or sets of atomic 
signs but heaps (Matzka) of signs: {{a, b}} = {{b, a}}. 

Multisets (heaps, bags) as models for indicational calculi 
"There are for example 4 multisets of cardinality 3 with elements 
taken from the set {1,2} of cardinality 2 (n=2, k=3), namely : 
{1,1,1}, {1,1,2}, {1,2,2}, {2,2,2}. 
And there are also 4 subsets of cardinality 3 in the set {1,2,3,4} of 
cardinality 4 (n+k-1 = 4), namely : 
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In multisets, as in sets and in contrast to tuples, the order of elements 
is irrelevant: The multisets {a, b} and {b, a} are equal." WiKi

Example for commutativity of notation in CI:
(ab) = (ba):

   =   

(aa) ≠ (bb):

   ≠  .

Certainly this holds for the vertical dimension too:

1 2  = 2 1 . Hence, there is no distinction involved, therefore 

the result is “ “, i.e. no distinction: Ø.

1.1.3. Moshe Klein’s second-level partitions and GSB’s brackets

Gotthard Gunther always was glad to be able to irritate or even shock 
his contrahents when they argued with numbers. If someone insisted 
on the number 5, he simple asked: Which number 5 do you mean? I 
have at least 52 different exemplars of your number 5! Obviously he 
was referring to his trito-numbers of the kenogrammatic number sys-
tem calculated by the Stirling numbers of the second kind. He could 
have been more generous and answering that he has at least 7 types 
of the number 5, referring to his deutero-numbers measured by the 
number of partitions. 

Schadach has given an answer to the question: How many numbers 
are represented by proto-, deutero- or trito-structures?

Moshe Klein just introduced a new step in the analysis of partitions, 
the second-level partitions or the partitions of partitions. Equipped 
with the strategy of second-level partitions Gunther could have given 
a double answer: If you want a direct answer, I have 7 types of your 
single number 5. But if you wont a more reflected answer, I have 30 
types of your single number 5. 

Such argumentations have deep roots in Ancient Greek and Chinese 
thinking. It has taken Aristotle a lot of intriguing arguments to ridicule 
such a figurative or organic view of numbers (concepts, metaphors, 
images). Aristotle radical reductionism has won and opened up a math-
ematical foundation for science and financial politics. Today, this 
approach is exhausted and a new approach is needed. What the 
Ancient didn't have is a complex operative holistic number theory and 
calculus. Today, there are interesting beginnings for complex calculi to 
register. Gotthard Gunther’s “Natural Numbers in trans-Classic Sys-
tems” (1971) is a promising step towards a liberation of numbers from 
the reductionist Aristotelian approaches. 

Albeit Moshe Klein is not aware about the fundamental breakthrough 
of Gunther’s elaborations it seems that Klein is working in a similar 
direction with his second-level partitions and a re-interpretation of 
Spencer Brown’s Laws of Form.

This study of second-level partitions gets an interesting comparison 
with Spencer-Brown’s calculus of indication.
How far those studies can be applied to Mersenne calculi has yet to be 
studied.

The newly introduced Stirling turn is based on the study of partitions, 
i.e. trito-structures, instead of elements and sets, and their functions, 
therefore, second-level partitions will be of direct interest for a further 
study of intrinsic properties of Stirling numbers. Schadach’s analysis of 
the internal structure of partitions might hint into the same direction.
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of Gunther’s elaborations it seems that Klein is working in a similar 
direction with his second-level partitions and a re-interpretation of 
Spencer Brown’s Laws of Form.

This study of second-level partitions gets an interesting comparison 
with Spencer-Brown’s calculus of indication.
How far those studies can be applied to Mersenne calculi has yet to be 
studied.

The newly introduced Stirling turn is based on the study of partitions, 
i.e. trito-structures, instead of elements and sets, and their functions, 
therefore, second-level partitions will be of direct interest for a further 
study of intrinsic properties of Stirling numbers. Schadach’s analysis of 
the internal structure of partitions might hint into the same direction.

Catalan numbers and indicational calculi

"Another problem with a similar answer is the counting of the 
number of parenthesis when there is no 
significance to the order. Let's look, for example, at parenthesis 
of order 2 ()();(()).

When we look at parenthesis with order 3 there are 5 possibili-
ties 
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"Another problem with a similar answer is the counting of the 
number of parenthesis when there is no 
significance to the order. Let's look, for example, at parenthesis 
of order 2 ()();(()).

When we look at parenthesis with order 3 there are 5 possibili-
ties 

JN JN JN; JJNN JN; JJN JNN; JN JJNN; JJJNNN.

The general number of possibilities is calculated with the Cata-
lan numbers. But in the specific problem when the order is not 
important like in the problem of phylogenetic trees the two possi-
bilities ()(())=(())() are identical.

"Now let us go one step further and distinguish between possibili-
ties only by what they contain and by order. 
For instance, from now on, ()(())=(())().

Inspired from “Laws of Form” written by Spencer Brown[10], 
we shall call the possibilities whose order is insignificant, 
“forms”. 
Now let us create a "sub-partition" definition that fits those 
forms. Note that these sub-partitions (or forms) are applicable 
and relevant, for instance in Biology or Computer Science, when 
counting the number of ways to arrange n membranes in space. 
The number of forms (not possibilities) of degree 3 is 4 and not 
5 as before. The forms are: 

JN JN JN; JN JJNN; JJN JNN; JJJNNN

We define (n) as the collection of all forms of parentheses that 
are wrapped with brackets and inside them there is a form of 
degree n. 

For instance: 

(2) = :JJN JNN, JJJNNN>.

 
Note that 

J0N= :JN>, J1N= :JJNN> and J3N= :JJN JN JNN, JJN JJNNN, JJJN JNNN, JJJJNNNN>."

"Distinction is a very important part of our life. Similarly to 
Hilbert’s analogy about the completeness of a mathematical 
theory, Organic Mathematics claims that any fundamental math-
ematical theory is incomplete if it does not deal with Distinction 
as first-order property of it. This presentation is focused on the 
structure of Whole Numbers.” (Klein, 2009)
http://www.omath.org.il/image/users/112431/ftp/my_files/recurtion_over_p
artitions_118.pdf?id=8746401
 http://www.youtube.com/watch?v=KoyiMz_-uew
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Hilbert’s analogy about the completeness of a mathematical 
theory, Organic Mathematics claims that any fundamental math-
ematical theory is incomplete if it does not deal with Distinction 
as first-order property of it. This presentation is focused on the 
structure of Whole Numbers.” (Klein, 2009)
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Catalan numbers are a subset of Stirling numbers of the

second kind and are coinciding with the values 1, 2, 3.

ℭ n =
1

n + 1

2 n

n
Table[CatalanNumber[n], {n, 10}]
{1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796}

Brown                  Mersenne
3 =(1)*(1)*(1)     3 = (1)*(1)*(1)    Mersenne: situation A’ equal 
situation C’, and B’ different B”.
3 = (2)*1             3 = (2)*1               Brown:      situation B’ equal 
situation B”, and A’ different C’.
3 = (2)*1             3 = 1*(2)

It could be argued that Brownian partitions are not so much involved 
into differences as it is claimed. The reason of this argument is this: 
the internal structure of the Brownian number 3 with ()()(); ()(()); 
(()) is considering only one internal difference, namely ()(()) = (())(). 
The other two partitions, ()()() and (()) are internally homogenous, 
and are therefore not representing internal differences.

For the Mersenne calculus, the two cases ()(()) and (())() are repre-
senting internal differences albeit they are structurally symmetric. In 
other words, this reflection about different thematizations involves a 
kind of a meta-distinction over the distinctive ‘object’ represented by 
the chain of brackets. Hence, three in series and 3 in parallel are 
equal considering the complexity of their internal differences. One 
bracket and two superposed brackets, or two superposed bracket and 
one bracket are realizing an internal difference. 

From a category-theoretic point of view, questions of bifunctoriality 
between “serial” and “parallel” constellations with intermediary cases 
are obvious but not yet considered in Brownian calculi.
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For the Mersenne calculus, the two cases ()(()) and (())() are repre-
senting internal differences albeit they are structurally symmetric. In 
other words, this reflection about different thematizations involves a 
kind of a meta-distinction over the distinctive ‘object’ represented by 
the chain of brackets. Hence, three in series and 3 in parallel are 
equal considering the complexity of their internal differences. One 
bracket and two superposed brackets, or two superposed bracket and 
one bracket are realizing an internal difference. 

From a category-theoretic point of view, questions of bifunctoriality 
between “serial” and “parallel” constellations with intermediary cases 
are obvious but not yet considered in Brownian calculi.

Deeper than sets?

"Is it possible to provide an even deeper foundation for mathe-
matics? A set is a particular type of distinction, namely, a distinc-
tion that creates a one from a many. But not every distinction 
is a set. For example, logical operators such as not are not sets. 
Thus, even more fundamental than the notion of a set is the 
notion of distinction, for every set is defined or created by mak-
ing a distinction between what is contained in the set, and what 
is not (e.g., the set itself). So, the Pythagorean maxim then 
becomes: everything is made of distinction.” 
Thomas J. McFarlane, Distinction and the Foundations of Arith-
metic, 2011
http://www.integralscience.org/lot.html 

Comment
Despite the interesting combinatorial results, there is some criticism to 
mention.
Klein’s approach is ad hoc and is relating to George Spencer Brown’s 
calculus of indication which itself is also not giving a systematic intro-
duction of the decisions fundamental for the indicational calculus.
There is no graphematic system which could give a systematic legitima-
tion for the new intuition of “Organic Numbers".
Historically, there is also no mention of the work of Dieter Schadach et 
al at the BCL (1960s) towards combinatorial studies of different kinds 
of partitions for a theory of living systems and bio-computing.

The decision of “counting of the number of parenthesis when there is 
no significance to the order” is obviously of importance for the Brown-
ian calculus, and to point to this “topological invariance” by Klein is 
supporting the approach of Varga as it is elaborated in my own con-
structions.
Klein: ”For instance, from now on,
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no significance to the order” is obviously of importance for the Brown-
ian calculus, and to point to this “topological invariance” by Klein is 
supporting the approach of Varga as it is elaborated in my own con-
structions.
Klein: ”For instance, from now on,

JN JJNN = JJNN JN."

This is basic for the Brownian calcu-
lus.

The other equally reasonable decision is : For instance, from now on,

JN JN= JJNN.

This is basic for the complementary Mersenne calculus.

But for the same reasons we could state “counting of the number of 
parenthesis when there is no significance to the number of the 
‘balanced’ parenthesis”, the permutations are counting. That is, 
()()=(()). Hence, the other decision is delivering 

  JN JN JN; JJNN JN; JN JN JJNN; JN JJNN JN; JJN JNN; JJNN JN JN;

JJNN JN JJNN instead of JN JN JN; JN JJNN; JJN JNN; JJJNNN .

 This corresponds to:

      
        aaa;    bba;  aab;      aba      abb    baa        bab      instead of  
aaa;   aab;   abb;  bbb (abc).

a b a a a b b
a b a b b a a H7L
a a b a b a b

()()();  (())();  ()()(());  ()(())();  (()());  (())()();  (())()(())  :  The  order  has  to  be
marked. Therefore 6 brackets are not enough.

The difference between Klein’s and the proposed approach is, again, 
that the introduced new mathematical languages are well founded and 
located in a system of graphematics.

We might argue, if this decision makes sense for the Brownian calcu-
lus it equally will make sense for the Mersenne calculus too. And obvi-
ously, if we abandon both requisites, we get the tritogrammatic calcu-

lus, with :JN JN JN; JN JJNN>.

With those steps we are back again in the game of (semiotics, indica-
tion, differentiation, tritogrammatics).
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With those steps we are back again in the game of (semiotics, indica-
tion, differentiation, tritogrammatics).

Semiotic convention

semiotics
á ä

Brwown Mersenne
ä á

tritogrammatics

1.1.4. Deutero-numbers

Klein’s second-level partitions can be interpreted as an analysis of the 
internal structure of the deutero-numbers of the general graphematic 
system of inscription. In contrast to trito-numbers and the importance 
of locality of monomorphies, deutero-numbers are non-local. The 
order of their kenograms (sub-numbers) is irrelevant, and therefore 
there are no monomorphies in the sense of tritograms involved. 
Deutero-numbers are the partitions of a number.

Deutero-numbers 
P(4) = 5,
spnH4L = 11 

P(4) : [4]-[3,1]-[2,2]-[2,1,1]-[1,1,1,1].

spn(4): (3); ()(2); (1)(1); ()()(1); (()()()).

Recursivity for deutero-numbers (partitions)
According to Morphogrammatik, p. 74 we get :

Deutero-number :D = Bp 1, ..., pmaxF

Number of Deutero- successors :

n DTS JDN = 2+ ‚

i=1

max-1

sign Jp i-p i+1N .

Algorithm for Deutero- succession in ML :

fun DTS D =
[((pos 1 D)+1)::(tl D)] @
(remnils (map (fn i => if sign((pos i D) - (pos (i+1) D)) = 1
then replacepos (i+1) D ((pos (i+1) D)+1)
else [])
(fromto 1 ((length D)-1)))) @
[D@[1]]
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fun DTS D =
[((pos 1 D)+1)::(tl D)] @
(remnils (map (fn i => if sign((pos i D) - (pos (i+1) D)) = 1
then replacepos (i+1) D ((pos (i+1) D)+1)
else [])
(fromto 1 ((length D)-1)))) @
[D@[1]]

Rule

B1F œ Deutero n DTS JDN œ Deutero.

Example for n DTS JDN

D n DTS JDN DTS 1, . . . , DTS
nDTSKDO

B3, 1F 3 BB4, 1F, B3, 1F, B3, 1, 1FF

B3, 2, 1F 4 BB4, 2, 1F, B3, 3, 1F, B3, 2, 2F, B3, 2, 1, 1FF

Addition of Deutero - numbers

Addition "+

d " of D = Bp 1, . . . , pmaxDF and E = Bq 1, . . . , qmaxEF

is defined by :

Deutero - addition

D = Bp 1, . . . , pmaxDF , E = Bq 1, . . . , qmaxEF

Bp 1, . . . , pmaxDF + d Bq 1, . . . , qmaxEF =

:Bp 1, . . . , pmaxD, q 1, . . . , qmaxEF,

Bp 1, . . . , p i - 1, p i -1, p i+1, . . . , pmaxD,

q 1, . . . , q j - 1, q j -1, q j+1, . . . , qmaxE, 1F>.

Examples for deutero-additions

D = C1G , E = C1G :

C1 G + d C1G = ;C2G, C1, 1G?.

D = ,
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D = C2G , E = C1G :

C2 G + d C1G = ;C3G, C2, 1G?.

D = C2G , E = C1, 1G :

C2G + d C1, 1G = ;C3, 1G, C2, 1, 1G?.

D = C1, 1G , E = C1, 1G :

C1, 1G + d C1, 1G = ;C1, 1, 1, 1G, C2, 1, 1G?.

D = C2, 1G , E = C1, 1G :

C2, 1G + d C1, 1G = ;C3, 1G, C2, 2G, C2, 1, 1G?.

D = C3, 1G , E = C1G :

C3, 1G + d C1G = ;C4, 1G, C3, 2G, C3, 1, 1G?.

D = C3, 2, 1G , E = C1G :

C3, 2, 1G + d C1G = ;C4, 2, 1G, C3, 3, 1G, C3, 2, 2G, C3, 2, 1, 1G?.

Deutero-graph

Numeric Deutero-number rules

R0 : C1 G

R1 .1 : CnG Cn + 1G Cn, 1 G

R1 .2 : C1, 1G Cn + 1, 1 G C1, 1, 1G

R1 .3 : Cn, 1G Cn + 1, 1G Cn, 2G Cn, 1, 1G
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Numeric Deutero-number rules

R0 : C1 G

R1 .1 : CnG Cn + 1G Cn, 1 G

R1 .2 : C1, 1G Cn + 1, 1 G C1, 1, 1G

R1 .3 : Cn, 1G Cn + 1, 1G Cn, 2G Cn, 1, 1G

Second-level partitions introduced by Moshe Klein

"Considering a more interesting example, since {3}, {2 + 1} 
and {1 + 1 + 1} are the partitions of 3, we believe that now it 
does in fact make sense to look at second-level partitions. 

As before, it is clear that it is meaningless to perform sub-parti-
tions on the partition {1 + 1 + 1}, and on the partition {3}, as 
this would lead again to an infinite number of sub-partitions, via 
recursion. Thus, using the number 3 to help us finding a proper 
definition, we see that recursions may be used, yet must be 
applied carefully.
 
For instance, in that case, it only makes sense to perform a sub-
partition on the element {2 + 1} only. The number 2 has two 
different partitions:  “partition-a" which is {2} and  “partition-b" 
which is {1 + 1}. The process of performing a sub-partition on 
the number 3 by using a partition of the number 2 will thus lead 
to splitting the partition {2 + 1} into two sub-partitions: if we 
replace the summand 2 in the element {2 + 1} by its “partition-
a" we get {{2}+ 1} and if we replace the summand 2 in the 
element {2 + 1} by its  “partition -b” we get {{1 + 1} + 1}. As 
this results from a sub-partitioning of the original partition {2 + 
1}, we consider the element {{1 + 1} + 1} to be different from 
the element {1 + 1 + 1}, for the reasoning explained above.” 
(Klein)

Continuing Moshe Klein’s approach to second-level partitions we get:

Theorem 3 The number of sub-partitions of n, spn, satisfies the follow-
ing recurrence relation
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Continuing Moshe Klein’s approach to second-level partitions we get:

Theorem 3 The number of sub-partitions of n, spn, satisfies the follow-
ing recurrence relation

sp n = 1 + „‰

j=1

m sp k j + s j -1

s j
JMoshe KleinN

where the sum is over all partitions

l = Jk 1N
s 1 Jk 2N

s 2 ... JkmN
sm of n such that

n-1 ¥ k 1 > k 2 > ... > km ¥ 1.

n PJnN sp n diff

1 1 1 -

2 2 2 -

3 3 4 1
4 5 11 6
5 7 30 23
6 11 96 85

diff = sp n - P JnN

Hence, for the number 3 with 3 partitions

we get 3 partions plus 1 sub-partition :

:3>, ::2>+1>, ;;1 + 1? + 1?, :1+1+1>.

1.1.5. Second-level partitions for trito-number

In general, the new second-level partitions has to realize the condi-
tions of the type of partition in question. Hence, trito-second level 
partitions are following the trito-rules, and Mersenne 2-level distinc-
tions are following their Mersenne rules.

So, what are the advantages of a “second-level partition” for the 
understanding of graphematic combinatorics?

As for deutero-numbers which are represented as partitions, sec-
ond-level differentiation of trito-numbers are directly accessible. 
Trito-numbers, which are mathematically represented by the Stir-
ling numbers of the second kind, are preserving the order of parti-
tions. Therefore, a deutero-number 5 = [3,1,1] is represented by 3 
trito-numbers: [3,1,1], [1,3,1], [1,1,3] or in a different notation, 
[aaabc], [abbba], [abccc], for n=5, m=3.
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In general, the new second-level partitions has to realize the condi-
tions of the type of partition in question. Hence, trito-second level 
partitions are following the trito-rules, and Mersenne 2-level distinc-
tions are following their Mersenne rules.

So, what are the advantages of a “second-level partition” for the 
understanding of graphematic combinatorics?

As for deutero-numbers which are represented as partitions, sec-
ond-level differentiation of trito-numbers are directly accessible. 
Trito-numbers, which are mathematically represented by the Stir-
ling numbers of the second kind, are preserving the order of parti-
tions. Therefore, a deutero-number 5 = [3,1,1] is represented by 3 
trito-numbers: [3,1,1], [1,3,1], [1,1,3] or in a different notation, 
[aaabc], [abbba], [abccc], for n=5, m=3.

deutero (3) : [13],  [11, 22], [11,11,11]

trito (3)     : [13], [12, 21], [11, 2 1, 1 1F, [11, 22], [11, 2 1, 31].

2-trito(3)   : [12, 21] = [(1111N, 2 1], 

                    [11, 22] = [11, (21, 2 1)]

trito (5)     : [11, 2 3, 3 1], 

2-trito (5)  : [11, J2 2 2 1N, 3 1], [11, J2 1 2 2N, 3 1], 

[11, J2 1 2 1 2 1N, 3 1]

Deutero(4): [11,11,11,11], ...

Second-level Stirling numbers
A trito-2-partition is counted by the 2-partition of number m added 
by the permutation of detero(m, n):
m = 3, n = 2: 
2-deutero(3): pfn(3) = 4, 
perm(3,1), perm(3,3) = 0
perm(3, 2) - 1 = 2
2-trito(3) = 4 + 2 = 6

perm(3,2)  = (1,1,2), (1,2,1), (1,2,2); 
perm(3, 1) = (1,1,1)
perm(3,3)  = (3).

2-deutero(3): {3}, {{2}+1}, {{1+1}+1}, {1+1+1}
2-trito(3)    : {3}, 
                     {{2}+1}, {1+{2}}, 
                     {{1+1}+1},{1 +{{1+1}},
                     {1+1+1}.

Sn2(4): 1,7,6,1.
2-Sn(4,4) and 2-Sn(4,1) have no second-level partitions.
Second-level partitions occur for 2-Sn2(4, 2) and 2-Sn2(4, 3). 

Second-level types of addition and reflectional order of 
multi-level partitions
It should be reflected that a first-level and a second-level opera-
tion of addition based on first-order and second-order distinctions 
has to be differentiated. In a term like “{1 +{{1+1}}" there are 2 
different kinds of additions involved: a first-level addition “+1”  
and a second-level addition "+2”, hence the term is: “{1 
+1{{1+21}}". Further more, a comparison of both levels of differen-
tiation involves a third kind of additions. This third level might func-
tion as the level where the differences of the reflections are homog-
enized to the level 3 as level zero.

This distinction is eliminated by M. Klein with:
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Second-level types of addition and reflectional order of 
multi-level partitions
It should be reflected that a first-level and a second-level opera-
tion of addition based on first-order and second-order distinctions 
has to be differentiated. In a term like “{1 +{{1+1}}" there are 2 
different kinds of additions involved: a first-level addition “+1”  
and a second-level addition "+2”, hence the term is: “{1 
+1{{1+21}}". Further more, a comparison of both levels of differen-
tiation involves a third kind of additions. This third level might func-
tion as the level where the differences of the reflections are homog-
enized to the level 3 as level zero.

This distinction is eliminated by M. Klein with:

"Either{{1+1}+{1+{2}}} or {{1+1}+{1+{1+1}}}. As long 
as there are more properties to test, we may still find that 
finally all balls are distinguishable. [...] We see every natural 
number as a superposition of its partitions. We take this 
research one step further and go beyond the partitions by using 
recursion.” (M. Klein, Hilbert’s Sixth Problem)

From the standpoint of a theory of reflection (Gunther) which takes 
into account the difference of the levels of reflection (distinction), 
it would be more interesting to study the reflectional properties of 
the process of “nivilation” of partitions towards a conglomerate of 
indistinguishable elements instead of the results of the elimination 
of the difference alone. Hence, the case of “{1 +1{1+21}}" implies 
two levels. Numbers like, 
             5 = {{1+1}+{1+{1+1}} becomes 
{{1+21}+1{1+2{1+31}} and Ordrefl(5) = (2,1,2,3) or
             6 = {1 + 2 + 3} = {1 +1{1+21} +1{1 +2{2}}} = {1 
+1{1+21} +1{1 +2{1 +31}}}, 
involves 3 levels of distinctions. And the order of the distinctions is 
(+1,+2,+1,+2,+3) for number 6, i.e. Ordrefl(6) = (1,2,1,2,3).
A multi-level partition of a number might have different results.

Reflectional property Ordrefl(m)

This intriguing property of numbers Ordrefl(m) is introducing a 
reflectional level of differentiation of numbers which is concerned  
only with the reflectional and differential character of numbers and 
is abandoning any references to counting or numerating objectivis-
tic or mentalistic objects as legitimation and aim of the process of 
counting with numbers. 

How are Klein’s “Number of sub-partitions” related to the reflec-
tional order of a number by Ordrefl(m)?

With that, an new step towards Gunther’s project of “philosophical” 
numbers might be encouraged.

Kenogrammatic numbers, like trito-, deutero- and proto-numbers 
are based on kenogrammatic abstractions from the identity of 
signs. This just introduced reflectional abstraction is based on the 
reflectional levels of second-level partitions of ordinary natural 
numbers. That is, it counts the reflectional levels needed to subli-
mate (aufheben) all numerical differences of a natural number in a 
multi-level partition. As the “Stirling Turn” shows, kenogrammatic 
numbers, like proto-, deutero- and trito-numbers are based on 
partitions and distinctions and not on the action of counting 
objects. Hence, the are at least two different levels to deal with 
partitions, the first-level and the second-level partition as constitu-
tions of kenogrammatic numbers. 
In “Number and Logos”, Gunther has shown the mediating charac-
ter of kenograms as mediating between numbers and concepts 
(logos). 
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Reflectional property Ordrefl(m)

This intriguing property of numbers Ordrefl(m) is introducing a 
reflectional level of differentiation of numbers which is concerned  
only with the reflectional and differential character of numbers and 
is abandoning any references to counting or numerating objectivis-
tic or mentalistic objects as legitimation and aim of the process of 
counting with numbers. 

How are Klein’s “Number of sub-partitions” related to the reflec-
tional order of a number by Ordrefl(m)?

With that, an new step towards Gunther’s project of “philosophical” 
numbers might be encouraged.

Kenogrammatic numbers, like trito-, deutero- and proto-numbers 
are based on kenogrammatic abstractions from the identity of 
signs. This just introduced reflectional abstraction is based on the 
reflectional levels of second-level partitions of ordinary natural 
numbers. That is, it counts the reflectional levels needed to subli-
mate (aufheben) all numerical differences of a natural number in a 
multi-level partition. As the “Stirling Turn” shows, kenogrammatic 
numbers, like proto-, deutero- and trito-numbers are based on 
partitions and distinctions and not on the action of counting 
objects. Hence, the are at least two different levels to deal with 
partitions, the first-level and the second-level partition as constitu-
tions of kenogrammatic numbers. 
In “Number and Logos”, Gunther has shown the mediating charac-
ter of kenograms as mediating between numbers and concepts 
(logos). 

Natural numbers in their linear order are the basic structure for the 
paradigm of Western mathematics. Distinction in the paradigm is 
reduced to a comparison of numbers as being directly comparable 
(equal, bigger smaller). No produced number in this framework is 
able to realize a differentiation onto itself. 

An involvement of the reflectional order of a number invites, at 
first, to distinguish between balanced, under- and over-balanced 
reflectional configurations.
A balanced reflectional order is given if all the reflectional levels 
are of the same degree. Obviously, under-balanced order is given 
if the possible levels are not all implied. And an over-balanced situa-
tion is given if there are higher orders of distinctions involved as 
the complexity of the isolated number on focus is able to realize. 
Such numbers are members of more complex numerical constella-
tions where the neighbor number of higher reflectional order is 
intervening with the number under consideration. There might be 
much more interesting distinctions to be found. 
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An involvement of the reflectional order of a number invites, at 
first, to distinguish between balanced, under- and over-balanced 
reflectional configurations.
A balanced reflectional order is given if all the reflectional levels 
are of the same degree. Obviously, under-balanced order is given 
if the possible levels are not all implied. And an over-balanced situa-
tion is given if there are higher orders of distinctions involved as 
the complexity of the isolated number on focus is able to realize. 
Such numbers are members of more complex numerical constella-
tions where the neighbor number of higher reflectional order is 
intervening with the number under consideration. There might be 
much more interesting distinctions to be found. 

Under-balanced situation: 
5 = {{1+1}+{1+{1+1}} considered as {1 +1{1+21} +1{1 
+2{2}}}, with Ordrfl(5) = (1,2,1,2)
5 = {{1+1}+{1+{1+1}} considered as  {1+1+1+1+1}.
Balanced situation:  
5 = {{1+1}+{1+{1+1}} considered as {1 +1{1+21} +1{1 +2{1 
+31}}}, with Ordrfl(5) = (1,2,1,2, 3)
5 = {{1+1}+{1+{1+1}} considered as {{1+31}+3{1+3{1+31}},
Over-balanced situation: 
5 = {{1+1}+{1+{1+1}} considered as {1 +4{1+21} +1{1 +2{1 
+31}}}, with Ordrfl(5) = (4,2,1,2,3)

Therefore, additionally to the levels of partitions of a natural num-
ber, its reflectional order is to be considered as a further quality of 
numbers to towards the “natural” number's final philosophical 
elucidation.

Gunther’s monomorphies
"In order to show the method in some detail we introduce two 
new concepts which we may call "monomorphy" and 
"kenogrammatic equivalence." A monomorphy is the set of all 
iterations of an individual kenogram. The boundary case of such 
monomorphy is a single kenogram. 
It is irrelevant whether a monomorphy is interrupted by one or 
more kenograms of different shape. It is only for the purpose of 
a simpler demonstration that we are going to write our 
monomorphies below in uninterrupted sequences.”
http://www.vordenker.de/ggphilosophy/gg_logic_structure.pdf 

1.1.6. Mersenne calculi

Mersenne (occurence): partitions
For Mersenne calculi the interest is not in the occurence of the ele-
ments on an identity level. Two homogeneous occurrences of a string 
or number like [aa] and [bb] are considered as equal, (aa) =Mers (bb), 
while the differences of permutations of the occurrences of a string or 
number are of interest, and are therefore differentiated and distin-
guished, hence (ab)≠(ba). This points to the fact that Mersenne terms 
are not sequences of atomic signs and also no heaps but partitions of 
sequences of distinctions.

Two groups might be equal in complexity and complication, i.e. 
card(ind(2,2)) = card(occur(2,2)) = 3 but distinguished by their crite-
ria of membership.
One membership is asking for different properties, the other for differ-
ent constellations.
Different properties are defined by the indicational case: {aa, ab, bb}, 
while different constellations of the same properties are defined by the 
Mersenne constellations: {aa, ab, ba}.

For the Mersenne case, one might insist that two couples of the same 
property are the same. It doesn’t matter if two different couples (aa) 
and (bb) are of the same property, i.e. (aa)=Mers(bb). One occurrence 
of such a homogeneous couple is enough to be accepted. What counts 
are the differences of a couple, i.e. (ab) and (ba), i.e. (ab) ≠Mers(ba).

In dual contrast, for the indicational case, one might insist that two 
couples of the same property are strictly different. It matters if two 
different couples (aa) and (bb) are of the same property or not. This 
defines the distinction. They have to be accepted as two different occur-
rences. What doesn’t count as a distinction are the differences of a 
couple, i.e. (ab) and (ba). Both are identified and accepted as the 
same, (ab) =Ind(ba). 

Following the new investigations into second-level partitions by Moshe 
Klein it has to be questioned how those concepts are applicable for 
Mersenne differentiations too.

Generalization
Mersenne calculi might be generalized to: Mers(m, n) = mn - (m - 1).
Example

Mers(3, 2) = 32 - (3-1) = 7
Mers(3, 2) = {aa, ab, ac, ba, bc, ca, cb}, with aa = bb = cc.
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Mersenne (occurence): partitions
For Mersenne calculi the interest is not in the occurence of the ele-
ments on an identity level. Two homogeneous occurrences of a string 
or number like [aa] and [bb] are considered as equal, (aa) =Mers (bb), 
while the differences of permutations of the occurrences of a string or 
number are of interest, and are therefore differentiated and distin-
guished, hence (ab)≠(ba). This points to the fact that Mersenne terms 
are not sequences of atomic signs and also no heaps but partitions of 
sequences of distinctions.

Two groups might be equal in complexity and complication, i.e. 
card(ind(2,2)) = card(occur(2,2)) = 3 but distinguished by their crite-
ria of membership.
One membership is asking for different properties, the other for differ-
ent constellations.
Different properties are defined by the indicational case: {aa, ab, bb}, 
while different constellations of the same properties are defined by the 
Mersenne constellations: {aa, ab, ba}.

For the Mersenne case, one might insist that two couples of the same 
property are the same. It doesn’t matter if two different couples (aa) 
and (bb) are of the same property, i.e. (aa)=Mers(bb). One occurrence 
of such a homogeneous couple is enough to be accepted. What counts 
are the differences of a couple, i.e. (ab) and (ba), i.e. (ab) ≠Mers(ba).

In dual contrast, for the indicational case, one might insist that two 
couples of the same property are strictly different. It matters if two 
different couples (aa) and (bb) are of the same property or not. This 
defines the distinction. They have to be accepted as two different occur-
rences. What doesn’t count as a distinction are the differences of a 
couple, i.e. (ab) and (ba). Both are identified and accepted as the 
same, (ab) =Ind(ba). 

Following the new investigations into second-level partitions by Moshe 
Klein it has to be questioned how those concepts are applicable for 
Mersenne differentiations too.

Generalization
Mersenne calculi might be generalized to: Mers(m, n) = mn - (m - 1).
Example

Mers(3, 2) = 32 - (3-1) = 7
Mers(3, 2) = {aa, ab, ac, ba, bc, ca, cb}, with aa = bb = cc.

1.1.7. Interactions and consequences
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1.1.7.

Interactions and consequences

Interaction
How are the two different semiotic types, Mersenne and indication, 
interacting?

It shouldn’t be a serious problem to realize an interaction between an 
indicational and a Mersenne system if such an interaction is aware of 
its complementary properties. Hence, an implementation of both as 
interacting systems could enable new emerging properties of system 
dynamics on a fundamental semiotic level.
What has to be developed is thus a double calculus of interaction 
between Mersenne and Indicational formal systems.

Even on such a trivial level of reflection it is more than clear that the 
difference between Mersenne and Spencer Brown are definitive. On 
the same level of reflection it is more than clear too, that not only 
indication but also Mersenne, is incompatible with the ‘semiotics’ of 
two-valued logic or Boolean algebra. All three ‘semiotics’ are occupy-
ing different independent levels in the graphematic system of 
symbolization.

Logic(2,2)=(aa,ab,ba,bb).
trito(2, 2) = {aa, ab}.

[trito(2,2) is coinceding with deutro(2,2) and proto(2, 2)]
logic

ã é

Mersenne Indication

Translation

Mersenne : model JMN = :JaaN, JabN, JbaN>

Spencer-Brown: model JBN = :JaaN, JabN, JbbN>.

model JMN : JaaN JabN JbaN

ã é å ç

:
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model JBN : JaaN JbbN JabN

Consequences for system theory
There is a lot of argumentation for a indicational system theory in the 
sense of Spencer Brown and Niklas Luhmann.
System theoreticians are not considering the graphematic questions 
but are mesmerized by the recursive circularity of the re-entry form. 

Ind:    non(aa) = (bb) : the negation of the system is the enviroment,
          non(ab) = (ab) : the negation of the system-environment is 
the system-environment.

Mers:  non(aa) = (aa) : the negation of the system (environment) is 
the system (environment),
          non(ab) = (ba) : the negation of the system-environment is 
the environment=system.

Blending and de-sedimentation
The intriguing situation of GSB’s calculus of indication (CI) that is func-
tion as the hidden obstacle to its understanding is the fact of multiple 
coincidences with other calculi. For the basic beginnings of the CI the 
coincidence is given by the fact that the CI and the beginnings 
(axioms) Boolean algebra and semiotics are covering and blinding 
each other. A further and new coincidence appears with the Mersenne 
calculus that is understood as complementary to the CI. Further more, 
there is, at least for the beginnings, a close similarity to the trito- and 
deutero-structure of kenogrammatics.
Without a de-sedimentation and translocation of the different struc-
tures, an understanding of the CI (and the others too)is in fact impossi-
ble and leads to the well known misunderstandings, misconceptions 
and blinded defensive propaganda.

1.1.8. Paradoxes, reentry and recursivity

Reentry
What would a formal system theoretic application of Mersenne calculi 
look like?
Re-entry forms are not a privilege of the calculus of indication. Reen-
try for the calculus of indication is well studied. It runs similar like all 
other constructions too: a fixed point construction is achieved with the 
logical property of a contradiction, i.e. f(f) = f. That is, (aa) ≠ (bb) 
holds semiotically for the construction of the logical contradiction. This 
paradoxical situation then is conceptually ‘resolved’ with distributions 
in time or in space or both.

For Mersenne systems with <aa> = <bb> there is no contradiction 
produced by self-application. A new kind of conflicts appears in a con-
struction which claims <ab> = <ba>. This contradicts the ‘axioms’ of 
Mersenne systems in a complementary sense as the claim (aa) = (bb) 
contradicts the ‘axioms’ of the indicational system. 

The term “(aa) = (bb)" is easily replaced by the Russell paradox “RR = 
Not(RR)". Obviously a statement like "(aa) = (ab)" is even a stronger 
contradiction and not easily to deduce if at all.
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Reentry
What would a formal system theoretic application of Mersenne calculi 
look like?
Re-entry forms are not a privilege of the calculus of indication. Reen-
try for the calculus of indication is well studied. It runs similar like all 
other constructions too: a fixed point construction is achieved with the 
logical property of a contradiction, i.e. f(f) = f. That is, (aa) ≠ (bb) 
holds semiotically for the construction of the logical contradiction. This 
paradoxical situation then is conceptually ‘resolved’ with distributions 
in time or in space or both.

For Mersenne systems with <aa> = <bb> there is no contradiction 
produced by self-application. A new kind of conflicts appears in a con-
struction which claims <ab> = <ba>. This contradicts the ‘axioms’ of 
Mersenne systems in a complementary sense as the claim (aa) = (bb) 
contradicts the ‘axioms’ of the indicational system. 

The term “(aa) = (bb)" is easily replaced by the Russell paradox “RR = 
Not(RR)". Obviously a statement like "(aa) = (ab)" is even a stronger 
contradiction and not easily to deduce if at all.

Kauffman
"The paradox occurs when we ask whether R can be a member 
of R.
For if
                                                    Rx = Not(xx)
then, substituting R for x, we have
                                                    RR = Not(RR).
R is a member of R exactly when R is not a member of R.” (L. 
Kauffman)

One trial more:

"Suppose we have an operator or function F, and we define a 
new operator g by
                                         gx = F(xx).
The operator g duplicates x, and applies F to the duplicate xx. 
Substituting g for x we have
                                         gg = F(gg).
The operator F now has a fixed point gg, and we see that F(gg) 
is self-referential in that it “talks” about itself. This pattern is 
called the Church-Curry Fixed Point Theorem. The Fixed Point 
Theorem and Gödel’s Theorem are but two sides to the same 
coin.” (Kauffman, The Small Machine, p. 113)

Some Mersenne constellations
(1) No paradox occurs in a Mersenne constellation when we ask 
whether R can be a member of R.
For if
                                                    Rx = Not(xx)
then, substituting R for x, we have
                                                    RR = Not(RR).
R is a member of R exactly when R is not a member of R. But “RR = 
Not(RR)" is not a contradiction in Mersenne because the axiom "(aa) 
=Mers (bb)" holds. 

Hence, 
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Some Mersenne constellations
(1) No paradox occurs in a Mersenne constellation when we ask 
whether R can be a member of R.
For if
                                                    Rx = Not(xx)
then, substituting R for x, we have
                                                    RR = Not(RR).
R is a member of R exactly when R is not a member of R. But “RR = 
Not(RR)" is not a contradiction in Mersenne because the axiom "(aa) 
=Mers (bb)" holds. 

Hence, 

If

JaaN = Mers JbbN œ MERS

then

non JaaN = Mers JaaN œ MERS

A logical model to the Mersenne constellation, “non(aa) =Mers (aa)", 
might be found in an application of paraconsistent logics.

(2) Suppose we have a Mersenne operator or a function F, and we 
define a new operator g by
                                              gx = F(xx).
The operator g replicates x as xx, and applies F to the replicate xx. 
Substituting g for x we have
                                             gg = F(gg). 
The operator F now has a fixed point gg, and we see that F(gg) is self-
referential in that it “talks” to nobody. This pattern is called the 
Mersenne non-Church-Curry Fixed Point Theorem.

(3) A new kind of paradox occurs in a Mersenne constellation when 
we ask whether R can be a member of R.
For if
                                                    Rxy = perm(xy)
then, substituting R for xy, we have
                                                    RR = perm(RR).
R is a member of R exactly when R is not a member of R. But “RR = 
perm(RR)" is a contradiction in Mersenne because the axiom "(ab) ≠

Mers (ba)". 

Hence:
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(3) A new kind of paradox occurs in a Mersenne constellation when 
we ask whether R can be a member of R.
For if
                                                    Rxy = perm(xy)
then, substituting R for xy, we have
                                                    RR = perm(RR).
R is a member of R exactly when R is not a member of R. But “RR = 
perm(RR)" is a contradiction in Mersenne because the axiom "(ab) ≠

Mers (ba)". 

Hence:

If

JabN = Mers JbaN – MERS

then

perm JabN = Mers JabN – MERS

Slogan: Contradiction in Mersenne is identity of permutation.

In contrast, for the calculus of indication:

If ((ab) =Ind (ba)) œ IND then (perm(ab) =Ind (ab)) œ IND.
But:
If ((aa) =Ind (bb))– IND then (neg(aa) =Ind (aa)) – IND.

Slogan: Contradiction in the calculus of indication is identity of nega-
tion (difference).

(4) Suppose we have a Mersenne operator or a function F, and we 
define a new operator g by
                                              gx = F(xy).
The operator g replicates x as xy, and applies F to the replicate xy. 
Substituting g for xy we have
                                             gh = F(gg). 
But (ab) ≠ (aa) in Mersenne. 

Retrograde recursivity?
Both types of repetition, Indication and Mersenne, don’t have any retro-
grade feautures like retrograde recursivity in the sense of trito-sys-
tems.  An aspect of retrogradeness might occur for the Browninan 
case with the equivalence of permutative terms and for the Mersenne 
case with the equivalence of homogeneous terms. Both aspects which 
are not anymore purely identitive, with (aa) =Mers(bb) and (ab) 
=Ind(ba), might be connected to the kenomic levels of deutero- and 
trito-structures and with that to aspects of retro-recursivity. 

For just two kenograms for trito-systems, retrograde recursivity is 
very restricted.
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Retrograde recursivity?
Both types of repetition, Indication and Mersenne, don’t have any retro-
grade feautures like retrograde recursivity in the sense of trito-sys-
tems.  An aspect of retrogradeness might occur for the Browninan 
case with the equivalence of permutative terms and for the Mersenne 
case with the equivalence of homogeneous terms. Both aspects which 
are not anymore purely identitive, with (aa) =Mers(bb) and (ab) 
=Ind(ba), might be connected to the kenomic levels of deutero- and 
trito-structures and with that to aspects of retro-recursivity. 

For just two kenograms for trito-systems, retrograde recursivity is 
very restricted.

BaF

ã é

BaaF BabF

ã é ã é

BaaaF BaabF BabaF BabbF

Retrogradness is hidden and covered by the minimal complexity of 
two kenograms. Nevertheless, the succession of [a] appears as itera-
tion and as accretion determined by the preceding beginning [a]. This 
hints to the hidden retrogradness of the general case.
http://memristors.memristics.com/MorphoReflection/Morphogrammatics%20of%20R
eflection.html 

1.1.9. Possible applications

Classification systems, pattern recognition, automata theory, data 
types, complexity reduction, war propaganda.

Brownian mathematical noise-level reductor
"The consequences are of this arithmetical availability are sweeping.” 
[...] Principia mathematica. Allowing some 1500 symbols to the page, 
this represents a reduction of the mathematical noise-level by a factor 
of more than 40000.” (GSB, p. 117)

What’s the corresponding complementary mathematical Mersenne 
noise-reduction?

+ - + + + + + -

å å

a
a

b
b

a
b

b
a

a
a

b
b

a
b

b
a

Mersenne Indication

Computation system for the simulation of the cerebral cortex, Bern-
hard Mitterauer
http://www.google.de/patents?id=J0EdAAAAEBAJ 

Rhetorics in recent war propaganda
The left always was handicapped by the lack of appropriate analytical 
weapons. 
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Rhetorics in recent war propaganda
The left always was handicapped by the lack of appropriate analytical 
weapons. 

"The joint op-ed by Barack Obama, Nicolas Sarkozy and David 
Cameron published simultaneously in The Times, The Interna-
tional Herald Tribune, Al-Hayat and Le Figaro on 15 April 2011 
stated that 

"[Our goal]is not to remove Gaddafi by force. But it is impossi-
ble to imagine a future for Libya with Gaddafi in power." 

This statement brings together two contradictory notions: 
Gaddafi is not the target of the military campaign against Libya, 
yet it is unthinkable that he should remain in power. Such a 
stance perfectly ties in with the oxymoron arising from the 
humanitarian war: the merging of two mutually exclusive 
terms. This procedure has the effect of reversing the meaning 
of each concept. War is peace and peace is war.” (Jean-Claude 
Paye, Tülay Umay)
http://www.voltairenet.org/Waging-war-in-the-name-of-the 

Might it be possible that the mentioned war propaganda simply 
follows “unconsciously” the tricky features of the ‘paraconsistency’ 
of Mersenne calculi? And on the other hand, the Brownian calculus 
which is accepting truth and false, albeit it is claimed that the 
truth of the calculus is “deeper than truth”, but rejects the differ-
ence of the couples “truth/false” and “false/truth”. Even if Indica-
tion is declared as “deeper than truth”, the calculus of indication is 
strictly separating its terms from ‘truth’ and ‘false’. In contrast, 
Mersenne calculi are playing with the perfect coincidence of ‘truth’ 
and false’ at once. 
Now, to fool people, the media and the almighty UN, and to be 
able - at once - to legitimate your statements (actions), you sim-
ply have to mix the logical systems of your argumentation accord-
ing to the demands of the situation and jump between the gaps of 
your logical systems. 
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1.2. Calculus of mutual blending
1.2.1. Blending of Brownian and Mersenne semiotics

Indication calculi
Constellations

semiotics : aa ab ba bb

Mersenne :aa ab ba ..

Indication : aa ab .. bb

trito : aa ab .. ..
Logic

Indicational space = :aa, ab, bb> corresponds to :tt, ft ª tf, ff>,

Mersenne space = :aa, ab, ba> corresponds to :tt ª ff, tf, ft>.

Indication graph

Alphabet : a b

ã é ã é

Semiotics : aa ab ba bb

é ã

Indication : aa ab bb

Tritogram: aa ab
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Indicational graph signs

a

ã é

a a b
a b b

ã é ã é ã é

a a a b
a a b b
a b b b

ã é ã é ã é ã é

a a a a b
a a b a b
a a b b b
a b b b b

Indicational graph parenthesis; Klein

KO

ã é

KO KO KO KKOO KKOO

ã é ã é ã é

KO KO KO KO K1O KKO KOO KKKOOO

ã é ã é ã é ã é

KO KO KO KO ; KO KO K1O; KO K2O ; K1O K1O; K3O
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Indicational graph numeric

;1 1?

ã é

;1 2?, ;1 1 2 1?, ;2 2?

ã é ã é ã é

;1 3?, ;1 2 2 1?, ;1 1 2 2?, ;2 3?

ã é ã é ã é ã é

;1 4?, ;1 3 2 1?, ;1 2 2 2?, ;1 1 2 3? , ;2 4?

Numeric indicational rules

R1 : ;1 1?

R2 : ;1 1? ;1 2? ;1 1 2 1? ;2 2?

R3 .1 : ;1 n? ;1 n+1? ;1 n 2 1?

R3 .2 : ;2 n? ;2 n+1? ;1 1 2 n?

R3 .3 : ;1 n 2 n? ;1 n+1 2 n? ;1 n 2 n+1?

Context-free language with the grammar: SöSS|(S)|l is generating the proper 
paranthesis for formal languages. Brown’ s calculus of indication is abstracted from 
this context-free grammar by the abstraction:(())()=Ind()(()).

Indication graph K2, 3O

a b : Alphabet

ã é ã é

JaaN JabN JbaN J bb N : Semiotics J2, 2N

ã é ã é ãé ãé

aaa aab aba abb baa bab bba bbb : Semiotics J2, 3N

é ã é ã
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é ã é ã

:aaa> :aab> :abb> :bbb> : Indication J2, 3N

ã é

BaaaF BaabF BabaF BabbF : Tritogrammatics J2, 3N

é ã

aaa aab : Deuterogrammatics J2, 3N

Mersenne calculi
Mersenne graph

a b : Alphabet

ã é ã é

aa ab ba bb : Semiotics

aa ab ba : Mersenne

é ã

aa ab : Tritogrammatics

Semiotic- Mersenne- Trito- Deutero graph K2, 3O

a b : Alphabet

ã é ã é

aa ab ba bb : Semiotics J2, 2N

ã é ã é ãé ãé

aaa aab aba abb baa bab bba bbb : Semiotics J2, 3N

aaa aab aba abb baa bab bba : Mersenne J2, 3N

aaa aab aba abb :Tritogrammatics J2, 3N

é ã

aaa aab :Deuterogrammatics J2, 3N
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Mersenne graph

a b : Alphabet, semiotic

ã é ã é

aa ab ba bb : Semiotics, production

aa ab ba : Mersenne J2, 2N, abstraction

ã é ã é ã é

aaa bba aab aba abb baa bab : Mersenne J2, 3N,

continuation

é ã

aaa aab aba abb :Tritogrammatics J2, 3N,

abstraction

é ã

aaa aab : Deuterogrammatics J2, 3N,

abstraction
Comment
Because < aa > = Mers < bb >,
the prolongation of < aa > for the Mersenne tree has to consider both cases :
< aa > Ø 8 < aaa >, < aab >< and < aa > Ø < bba > .
The prolongation < aa > Ø <

bbb > is equivalent to the prolongation < aa > Ø < aaa >,
because < aa > = Mers < bb >, and therefore < bbb >= Mers < aaa > .
This observation doesn' t hold for compositions < abb >,
i.e. the part < bb > of < abb > is not equal < aa > .

Following the rules of Mersenne calculi the following tree is generated.
Again the rules have to accept the the strategies of accepting differences,
i.e. @abD ≠ @baD and abstracting from sameness, i.e. @aaD = @bbD.
The Mersenne specific step is given with the transition from @aD to @baD.
Because @aD Mers @bD the prolongation of @aD

has to accept this equality with the positionng of @b -D.
The full prolongation of @aD then is iteratively @baD.
An accretive prolongation

from @aD to @bbDwould be erased by tha fact of @aaD = @bbD.
The final boundary of the Mersenne calculus is given by the fact of the
2 - element semiotic alphabet 8a, b<. A prolongation to,
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2 - element semiotic alphabet 8a, b<. A prolongation to,
say by @bcD is excluded by definition.
This principle of continuation is repeated for the following steps of recursion.

Mersenne tree : 2 n - 1

a K1O

ã é

a a b

a b a K3O

ã é ã é ãé

a b a a a b b

a b a b b a a K7O

a a b a b a b
ã é

a a b b b a a a a a a b b b b

a a b b b a a b b b b a a a a K15O

a a b a a b b a a b b a a b b
a b a a b a b a b a b a b a b

Arithmetic notation for Mersenne tree

Numeric Mersenne tree : 2 n - 1

< 1 3 >

<2 2 1 1 >

<1 2 > < 1 2 2 1 >

< 1 1 2 1 1 1 >

< 1 1 > < 1 1 2 1 > < 1 1 2 2 >

< 2 1 1 2 >

< 2 2 > < 2 1 1 1 2 1 >
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Numeric Mersenne rules

R1 : ;1 1?

R2 .1 : ;1 n? ;1 n+1? ;2 n 1 1? ;1 n 2 1?

R2 .2 : ;1 n 2 n? ;1 n 2 n 1 1? ;1 n 2 n+1?

R2 .3 : ;2 n 1 n? ;2 n 1 n+1? ;2 n 1 n 2 1?

Mersenne numeric recursion

start : R1 : ;1 1?

Mersenne

= ≠ å : decision ;yes, no?

ã é n : operation ;R2 .1, R2 .2, R2 .3?

stop CMersG : iteration n n + 1

Mersenne 1-partition 2-partition

< aaa > : < 1 3 >

< bba > : < 2 2, 1 1 > < ;2 1 2 1?, 1 1 >

< aab > : < 1 2, 2 1 > < ;1 1 1 1?, 2 1 >

< aba > : < 1 1 2 1 1 1 > < 1 1 2 1 1 1 >

< abb > : < 1 1 2 2 > < 1 1 ;2 1 2 1? >

< baa > : < 2 1 1 2 > < 2 1 ;1 1 1 1? >

< bab > : < 2 1 1 1 2 1 > < 2 1 1 1 2 1 > .

First- and second- level partition tree

< 1 2 >

ã é
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< 1 3 > <2 2 1 1 > < 1 2 2 1 >

< ;2 1 2 1?1 1 > < ;1 1 1 1?2 1 >

ã é

Mersenne prolongations

prolong Mers < 1 1 > = < 1 2 >, < 1 1 2 1 >, < 2 1 1 1 >,

with < 1 1 > = < 2 1 >

prolong Mers < 1 2 > = < 1 2+1 >, < 2 2 1 1 >, < 1 2 2 1 > ,

with < 1 2 > = < 2 2 >,

prolong Mers < 1 1 2 1 > = < 1 1 2 1 1 1 >, < 1 1 2 1+1 >

prolong Mers < 2 1 1 1 > = < 2 1 1 1+1 >, < 2 1 1 1 2 1 > .

prolong Mers < 1 3 > = < 1 3+1 >, < 1 3 2 1 >, < 2 3 1 1 >,

with < 1 3 > = < 2 3 >

prolong Mers < 2 2, 1 1 > = < 2 2 1 1+1 > , < 2 2 1 1 2 1 > ,

prolong Mers < 1 2, 2 1 > = < 1 2, 2 1 1 1 >, < 1 2, 2 1+1 >,

prolong Mers < 1 1 2 1 1 1 > = < 1 1 2 1 1 1+1 >, < 1 1 2 1 1 1 2 1 >,

prolong Mers < 1 1 2 2 > = < 1 1 2 2 1 1 > , < 1 1 2 2+1 >

prolong Mers < 2 1 1 2 > = < 2 1 1 2+1 >, < 2 1 1 2 2 1 >

prolong Mers < 2 1 1 1 2 1 > = < 2 1 1 1 2 1 1 1 >, < 2 1 1 1 2 1+1 > .

Mersenne recursivity

< 1 1 > œ Sem < 1 1 > œ Mers

< 1 1 > œ Mers prolong Mers K < 1 1 > O œ Mers

Rule system for Mersenne

alph KMersO = ;a, b?

Rule1 : a

Rule2 : Mers KnO

R2 .1 : Mers KnO^a, n = K ;a i ... b j?

R2 .2 : Mers KnO^b, n = K ;a i ... b j?

R2 .3 : Mers - x^a, n = K ;x i = x j?O

Example for Mers K3O :
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Rule1 : a
Rule2 : R2 .1 : a aa

R2 .2 : a ab
R2 .3 : a ba.

Rule2KRule2O :

aa aaa, aab : R2 .1, R2 .2
aa bba : R2 .3
ab aba, abb : R2 .1, R2 .2
ba baa, bab : R2 .3

Rule2KRule2KRule2OO :

aaa aaaa, aaab
aaa bbba : R2 .3
aab aaba, aabb
bba bbaa, bbab
aba abaa, abab
abb abba, abbb
baa baaa, baab
bab baba, babb.

Mersenne recursion

start : R1 a

Mersenne

= ≠ å : decision ;R2 .1, R2 .2 or R2 .3 ?

ã é n : operation ;R2?

stop CMersG : iteration n n + 1

1.2.2. Recursive arithmetics for Mersenne and Brownian calculi

Recursive arithmetics for Mersenne calculi
Mersenne calculi are semiotic calculi combined with a specific abstraction over homo-
geneous sign sequences. Therefore, the machinery of recursive word arithmetic 
(Goodstein, Vuckovic, Pogorzelski) is directly applicable. Based on the recursive 
Mersenne successor function, operations like addition, inversion, multiplication, etc. 
are directly accessible to definition. The same holds for Brown calculi.
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Recursive arithmetics for Mersenne calculi
Mersenne calculi are semiotic calculi combined with a specific abstraction over homo-
geneous sign sequences. Therefore, the machinery of recursive word arithmetic 
(Goodstein, Vuckovic, Pogorzelski) is directly applicable. Based on the recursive 
Mersenne successor function, operations like addition, inversion, multiplication, etc. 
are directly accessible to definition. The same holds for Brown calculi.

In contrast to semiotic and numeric recursivity, i.e. recursivity in the mode of iden-
tity, Mersenne and Brown recursivity has to introduce a normal form (standard 
notation) selection from the possible semiotic reperesentations of Mersenne and 
Brown “strings” or “numbers”. Similar to the trito-normal form (tnf) for trito-
kenogrammatic operations. 

       

Recursion for Mersenne successor Succ

a œ Sign fl a œ Mers
x œ Mers hom , Succ HxL fl xa, xb, x a œ Mers
x œ Mers het , Succ HxL fl xa, xb œ Mers

Short :
Succ H0L = 0 : R1
Succ HxL = 8x^a, x^b, x^a< : R2 .1, R2 .2, R2 .3
Succ HxL = 8xa, xb< : R3 .1, R3 .3

x = Ix i ... x jM, i = j

mnf HxL : Mersenne normal form of x.

     

       

Addition
Sum Hx, oL = x
Sum Hx, Succ xL = Succ HSum Hx, yLL

Multiplication
Prod Hx, 0L = x
Prod Hx, Succ HyLL = Sum Hx, Prod Hx, yLL

Examples for Mersenne calculi

Addition Sum
Sum(a, 0) = a
Sum(a, Succ 0)  = Succ(Sum(0, a))
                         = Succ(a) = {aa, ab, ba}.                   : R2.x

Sum(a, Succ a) = Succ(Sum(a, a))
                        = Succ(aa, ab, ba) = {aaa, aab, bba; aba, abb; baa, bab}.

Sum(a, Succ aa) = Succ(Sum(a, aa))
                        = Succ(aaa, aab, bba),
                        = Succ(aaa) = {aaaa, aaab, bbba},        : R2.x
                        = Succ(aab) = {aaba, aabb},                 : R2.1, R2.2
                        = Succ(bba) = {bbaa, bbab}.                 : R2.1. R2.2

Sum(a, Succ aaa) = Sum(a,(aaaa, aaab, bbba) 
                            = {aaaaa, aaaab, bbbba; aaaba, aaabb; bbbaa, bbbab}.

Multiplication Prod
Prod(a, 0) = 0
Prod(a, Succ 0) = Sum(a, Prod(a, 0)) = Sum(a, 0)) = a
                        = Prod(a, a) = a
Prod(a, Succ a) = Sum(a, Prod(a; aa, ab, ba)) = Sum(a, (aa, ab, ba)) 
                        = {aaa, aab, bba; aba, abb; baa, bab}.
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Examples for Mersenne calculi

Addition Sum
Sum(a, 0) = a
Sum(a, Succ 0)  = Succ(Sum(0, a))
                         = Succ(a) = {aa, ab, ba}.                   : R2.x

Sum(a, Succ a) = Succ(Sum(a, a))
                        = Succ(aa, ab, ba) = {aaa, aab, bba; aba, abb; baa, bab}.

Sum(a, Succ aa) = Succ(Sum(a, aa))
                        = Succ(aaa, aab, bba),
                        = Succ(aaa) = {aaaa, aaab, bbba},        : R2.x
                        = Succ(aab) = {aaba, aabb},                 : R2.1, R2.2
                        = Succ(bba) = {bbaa, bbab}.                 : R2.1. R2.2

Sum(a, Succ aaa) = Sum(a,(aaaa, aaab, bbba) 
                            = {aaaaa, aaaab, bbbba; aaaba, aaabb; bbbaa, bbbab}.

Multiplication Prod
Prod(a, 0) = 0
Prod(a, Succ 0) = Sum(a, Prod(a, 0)) = Sum(a, 0)) = a
                        = Prod(a, a) = a
Prod(a, Succ a) = Sum(a, Prod(a; aa, ab, ba)) = Sum(a, (aa, ab, ba)) 
                        = {aaa, aab, bba; aba, abb; baa, bab}.

Recursive arithmetics for Brown calculi

       

Recursion for Brown successor Succ

a œ Sign fl a œ Brown
a œ Brown hom , Succ HaL fl aa, ab , bb œ Brown
x œ Brown hom , Succ HxL fl xa, xb œ Brown
x œ Brown perm , Succ HxL fl x

Ú
a, x

Ú
b œ Brown

Short :
Succ H0L = 0 : R1
Succ HaL = 8aa, ab , bb< : R2 .1, R2 .2, R2 .3
Succ HxL = 8xa, xb< : R3 .1, R3 .2
Succ HxL = 9x

Ú
a, x

Ú
b= : R4 .1, R4 .2

x
Ú
= Ix i, x j M , i ≠ j

bnf HxL : Brownian normal form of x.

  

Examples for Brown calculi

Addition Sum
Sum(a, 0) = a
Sum(a, Succ a) = Succ(Sum(a, a))
                        = Succ(aa, ab, bb) = {aaa, aab; abb; bbb}   : R2.x
                                                            with  {aba, bba} – bnf
Sum(a, Succ aa) = Succ(Sum(a, aa))
                          = Succ(aaa, aab, bba, bbb) 
                          = {aaaa, aaab, bbba; aaba, aabb; bbaa, bbab; bbbb}.
                                                          with  {aaba, bbaa, bbab} – bnf
Sum(a, Succ ab) = Succ(Sum(a, aa))
                          = Succ(aa, ab, bb) = {aaa, aab; abb; bbb}.

Sum(a, Succ bb) = Succ(Sum(a, aa))
                          = Succ(aa, ab, bb) = {aaa, aab; abb; bbb}.
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Recursive arithmetics for Brown calculi

       

Recursion for Brown successor Succ

a œ Sign fl a œ Brown
a œ Brown hom , Succ HaL fl aa, ab , bb œ Brown
x œ Brown hom , Succ HxL fl xa, xb œ Brown
x œ Brown perm , Succ HxL fl x

Ú
a, x

Ú
b œ Brown

Short :
Succ H0L = 0 : R1
Succ HaL = 8aa, ab , bb< : R2 .1, R2 .2, R2 .3
Succ HxL = 8xa, xb< : R3 .1, R3 .2
Succ HxL = 9x

Ú
a, x

Ú
b= : R4 .1, R4 .2

x
Ú
= Ix i, x j M , i ≠ j

bnf HxL : Brownian normal form of x.

  

Examples for Brown calculi

Addition Sum
Sum(a, 0) = a
Sum(a, Succ a) = Succ(Sum(a, a))
                        = Succ(aa, ab, bb) = {aaa, aab; abb; bbb}   : R2.x
                                                            with  {aba, bba} – bnf
Sum(a, Succ aa) = Succ(Sum(a, aa))
                          = Succ(aaa, aab, bba, bbb) 
                          = {aaaa, aaab, bbba; aaba, aabb; bbaa, bbab; bbbb}.
                                                          with  {aaba, bbaa, bbab} – bnf
Sum(a, Succ ab) = Succ(Sum(a, aa))
                          = Succ(aa, ab, bb) = {aaa, aab; abb; bbb}.

Sum(a, Succ bb) = Succ(Sum(a, aa))
                          = Succ(aa, ab, bb) = {aaa, aab; abb; bbb}.

Multiplication Prod
Prod(a, 0) = 0
Prod(a, Succ 0) = Sum(a, Prod(a, 0)) = Sum(a, 0)) = a
                        = Prod(a, a) = a
Prod(a, Succ a) = Sum(a, Prod(a; aa, ab, bb)) = Sum(a, (aa, ab, bb)) 
                        = {aaa, aab; abb; bbb}.

Comparision
Prod(a, Succ a)
Brown:      Sum(a, Prod(a; aa, ab, bb)) = 
                 Sum(a, (aa, ab, bb)) = 
                 {aaa, aab; abb; bbb}.
Mersenne:  Sum(a, Prod(a; aa, ab, ba)) = 
                 Sum(a, (aa, ab, ba)) =
                 {aaa, aab, bba; aba, abb; baa, bab}.

1.2.3. Systematic comparison

Mersenne tree

m m

ã é ã é

m m m m m

Brownian graph

m m m

é ã é ã

m m m m

systems properties relation repetition Ñ Ñ

semiotics non - commutative identity iterative Ñ Ñ

Brown commutative difference 2 - recursive Ñ Ñ

Mersenne non - commutative similarity 2 - recursive Ñ Ñ

trito non - commutative bisimilarity retrograde Ñ Ñ

deutero commutative Ñ Ñ Ñ Ñ

Indication : Mersenne :

J1 : :> :> = :> M1: :> :> = Ø

J2 : ::>> = Ø M2: ::>> = :>.

= Ø
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M1: :> 1.2 :> 1.2 = Ø

M2: ::> 1> 2 = ::> 2> 1 = ::>> 1.2 = :>

J1 : :> 1.2 :> 1.2 = :> 1.2 = :>

J2 : ::> 1> 2 = ::> 2> 1 = Ø.

Mersennne and Brown calculi are based on complementary abstrac-
tions over a 2-element semiotics. They are ‘unified’ in their common 
tritogrammatic system :([aa], [ab]).

(aa) and (bb) are not different from the point-view of Mersenne-differ-
ences. Hence, (a)(a)=(b)(b)= Ø, i.e., 
M1: { }{ } = Ø.
But (ab) and (ba) are different, i.e. a(b) is Mersenne-different from 
b(a), i.e., a(b) = a and b(a) = b, thus by abstraction  
M2: {{ }} = { }. 

Graphematic system of minimal distinction

Semiotic convention

semiotics

ã é

Brwown Mersenne

é ã

tritogrammatics
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Stirling turn

tritogrammatics

ã é

Brwown Mersenne

é ã

semiotics

Stirling turn

deutero

ã é

Brown trito Mersenne

é ã

semiotics

Definition

M = Jm, M 1, M 2 N

B = Jb, J 1, J 2 N

and m = :m 1, m 2>, b = :b 1, b 2>.

Theorem

M sim J iff M 1 sim J 2, M 2 sim J 1.

Proof

Axioms J and M are taken as

operators. Sets of elements are b and m.

J 1 Jm 2N = b 1, J 2 Jm 1N = b 2

M 1 Jb 2N = m 1, M 2 Jb 1N = m 2.

1.2.4. Interaction of Brown and Mersenne

40   Author Name



i.j i.j
i.j i.j

i.j i.j

i.j i.j

X

i.j i.j

i.j i.j i.j i.j
i.j i.j

Spencer = : , Ø>

Mersenne = : , « >.

Spencer : i.j i.j dual i.j i.j

Dual-Spencer : i.j i.j

= Ø

Ø JØN =

= Ø.

Mersenne :
i.j i.j

dual i.j
i.j

Dual-Mersenne : i.j
i.j

Semiotics is a permutation-variant system, and is supporting the rules 
of negation in 2-valued logic.
Brown and Mersenne systems have different permutation invariant 
properties. Mersenne is partition-variant, Brown is partition-invariant 
under permutation.
Tritogrammatic systems are permutation invariant in respect of parti-
tion and distinction for m=n=2.

Deutero- and proto-systems are sedimated by trito-systems of com-
plexity m=2. And therefore not accessible to reflection. 
http://www.thinkartlab.com/pkl/lola/Quadralectic%20Diamonds/Quadralectic%20Dia
monds.pdf 
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Semiotic models

M = Jm, M 1, M 2 N

B = Jb, J 1, J 2 N

and m = :m 1, m 2>, b = :b 1, b 2>.

m , b = :a, b>

model JMN = :JaaN, JabN, JbaN>

model JBN = :JaaN, JabN, JbbN>.

Translations

model JMN : JaaN JabN JbaN

ã é å ç

model JBN : JaaN JbbN JabN

Null

1.2.5. Logical interpretations

Semiotics: propositional logic
Because of the identity of the signs, the semiotic constellation Sem(2, 
n) is well founding the semantics but also the syntactics of proposi-
tional logic. 

Indicational semiotics: Brown  
p eq non(p), p eq {{p}}
Indicational semiotics is acting as the deep-structure of the calculus of 
indication of the Laws of Form.
Thus, the calculus of indication gets a proto-semantics in the form of 
its indicational semiotics. Both proto-semantics, the Mersenne and the 
Brownian, are based on graphematically independent systems that are 
in a complementary relationship.
Brown calculi are introduced be decisions based on a specific intuition. 
They are not reflecting explicitly their semiotic foundations.

Logically, it is declared that Brownian calculi are localized systemati-
cally “deeper than truth" (Varela). 
This property of being logically “deeper than truth” is emphasized not 
so much on the level of the basic definition of the calculus of indication 
but on a second-order level which allows the construction self-referen-
tial forms of different kinds of reentries, with f(f) = f. A counter-argu-
ment might be used which says that a cross is at once an operator 
and an operand in the CI. Hence, a logical contradiction per se. Never-
theless, the CI as a calculus works with two operators on its operands: 
iteration and superposition, i.e. 
{}{} = {} and {{}} = Ø.

As far as Mersenne calculi are studied it appears that the logically con-
tradictory situation is directly covered by the basic axioms of 
Mersenne calculi, with <aa> =Mers <bb>. This axiom is avoiding contra-
dictions, paradoxes or antinomies of reentry forms at the very root of 
the calculus.

42   Author Name

http://www.thinkartlab.com/pkl/lola/Quadralectic%20Diamonds/Quadralectic%20Dia


Indicational semiotics: Brown  
p eq non(p), p eq {{p}}
Indicational semiotics is acting as the deep-structure of the calculus of 
indication of the Laws of Form.
Thus, the calculus of indication gets a proto-semantics in the form of 
its indicational semiotics. Both proto-semantics, the Mersenne and the 
Brownian, are based on graphematically independent systems that are 
in a complementary relationship.
Brown calculi are introduced be decisions based on a specific intuition. 
They are not reflecting explicitly their semiotic foundations.

Logically, it is declared that Brownian calculi are localized systemati-
cally “deeper than truth" (Varela). 
This property of being logically “deeper than truth” is emphasized not 
so much on the level of the basic definition of the calculus of indication 
but on a second-order level which allows the construction self-referen-
tial forms of different kinds of reentries, with f(f) = f. A counter-argu-
ment might be used which says that a cross is at once an operator 
and an operand in the CI. Hence, a logical contradiction per se. Never-
theless, the CI as a calculus works with two operators on its operands: 
iteration and superposition, i.e. 
{}{} = {} and {{}} = Ø.

As far as Mersenne calculi are studied it appears that the logically con-
tradictory situation is directly covered by the basic axioms of 
Mersenne calculi, with <aa> =Mers <bb>. This axiom is avoiding contra-
dictions, paradoxes or antinomies of reentry forms at the very root of 
the calculus.

Mersenne semiotics: paraconsistent logics
p et non(p) eq p or non(p)
Because of the complementarity between indicational and Mersenne 
semiotics, the proto-semantics of Mersenne systems is well supported 
by the graphematics of Mersenne systems.

Despite the complementarity it seems that the pretension of being 
“deeper than truth” is more directly realized with the proto-semantics 
of Mersenne calculi. 
It might be experimented with the logical interpretation of Mersenne 
calculi as a kind of proto-structural paraconsistent logic. 
In this sense, indicational calculi have a logical model in a logic of 
contradictions and Mersenne calculi might have a logical model in the 
proto-structure of paraconsistency. 
http://plato.stanford.edu/entries/logic-paraconsistent/

 
For Mersenne calculi the equivalence <aa> =Mers<bb> which repre-
sents logically a contraction holds, while the permutation {ab} 
=Ind{ba} which contradicts semiotic and logical superposition of an 
operand and an operator holds for indicational calculi. Hence, there 
are two different abstractions over semiotics involved to define 
Mersenne and Brown calculi. 
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For Mersenne calculi the equivalence <aa> =Mers<bb> which repre-
sents logically a contraction holds, while the permutation {ab} 
=Ind{ba} which contradicts semiotic and logical superposition of an 
operand and an operator holds for indicational calculi. Hence, there 
are two different abstractions over semiotics involved to define 
Mersenne and Brown calculi. 

Operator/operand-relationship
In operational terms of operator and operand, the difference is clear 
again. Mersenne calculi are accepting the operator/operand-difference, 
Brownian calculi are abstracting from it. Mersenne abstracts from the 
iterativity of operators and of operands: op(op) = rand(rand), while 
Brown accepts this difference. An operand of an operand is different 
from an operator of an operator.
Mersenne
op(op) = rand(rand), op(rand) ≠ rand(op), with the baseMers = 
{rand(rand), op(rand), rand(op)}
Brown
op(op) ≠ rand(rand), op(rand) = rand(op), with the baseBrown = 
{op(op), op(rand), rand(rand)}.

To satisfy some epistemological desires, the differences might be put 
into a subject/object-scheme.
For Brown calculi, objective objectivity (oO) and subjective subjectiv-
ity (sS) are accepted as different. The difference between subjective 
objectivity (sO) and objective subjectivity (oS) is not recognized.
Complementary, Mersenne calculi are accepting the sO/oS-difference 
but not the “type-free” oO and sS.

Chiasm Kop, rand, 1, 2 O

S1: op rand

X

S2 : rand op

Recall memristics
It should be recalled that a kenomic analysis of the possible memris-
tive behavior is covered by such epistemological cnsiderations as mem-
ristors are switching in their functionality between “memory” and 
“computing” with the 3 functional states of pure memory, chiastic 
switch between memory and computing and pure computing.

Obviously there is no chiastic interplay between operator and operand 
involved for both types of calculi.

Hence, both types of non-classical calculi are, at least partly, defined 
logically as “deeper than truth”. 
This property of being “deeper than truth” becomes more evident on 
the level of tritogrammatics. From a trito- and deutero-grammatic 
point of view, both, Mersenne and Brown, are introduced as specifica-
tions of the general graphematic structures.
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Recall memristics
It should be recalled that a kenomic analysis of the possible memris-
tive behavior is covered by such epistemological cnsiderations as mem-
ristors are switching in their functionality between “memory” and 
“computing” with the 3 functional states of pure memory, chiastic 
switch between memory and computing and pure computing.

Obviously there is no chiastic interplay between operator and operand 
involved for both types of calculi.

Hence, both types of non-classical calculi are, at least partly, defined 
logically as “deeper than truth”. 
This property of being “deeper than truth” becomes more evident on 
the level of tritogrammatics. From a trito- and deutero-grammatic 
point of view, both, Mersenne and Brown, are introduced as specifica-
tions of the general graphematic structures.

1.3. Short survey
Graphematic system of minimal distinction

Stirling turn
deutero

ã é

Brown trito Mersenne

é ã

semiotics

Semiotics

Sem Jm,nN = m n

concatenation
identitive,
non - commutative,
associative,
linear

Brown

Ind Jm,nN =
n + m - 1

n

identive,
commutative,
associative,
linear - tabular

Ordered partition

Trito Jm,nN = ‚

M

S Kn, kO

Generalized Mersenne

Mers Jm,nN = m
n - Km - 1O
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Trito Jm,nN = ‚

k=1

M

S Kn, kO

non - identitive,
non - commutative,
non - associative,
tabular

Mers Jm,nN = m
n - Km - 1O

partial non - identitive,
non - commutative,
associative,
linear

Free partition

Deutero Jm,nN = ‚

k=1

M

P Kn, kO

non - identitive,
commutative,
associative ,

tabular

2. Arithmetics of graphematic calculi

2.1. Arithmetics of the Calculus of Semiotics
2.1.1. Semiotics as theory of strings

Recursive Wordarithmetics is covering the domain of semiotics in the 
sense of a syntactical systems.

2.1.2. Semiotics as theory of signs

Max Bense and Alfred Toth studied the arithmetics of signs as triadic-
trichotomic objects.
        
Toth presented a number theory of polycontextural semiotics.
http://www.mathematical-semiotics.com/pdf/signs%20and%20trito-numbers.pdf 

Alfred Toth, Calculus semioticus: Was zählt die Semiotik?
http://www.mathematical-semiotics.com/pdf/Calculus%20semioticus.pdf 

2.2. Arithmetics of Indicational Calculi
2.2.1. Brownian arithmetics

Spencer Brown, Kauffman, Bricken and others developed a Brownian 
arithmetic in the sense of modeling natural numbers in the framework 
of the calculus of indication.
Nobody was able to realize the specific character of the numbers 
based on the calculus of indication and its “two-dimensional” structure 
defined by concatenation and crossing.
The aim was to reconstruct classical natural numbers by the means of 
the calculus of indiction, i.e. with the help of its 2 initial decisions 
(axioms).

Spencer Brown’s late trick to allow an inequality between one mark 
and two repeated marks to define the order of natural numbers, {}{} 
≠ {}, seems not only to be to a weak strategy and adhoc but more a 
kind of a desperation (Bricken is following bravely his master).

Policing the game of distinctions
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Spencer Brown, Kauffman, Bricken and others developed a Brownian 
arithmetic in the sense of modeling natural numbers in the framework 
of the calculus of indication.
Nobody was able to realize the specific character of the numbers 
based on the calculus of indication and its “two-dimensional” structure 
defined by concatenation and crossing.
The aim was to reconstruct classical natural numbers by the means of 
the calculus of indiction, i.e. with the help of its 2 initial decisions 
(axioms).

Spencer Brown’s late trick to allow an inequality between one mark 
and two repeated marks to define the order of natural numbers, {}{} 
≠ {}, seems not only to be to a weak strategy and adhoc but more a 
kind of a desperation (Bricken is following bravely his master).

Policing the game of distinctions

"Interpreting the inner forms as numbers is illegal, so this partic-
ular problem can be defined away.  However, stepping back 
prior to the distribution, we must introduce a restriction that 
blocks generating the illegal form.” William Bricken , Boundary 
Number Systems -- Spencer-Brown, January 2001 
http://www.wbricken.com/pdfs/01bm/06number/bnums-complete/04bnums-
sb.pdf 

2.2.2. Indicational arithmetic

Moshe Klein might be one of the few follower of GSB who was able to 
build the building blocks for a genuine indicational arithmetic. This 
happens with the distinction of “serial” and “parallel” numbers and 
their intermediary numbers as direct interpretations of the ’axioms' 
(initials) of the calculus of indication.
 
Unfortunately, Klein is not reflecting the specific mathematical charac-
ter and relevancy of his numerical partitions for a general number 
theory but is offering an application or a model for the understanding 
of his first- and second-level partitions.
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Hence, cardinality and ordinality of Indicational numbers are treated 
as different and the intermediary numbers are conceived as equiva-
lent. Thus num({{{}}}) ≠Ind num({}{}{}) and num({{}}{}) =Ind 
num({}{{}}).

As was mentioned in the late 1960s by the logician Freytag-Loringhoff 
and the mathematician Hasse, Gunther’s concept of “Natural numbers 
in trans-Classic systems” defines numbers simultaneously as a 
sequence of cardinal and a sequence of ordinal numbers and addition-
ally as a system of intermediary numbers between the cardinality and 
ordinality of natural numbers. From a strictly mathematical point of 
view, based, say, on set-theory or recursive functions, this concept of 
tabular numbers was generally qualified as utter nonsense. Unfortu-
nately, mathematicians are not aware of their semiotic frame in which 
they are working and which is in many senses just a cage for apolo-
getic academics.

From a mathematical point of view the simultaneity of “serial” and 
“parallel” numbers is well modeled by the category-theoretic concepts 
of bifunctoriality. Intermediary numbers then occur as internal mix-
tures of both types of numbers, ordinal and cardinal, and are treated 
as well by bifunctoriality. 

"Numbers can be represented as forms following either the origi-
nal interpretation given by Spencer-Brown (1957), by adding 
further axioms and tokens not included in the original system 
(James 1993), or by relating form expressions to their corre-
sponding Wolfram rule numbers (Schreiber 2004). This third 
approach is able to handle arbitrary integers or Boolean alge-
bras of degree in general, and to reconstruct the 256 binary 
cellular automaton rules (Wolfram 1983, 2002) from 26 
Spencer-Brown forms in particular. Large numbers can be repre-
sented efficiently by constructing form expressions which spec-
ify only positions of ones."
Weisstein, Eric W. "Spencer-Brown Form." From MathWorld--A 
Wolfram Web Resource. 
http://mathworld.wolfram.com/Spencer-BrownForm.html 

Further information:
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"Numbers can be represented as forms following either the origi-
nal interpretation given by Spencer-Brown (1957), by adding 
further axioms and tokens not included in the original system 
(James 1993), or by relating form expressions to their corre-
sponding Wolfram rule numbers (Schreiber 2004). This third 
approach is able to handle arbitrary integers or Boolean alge-
bras of degree in general, and to reconstruct the 256 binary 
cellular automaton rules (Wolfram 1983, 2002) from 26 
Spencer-Brown forms in particular. Large numbers can be repre-
sented efficiently by constructing form expressions which spec-
ify only positions of ones."
Weisstein, Eric W. "Spencer-Brown Form." From MathWorld--A 
Wolfram Web Resource. 
http://mathworld.wolfram.com/Spencer-BrownForm.html 

Further information:

Jeffery M. James’ approach
The term “cardinaity” has 87 occurences, the term “ordinality” 
zero in Jeffrey M. James’ 1993 dissertation: 
“A Calculus of Number Based on Spatial Forms”. 

Example for the J-multiplication 23 * 114
"Using these definitions, the multiplication 23 * 114 can be 
computed by making copies at each magnitude, collecting magni-
tudes, and doing a carry operation."

    23 * 114                                                                                         
Given
    {oo}ooo * {{o}o}oooo                                                                   
Number Rewrite
    ([{oo}ooo][{{o}o}oooo])                                                                
Function Rewrite
    ([{oo}][{{o}o}oooo])([ooo][{{o}o}oooo])                                    
Distribution
    {([oo][{{o}o}oooo])}([ooo][{{o}o}oooo])                                    
Promotion
    
{{{o}o}oooo{{o}o}oooo}{{o}o}oooo{{o}o}oooo{{o}o}oooo   
Cardinality (2x)
    {{{o}o}oooo{{o}o}oooo{o}o{o}o{o}o}oooooooooooo               
Collection
    {{{o}o}oooo{{o}o}oooo{o}o{o}o{o}o}boo                                  
Replacement
    {{{o}o}oooo{{o}o}oooo{o}o{o}o{o}oo}oo                                  
Carry
    {{{o}o{o}oooo}oooooooooooo}oo                                                  
Collection
    {{{o}o{o}oooo}boo}oo                                                                    
Replacement
    {{{o}o{o}ooooo}oo}oo                                                                    
Carry
    {{{oo}oooooo}oo}oo                                                                       
Collection
    2622                                                                                                   
Rewrite     (JJames)
http://www.lawsofform.org/docs/jjames-thesis.txt 
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    23 * 114                                                                                         
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Function Rewrite
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    {{{o}o{o}oooo}oooooooooooo}oo                                                  
Collection
    {{{o}o{o}oooo}boo}oo                                                                    
Replacement
    {{{o}o{o}ooooo}oo}oo                                                                    
Carry
    {{{oo}oooooo}oo}oo                                                                       
Collection
    2622                                                                                                   
Rewrite     (JJames)
http://www.lawsofform.org/docs/jjames-thesis.txt 

Bricken’s Integers as Sets with ordinality
Cardinality:           Ordinality:         Uniqueness: 
0 
1 { }                         { }                      { } 
2 { } { }                  { { } }                   {{ }} 
3 { } { } { }            { { { } } }             {{ },{{ }}} 
4 { } { } { } { }     { { { { } } } }    {{ },{{ }},{{ },{{ }}}} 
n     ..n..                ''n‘                 {1,..,n-1} 

http://www.wbricken.com/pdfs/01bm/06number/bnums-complete/09bound-

ary-numbers-all.pdf 

A different numerical representation for the CI 
num(Ind(i, j)):

i j  = i
j       : ord(ord(i) + ord(j))      : ord(ij)                   : 

ij = [ij]    

i j = i+j  : card(card(i) + card(j)) : card(i+j)               : 

i+j = [i,j]

i j i j = i
j  i+j   : med((card(i+j), ord(ij))): [[i,j], 

ij].

Example m=3

card(3) :                : [1,1,1]    

ord(3):                      : [3]

mix(3):   =    : [1, 2] = [2,1]
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Example m=3

card(3) :                : [1,1,1]    

ord(3):                      : [3]

mix(3):   =    : [1, 2] = [2,1]

2.3. Arithmetics of Mersenne calculi
Mersenne systems are complementary to indicational systems and 
therefore their arithmetic is similarly complementary to the indica-
tional arithmetic.
Hence, cardinality and ordinality of Mersenne numbers are treated as 
equivalences and the intermediary numbers are conceived as different.

Example for number 3:
Mersenne                           Brown
[3] : <1+1+1> eq 1(1(1))        [3]: {1+1+1}
        <2 +1>  eq 1(1)+1               {3} 
        <1+2>   eq 1+1(1)               {1+2} eq {2 + 1}

Numeric Mersenne tree : 2 n - 1

< 1 3 >

<2 2 1 1 >

<1 2 > < 1 2 2 1 >

< 1 1 2 1 1 1 >

< 1 1 > < 1 1 2 1 > < 1 1 2 2 >

< 2 1 1 2 >

< 2 1 1 1 > < 2 1 1 1 2 1 >

C1G C2G C3G
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Numeric Mersenne rules

R1 : ;1 1?

R2 .1 : ;1 n? ;1 n+1? ;2 n 1 1? ;1 n 2 1?

R2 .2 : ;1 n 2 n? ;1 n 2 n 1 1? ;1 n 2 n+1?

R2 .3 : ;2 n 1 n? ;2 n 1 n+1? ;2 n 1 n 2 1?

2.4. Arithmetics of Tritogrammatics
In contrast to the deutero-numbers and the indicational numbers, 
trito-arithmetics has to consider the order of the partitions.

2.5. Arithmetics of Deuterogrammatics
Deutero-arithmetics is covered, again, by Gunther/Schadach and elabo-
rated in “Morphogrammatik” (1993).

2.6. Arithmetics of Protogrammatics
Proto-arithmetics is covered, again, by Gunther/Schadach and elabo-
rated in “Morphogrammatik” (1993).

3.  Logical interpretations

3.1. Classical logical interpretation of the CI
"I want to canclued by emphazising once again, that the calculi of 
indication are not a subtle form of logic. They really intent something 
quite different ..." (Varela, 1979)

Recalling Varela:
CI: Calculus of Indication,
PC: Propositional Calculus,
Variables: A, B, ... œ CI, PC.
Procedure: P.

Definition B.1

If A is ¬ B, write B for A in CI;

If A is B Ó C, write BC for A in CI;

If ¢ A in PC, write P(A) = in CI;

If ¢ ¬A in PC, write P(A) = in CI.

Lemma B.2
To every expression in PC there is a corresponds an indicational form.

Lemma B.3

Every demonstrable expression in PC is equivalent to the cross, , in 

CI.
(Varela, Principles of Biological Autonomy, 1979, p.285)
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Recalling Varela:
CI: Calculus of Indication,
PC: Propositional Calculus,
Variables: A, B, ... œ CI, PC.
Procedure: P.

Definition B.1

If A is ¬ B, write B for A in CI;

If A is B Ó C, write BC for A in CI;

If ¢ A in PC, write P(A) = in CI;

If ¢ ¬A in PC, write P(A) = in CI.

Lemma B.2
To every expression in PC there is a corresponds an indicational form.

Lemma B.3

Every demonstrable expression in PC is equivalent to the cross, , in 

CI.
(Varela, Principles of Biological Autonomy, 1979, p.285)

Boolean domain :B = :true, false>.

Brownian domain :CI = : , >.

Logical truth - value tree

X

ã é

true false

ã é ãé

true false true false

Indicational tree

X

ã é

ã é ãé

3.2. Graphematical interpretation
3.2.1. Meta-semantics of the calculi

This classical semantic modeling with  or { } for true and  or 

{{ }} for false is generally accepted by the followers of GSB - obvi-
ously, he introduced it himself -, and I don’t intent to criticise this 
possibility at all.

But there is another approach possible that seems, at least for my 
taste, to be more close to the intentions of the  calculus of indications, 
as far as I understand them, and as far I can see a motivation to 
spent some interest on working on it. 
Earlier work (1980) at:    http://www.vordenker.de/ggphilosophy/rk_meta.pdf
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A new kind of inter-relationship between propositional and indicational 
calculi is achieved with a change of abstraction. Not a mapping from 
logical truth-values onto indicational crosses on an atomic level but a 
mapping between the meta-semantical properties of PC is introduced. 
Hence, the meta-semantic properties of tautology, saturation and con-
tradiction are mapped onto the graphematic properties of the calculus 
of indication, i.e. (aa, ab, bb).

Meta-semantics
logic :         aa ab ba bb         1 2 3 4      taut sat1 sat1 contr
Brown:        aa ab –-  bb         1 2 – 4      taut sat1  gap  contr
Mersenne:    aa ab ba –-          1 2 3 –      taut sat1 sat2  gap

semJXN neg Brown neg Mers neg logic -

taut contr taut contr hom
sat1 sat1 sat2 sat2 -

sat2 gap sat1 sat1 -

contr taut gap taut het

For classical propositional logical systems, PC, there is a clear distinc-
tion between tautology and contradiction as well as between satura-
tion in “b”, (tf), and saturation in “a”, (ft). The (meta-)semantics of PC 
is gap-free.

For Brownian calculi, CI, there is a negation between the properties of 
tautology (tt) and contradiction (ff) on the “background” of saturation 
({tf}). The (meta-)semantics of CI has a (ft)-gap.

For Mersenne calculi, MC, there is a negation between the properties 
of saturations {(tf), (ft)} on the ”background” of tautology (tt). The 
(meta-)semantics of MC has a (ff)-gap.

The “backgrounds” of the meta-semantics are negation-invariant for 
Mersenne and Brownian calculi.
Brown:     neg(ab) = ab,
Mersenne: neg(aa) = aa.

Kenogrammatics is negation-free. For the example with m=2, n=1, 
there are two configurations, a homogeneous, hom = (xx), and a het-
erogeneous, het =(xy). An analogon to negation is reflection, with the 
reflector-operator refl: refl(hom) = hom and refl(het) = het.
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For classical propositional logical systems, PC, there is a clear distinc-
tion between tautology and contradiction as well as between satura-
tion in “b”, (tf), and saturation in “a”, (ft). The (meta-)semantics of PC 
is gap-free.

For Brownian calculi, CI, there is a negation between the properties of 
tautology (tt) and contradiction (ff) on the “background” of saturation 
({tf}). The (meta-)semantics of CI has a (ft)-gap.

For Mersenne calculi, MC, there is a negation between the properties 
of saturations {(tf), (ft)} on the ”background” of tautology (tt). The 
(meta-)semantics of MC has a (ff)-gap.

The “backgrounds” of the meta-semantics are negation-invariant for 
Mersenne and Brownian calculi.
Brown:     neg(ab) = ab,
Mersenne: neg(aa) = aa.

Kenogrammatics is negation-free. For the example with m=2, n=1, 
there are two configurations, a homogeneous, hom = (xx), and a het-
erogeneous, het =(xy). An analogon to negation is reflection, with the 
reflector-operator refl: refl(hom) = hom and refl(het) = het.

Gaps
From the point of view of the meta-semantics or graphematics of PC, 
2 different kinds of gaps appear for CI and MC. A gap is an empty 
valuation, hence a “neutral” or “non-valent” semantic state. Such 
gaps of MC and CI are not to be mixed with the semantic gaps of the 
“Logic of “Fiction” where the existence designators relates to an onto-
logically non-existing entity. MC and CI are not related to ontology but 
to graphematics as the general framework of inscription.

Non-accessibility of gaps
Gaps in CI and MC are not accessible by the means of their systems. 
There is no procedure to produce a formula filling the gaps inside CI or 
inside MC.

Inter-relation between MC and CI
An inter-relation between the two 1-gap calculi, MC and CI, enables a 
mapping between gaps and “values” of different calculi.  
This kind of interaction gets two different ways of enfolding: one from 
the gap-free logic PC and one from the gap-free kenogrammatics KG. 
Kenogrammatic systems are collecting PC, MC and CI into an identity- 
and gap-free calculus of {(aa), {ab)}.

3.2.2. Calculus of Indication

The indicational domain of the CI is trichotomic: Brown = {tt, tf, ff}. 
This takes into consideration that the indicational space is not properly 
characterized by atomical terms, like a cross and a blank alone. There-
fore, terms like true and false, in the sense of classical propostional 
logic, are not adequete to mark the differences. What counts from a 
graphematic point of view is the behavior, expressed by the difference 
between marks, i.e. the rules of the action between ’elements’ of the 
CI. This domain of action is defined for the CI by the graphematic con-
stellation (aa, ab, bb) with (ab) =Brown (ba) and (aa) ≠Brown (bb). 
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The indicational domain of the CI is trichotomic: Brown = {tt, tf, ff}. 
This takes into consideration that the indicational space is not properly 
characterized by atomical terms, like a cross and a blank alone. There-
fore, terms like true and false, in the sense of classical propostional 
logic, are not adequete to mark the differences. What counts from a 
graphematic point of view is the behavior, expressed by the difference 
between marks, i.e. the rules of the action between ’elements’ of the 
CI. This domain of action is defined for the CI by the graphematic con-
stellation (aa, ab, bb) with (ab) =Brown (ba) and (aa) ≠Brown (bb). 

Hence, it is argued that the elements of the CI are not properly 
defined simply by {{}} and {} and its indicational tree. The Brownian 
system starts wit 3 elements: {}{}, {}{{}}, {{{}}} and develops 
into a graph and not into a tree.

Indicational graphparenthesis; Klein

JN

ã é

JN JN JN JJNN JJNN

ã é ã é ã é

JN JN JN JN J1N JJN JNN JJJNNN

ã é ã é ã é ã é

JN JN JN JN ; JN JN J1N; JN J2N ; J1N J1N; J3N

Truth-valuegraph forCI

X

ã é

tt tf ff
ã é ã é ã é

ttt ttf tff fff

Semantics of the indicational domain
val({aa, ab, bb}) = {tt, tf, ff}

val(aa) = (tt)
val(ab) = (tf)
val(bb) = (ff).

Negation
non(tt) = ff
non(tf) = tf, because (ab) =Ind(ba)

Negation in Brown is inversion (negation)

Numerical truth-values
num(tt) = (1)
num(tf) = (2)
num(ff) = (3).

non(1, 2, 3) = (3, 2, 1)

Conjunction
(tt) (tt) ö (tt)
(tt) (tf) ö (tf)
(tt) (ff) ö (ff)

(tf) (tt) ö (tf)
(tf) (tf) ö (tf)
(tf) (ff) ö (ff)

(ff) (tt) ö (ff)
(ff) (tf) ö (ff)
(ff) (ff) ö (ff)

Truth-tables:
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Semantics of the indicational domain
val({aa, ab, bb}) = {tt, tf, ff}

val(aa) = (tt)
val(ab) = (tf)
val(bb) = (ff).

Negation
non(tt) = ff
non(tf) = tf, because (ab) =Ind(ba)

Negation in Brown is inversion (negation)

Numerical truth-values
num(tt) = (1)
num(tf) = (2)
num(ff) = (3).

non(1, 2, 3) = (3, 2, 1)

Conjunction
(tt) (tt) ö (tt)
(tt) (tf) ö (tf)
(tt) (ff) ö (ff)

(tf) (tt) ö (tf)
(tf) (tf) ö (tf)
(tf) (ff) ö (ff)

(ff) (tt) ö (ff)
(ff) (tf) ö (ff)
(ff) (ff) ö (ff)

Truth-tables:
conj tt tf ff

tt tt tf ff

tf tf tf ff

ff ff ff ff

conj 1 2 3

1 1 2 3
2 2 2 3
3 3 3 3

Comparision of truth-tables

conj Brown 1 2 - 4

1 1 2 - 4
2 2 2 - 4
- - - - -

4 4 4 - 4

        

conj Mers 1 2 3 -

1 1 2 3 -

2 2 2 3 -

3 3 3 3 -

- - - - -
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Comparision of truth-tables

conj Brown 1 2 - 4

1 1 2 - 4
2 2 2 - 4
- - - - -

4 4 4 - 4

        

conj Mers 1 2 3 -

1 1 2 3 -

2 2 2 3 -

3 3 3 3 -

- - - - -

standardized:

conj Brown 1 2 3

1 1 2 3
2 2 2 3
3 3 3 3

        

conj Mers 1 2 3

1 1 2 3
2 2 2 3
3 3 3 3

3.2.3. Mersenne calculus

The distinctional domain of the Mersenne calculus is trichotomic, too: 
Mers = {tt, tf, ft}.

non(tt) = tt
non(tf) = ft

Negation in Mers is permutation.

num({tt, tf, ft}) = (1,2,3)

non(1,2,3) = (1, 3, 2)

conj 1 2 3

1 1 2 3
2 2 2 3
3 3 3 3

    

conj tt tf ft

tt tt tf ft

tf tf tf ft

ft ft ft ft

3.2.4. DeMorgan for Brownian and Mersenne calculi

A separation and interaction of both calculi, the Brownian and 
Mersenne, might be managed by the category-theoretic methods of 
bifunctoriality.
Bifunctoriality and its extension to a general concept of interchangeabil-
ity offers the methods to study the interactions of paradigmatically 
different calculi without the need to subordinate to a unifying general 
paradigm.

The bifunctorial system [Brown, Mersenne, Semiotics] is opening up 
the framework to study the inter-relationship between the Mersenne 
and the Brown calculi from the background of semiotics. 
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and the Brown calculi from the background of semiotics. 

DeMorgan for Mersenne

non Kconj Knon X, nonYOO :

conjKnon X, non YO :

conjKX
-
, Y

-
O 1 3 2

1 1 3 2
3 3 3 3
2 2 3 2

nonK-O 1 3 2

1 1 2 3
3 2 2 2
2 3 2 3

non-aeq

disjKX, YO 1 2 3

1 1 1 1
2 1 2 2
3 1 2 3

non Kconj Knon X, nonYOO non-aeq disj KX, YO.

conj KX, nonXO œ Satisfaction K –ContradictionO

X, nonKXO conjKX, non XO

1 1 1
2 3 3
3 2 3

DeMorgan for Brown

non Kconj Knon X, nonYOO :
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conj KX
-
, Y

-
O 3 2 1

3 3 3 3
2 3 2 2
1 3 2 1

nonK--O 3 2 1

3 1 1 1
2 1 2 2
1 1 2 3

aeq

disjKX, YO 1 2 3

1 1 1 1
2 1 2 2
3 1 2 3

non Kconj Knon X, nonYOO aeq dis j KX, YO.

X Y = X Y .

conj KX, nonXO œ contradiction

X = X

X, nonKXO conjKX, non XO

1 3 3
2 2 2
3 1 3

3.2.5. Varela's  ECI and self-referentiality

Funnily enough, the meta-semantic interpretation of the CI and its 
representation by truth-tables reminds strongly at Varela’s introduc-
tion and formalization of an Extended Calculus of Identification, ECI, 

with an additional “value” for a third state of re-entry, ,  , the “self-

cross”, “self-naming”, “autonomous” value, with the property of 
constancy.

"Beyond these considerations, let us look more in detail the 
autonomous value as a paradigm for self-reference. As it now 
stands in () it is only a third value which can deal with self-
reference in a very loose way, namely, insofar self-referring 
statements require a value which is identical to its negation.” 
(Varela, The Extended Calculus of Indications Interpreted as a 
Three-valued Logic, in: Notre Dame Journal of Formal Logic, 
Vol. XX, No. 1, Jan. 1979 )
http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=p
df_1&handle=euclid.ndjfl/1093882412
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"Beyond these considerations, let us look more in detail the 
autonomous value as a paradigm for self-reference. As it now 
stands in () it is only a third value which can deal with self-
reference in a very loose way, namely, insofar self-referring 
statements require a value which is identical to its negation.” 
(Varela, The Extended Calculus of Indications Interpreted as a 
Three-valued Logic, in: Notre Dame Journal of Formal Logic, 
Vol. XX, No. 1, Jan. 1979 )
http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=p
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Although Varela generously “allows” in his ECI self-referring forms and 
in its logical interpretation as an autonomous, self-referring value, 
there is no intrinsic need by the calculus CI as such to ask for a domes-
tication of self-reference. Albeit the topic of self-reference was, and 
still is, virulent, the extension of the CI towards an ECI comes without 
systematic motivation. It is, and remains, in fact, an ad hoc 
construction.

"It can be showed that, although all self-referring forms are 
allowed in ECI, their diversity can essentially be reduced to the 
atomic case of the autonomous value.” (Varela, ibd)

In contrast, the   understanding of the CI as based on the pattern (aa, 
ab, bb), involves self-referentiality from the very beginning. The 
graphematic situation: (ab) =Ind(ba) is, considered from an external 
viewpoint and not reflecting its chiastic immanent structure, logically 
equivalent to non(tf) = (tf). Changing the wording and symbolism 

from "non(tf) = (tf)" to " , = , ” we get Varela’s adhoc imple-

mentation as a necessity of the concept of indication.

Varela’s Constancy:    ,  = , .

The formulas says that the distinction of a self-distinction is indication-
ally equal the self-distinction. Hence, a distinction of a self-distinction 
doesn’t make a distinction.

Logified, constancy corresponds to the truth-table for negation in a 
special 3-valued logic (Kleene).
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X nonKXO

, ,

numerically equal

to :

X nonKXO

1 2
2 1
3 3

or alternatively

X nonKXO

1 3
2 2
3 1

Varela, Principles of Biological Autonomy, 1979, p.127

Reduction of complexity

"The point of view of indication greatly simplifies the discussion 
of self-referential situations, by simply having an expression 
indicate itself. Expressions where self-indication is allowed, are 
called Boolean expressions of higher degree by Spencer Brown, 
[...]"

This intended complexity reduction for the implementation of self-
referentiality can be strengthened by the graphematic approach to 
indication. On the other hand, the graphematic approach gives founda-
tion for self-referential complexity higher than it is possible with a 
single solitaire autonomous value. 

Blending together

conj
BrownìMers

1 2 3 4

1 1 2 3 4
2 2 2 3 4
3 3 3 3 -

4 4 4 - 4

red:    Brown [ Mersenne
blue:   Mersenne \ {red, green}
green: Brown \ {red, blue}
Semiotics: Browm \ Mersenne
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red:    Brown [ Mersenne
blue:   Mersenne \ {red, green}
green: Brown \ {red, blue}
Semiotics: Browm \ Mersenne

3.3. Proof-theory and tableaux calculi
For Mersenne calculi a branch of the tableau terminates if the same 
formaulas contains the signatures (tf) and (ft).
For Brown calculi a branch of the tableau terminates if the same for-
mula contains the signatures (tt) and (ff).

3.4. Bifunctoriality of Brownian and Mersennian calculi
From the point of view of a theory of polycontexturality as proposed 
by Gotthard Gunther and elaborated in many ways by my own studies 
it is natural to model an interplay between the 4 different graphematic 
systems, semiotic (logic), Brownian and Mersennian calculi together 
with the kenogrammatics systems (proto-, deutero- and trito-struc-
tures) with the techniques of generalized category-theoretic bifunctori-
ality.
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BIFUNCTORIALITYOF MERSENNE,

BROWNandSEMIOTICS

C

g Mers - g Sem
f Mers g Brown -

- f Brown f Sem

G :

Kf Mers Î1.0 .0 g MersO

ˇ 1.2 .0

Kf Brown Î0.2 .0 g BrownO

ˇ 1.2 .3

Kf Sem Î0.0 .3 g SemO

=

f Mers

ˇ 1.2 .0

f Brown
ˇ 1.2 .3

f Sem

Î 1.2 .3

g Mers

ˇ 1.2 .0

g Brown
ˇ 1.2 .3

g Sem
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REDUCED BIFUNCTORIALITY OF SEMIOTICS,

MERSENNE, BROWN AND TRITO - SYSTEM

C

g Mers - g Sem - - g

f Mers g Brown - - g -

- f Brown f Sem g Trito - -

- - - f Trito f f

G :

Kf Mers Î1.0 .0 .0 g MersO

ˇ 1.2 .0 .0

Kf Brown Î0.2 .0 g BrownO

ˇ 1.2 .3 .0

Kf Sem Î0.0 .3 .0 g SemO

ˇ 1.2 .3 .4

Kf Trito Î0.0 .0 .4 g TritoO

=

f Mers

ˇ 1.2 .0 .0

f Brown
ˇ 1.2 .3 µ .0

f Sem

ˇ 1.2 .3 .4

f Trito

Î 1.2 .3 .4

g Mers

ˇ 1.2 .0 .0

g Brown
ˇ 1.2 .3 .0
g Sem

ˇ 1.2 .3 .4

g Trito

Again,”In a nutshell, stateful logic means that the ‘state’ of the memris-
tor acts as both the computer and the memory. That’s a pretty big 
change from current computers, which typically load data from mem-
ory, perform operations on it, and then send it back" [Nature]
http://blogs.nature.com/news/2010/04/memristance_is_not_futile.html 
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