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Kindergarten and
Differences/Handouts
Materials for a better exploration of the different worlds of
mathematics

Rudolf Kaehr Dr. phil@
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Abstract
Handouts are for free. These handouts are intended to help teachers and parents to avoid abusive
mental suppression of their children by indoctrinating them against their intuition and will to become
parrots, fit for the use of their early bank accounts. And it’s free! No charge, like for the Soft Start
program. But there is also no guarantee included for the mental health of the applicants. They might
easily become alienated.
(work in progress, vers. 0.3, Nov. 2013)

1.  Counting in 5 different worlds

1.1.  Whatʼs about?
1.1.1.  How did it start?
All started with the insight that the innocent question of a teacher: “How much is 2 + 2?”
isn’t as trivial as he thought. Before the child answered this simple question it returned it on
another level with its own question: “Am I selling or am I buying?”

Everybody knows the games of partitions, permutations and prolongations of sequences for
forms, played with shapes of different colors.

Here, 5 different ways of playing such games are introduced.

I call them the Leibniz, the Pascal, the Brown, the Mersenne and the Stirling games.

The differentiation of the games are defined by the different rule sets of the games.

1.1.2.  The Leibniz game
The Leibniz game is defined by some strict axioms.

Classical rules

Wording

Two elements are not equal one element.
Different elements are different and not equal.

Little task
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Given  2  elements  and  3  places,  how many different  constellations  of  the  two  different
elements on the 3 places are possible in the Leibniz world?

Leibniz(3,2) = 8:

  

Answer: The Leibnizian order for 2 elements and 3 places has 8 constellations.

Symmetry

There  is  also  a  nice  symmetry  between  the  first  and  the  second  half  of  the  Leibniz
constellations.

Successors

Alphabet ∑ = {•}
succ(•) = • •

Alphabet ∑ = {•, •}
succ(•) = {• •, • •}
succ(•) = {• •, • •}

These successors are defining a binary tree. With 3 elements the successors are defining a
ternary tree.

Binary tree for Leibniz

Reversion
As easy as successions are reversions of patterns with 4 elements.
(O • • ▲ ▲) = pattern
rev(O • • ▲ ▲) = (▲ ▲ • • O) : reversion of the pattern.
Hence, rev(O • • ▲ ▲) != (O • • ▲ ▲).

1.1.3.  The Pascal game
Between the Leibniz and the Brownian game with its fundamental commutativity of terms,
the realm of Pascal  partitions has to be placed. The Pascal  game is also defined in the
general system of graphematics as a deutero-structure.
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The Pascal game is defined by some strict axioms:

Pascal rules

Wording

Different elements are not equal.

Partitions for 3 elements and 3 positions

When we look at parenthesis with order 3 there are 5 possibilities.

This bracket notation corresponds to the tuple notation:
[1,1,1,1], [2,1,1], [2,2], [1,3], [4].

Partitions for 4 elements and 4 positions
1+1+1+1: ()()()():  • • • •   : aaaa  [1,1,1,1]
1+1+2:     ()() (1):  O • • •    : aabc [2,1,1]
(2)(2):       (1)(1):   O O • •    : aabb [2,2]
1+3:           ()(2):    O • • •    : abbb [3,1]
4:               (3):       O • • ▲     : abcd [4]

Combinatorics

In contrast, the Brownian distribution counts 4, and not 5 possibilities for n = 3 according to
the immanent commutativity rule: (())() = ()(()).

The general number of possibilities is calculated with the partitions of numbers P(n).

   (sequence A000041 in OEIS).
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Little task
Given 4  elements  and 4  places,  how many different  constellations  of  the  four  different
elements on the 4 places are possible in the Pascal world?

Pascal(4,4) = 5:

  

Answer: The Pascal partition order for 4 elements and 4 places has 5 constellations.
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Symmetry
There is no obvious symmetry for this partition system. Symmetry is given internally for

), ( ) and ( ).

1.1.4.  The Spencer-Brown game
The basic rules for the Brownian distinction calculus

Rule 1. () () = ()
Rule 2. (()) = ⌀
3. Substitution rules

Wording
Rule1: A distinction of 2 distinctions is a distinction.
Rule2: A distinction of a distinction is no distinction.

In colors
Rule1.  • • = •
Rule2.    = ⌀

Especially:
(( )) ( )  = ( ) (( ))  :   • = •  .

Red in red kills red,  =⌀ and red • saves red •

equal
red • with red in red  kills red =⌀ and saves red •.

Hence,   • = •  = •.

Superpositions

(() (((()))) =  

(() ())     =     

(())         =     

(())         =     ⌀

In words:

 : Red with red in red in red kills red and red saves red:  .

   : Red with red in red saves red :  .

       : Red in red kills red  ⌀ .

Little task
Given  2  elements  and  3  places,  how many different  constellations  of  the  two  different
elements on the 3 places are possible in the Brownian world?

Brown(3,2) = 4

  

Answer: The Brownian order for 2 elements and 3 positions has 4 constellations.

The  number  of  forms  (not  possibilities)  of  degree  3  is  4  and  not  5  as  for  the  Pascal
partitions. The forms are:

Normal form

Kindergarten and Differences-Handouts.nb 5 of 29

13/11/2013 13:23



The written table is accepting the normal form for Brownian constellations. Hence, the two
constellations ,  are represented by the single constellation  in Brownian
normal form.

Symmetry

In contrast to the Pascal world, there is a nice symmetry between the first and the second
half of the patterns based.on the commutativity of the forms.

   

Successor

Alphabet ∑ = {•, •}
succ(•) = {(• •), (• •), (• • ) }  

Addition Sum

sum(•, ⌀) = •
sum(• •, •) = {• • •, • • •}.
sum(• •, •) = {• • •}
sum(• •, •) = {• • •}.

Reversion for Brownian patterns

rev(• •) = (• •) and (• •) = (• •).

1.1.5.  The Mersenne game
The basic rules of the calculus of differentiations

Rule 1. () () = ⌀
Rule 2. (()) = ()
3. Substitution rules

Wording

Rule1: A differentation between 2 differentiations is an absence of a differentiation.
Rule2: A differentiation of a differentiation is a differentiation.

In colors
Rule1.  • • = ⌀
Rule2.  = •

Other wording

Blue with blue kills blue.
Blue in blue saves blue.
The rules are also well understood as oriented actions.
Rule1.   • • = ⌀  is an equational notation for to corresponding actions:
Rule1a. • • ==> ⌀ and
Rule1b. • • <== ⌀
Rule2.    = • this also holds for Rule2

Rule2a    ==> •

Rule2b.  <== •

Some examples

1. ()()() = (()(())(()) : the same are the same, thus there is no differentiation.
• • • =   

• • • = •
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 = •
Thus,  • • • =   .

2. ( ) ( ) () = () : rule1         :  • • • = •
(( )) ( )  = ⌀  : rule2, rule1   :  •  = ⌀

((()))     = () : rule2             :  = •

Especially
3. (( )) = ( ) () ()                 :  = • • •

Proof of  = • • •

[• •] •  : brackets
[⌀] •     : rule1
•           : rule1.

         

•           : rule2

Wording

In a Mersenne universe, the order of 2 different elements is relevant. In contrast to the
Brownian universe, they are therefore different.
But a constellation of two same elements is equal to another constellation of two same
elements.

Alternative wording

Red and green together are safe.
Two greens together are killed by two reds.

Little task

Given 2 elements and 3 places, how many different situations of the two different elements
on the 3 places are possible in the Mersennian world?

Mersenne(3,2) = 7

  

Answer: The Mersenne order for 2 elements and 3 positions includes 7 situations.

Symmetry
The nice symmetry of the whole set as we have seen for Leibniz and Brown is broken.

   

Successor

Alphabet ∑ = {•, •}
succ( ) = {( ), ( ), ( )}.

Addition Sum

sum( , ⌀) = 
sum(  , ) = {   ,   ,   }
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sum( , ) = {  , }
sum( , ) = { ,   }.

Reversion for Mersenne

rev(ab) = (ba) and (ab) != (ba)
rev( ) = ( ) and ( ) !=  ( ).

Comparison Brown and Mersenne
Interestingly, there are some coincidences between both calculi. Both are deducing form the
3 brackets one resulting bracket: ( ) ( ) () = ().
But the way they are doing it is differently organized according to the 2 different rule sets.
It is a common failure to not to recognize this crucial difference.

Mersenne : ( ) ( ) () = () :
by rule1 :  
• • • = •  :
(• •) • = (⌀) • = •
(• (• •)  = • (⌀) = •
Hence, • • • = • .

Brown: ( ) ( ) () = () :
by rule1 :
• (• •) = • (•) = •
(• •) • = (•) • = •
Hence, • • • = •.

In contrast:
 = • • •

 = •

• • • = •

Hence,  = • • •.

 != • • •

 = ⌀

• • • = •
Thus, ⌀ != •.

1.1.6.  The Stirling game
A Stirling blend

For  a  Stirling  approach,  the  fact  that  the  concept  of  patterns,  i.e.  ordered  strings  or
configurations of identity-free elements, is crucial, leads to the following rules.

Those rules shall  be understood as a blend  of  Brownian, Rule3, and Mersennian, Rule2,
rules. A blend always produces also something new: Rule1 and Rule4.

Rule1. () = (())
Rule2. () () = (()) (())
Rule3. () (()) = (()) ()
Rule4. ()()(()) != ()(())() != ()(())(()) != ()(())((())).

In colors
Rule1. 
Rule2.   =  
Rule3.  = 
Rule4.  !=  !=  != .

Another setting:
Rule1. 
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Rule2.   =  
Rule3.  = 

Rule4.  !=  !=  != .

Wordings of constellations

For a Stirlingian game with 3 elements, some typical situations occur.
1.  • • • ≡  ≡ ,
      ≡    ≡ 
     etcetera
2.  ≡ rev( )  : reversion
3.  ≡ rev( ) : self-symmetry
     ≡ rev( )|
    ≡ rev( )

Wordings of rules for Stirling(3,3)

:        Blue kills red.
 ≡ :  Blue together with red kills red together with blue.

:        Two blue together with one red, and
:        one blue together with one red and one blue, and
:        one blue with two reds, are safe in the Stirlingian world.
:        As well as blue and red and green together.

This constitutes a kind of safety in groups.

Little task

Given 3 elements and 3 places, how many different patterns (morphograms) of the three
different elements on the 3 places are possible in the Stirlingian world?

            Sn (3,3) = 5
numeric   symbolic alphabetic

[13]:           • • • : aaa

[122 :       • • •  : aab

[112111]:   • • •  : aba

[1122]:       • • • : abb

[112131]:   • • O : abc

Answer: The Stirling order for 3 elements and 3 positions for distribution is 5.

Hence, there are 5 different morphograms for 3 elements and 3 positions. The choice of the
color of the elements, here as blue, red and green is arbitrary and ruled by its normal form.

Further tasks for more complex situations

Sn (3,2) = 4  Sn (3,3) = 5   Sn (4,2) = 8  Sn (4,3) = 14   Sn (4,4) = 15
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Symmetry

Here, again, the symmetry of the set of the basic patterns is broken.
But there are some nice internal symmetries left.
rev( ) = ( ), that is rev( ) = ( ) but ( ) = ( ).
Self-symmetric patterns: ( ), ( ), ( ).

The function  ϕ is iterative if it repeats a given element, and accretive if it adds a new
element. There is no recurs to a pre-given alphabet necessary. The successor operation is
recurring  retrograde  to  the  predecessor  elements  and  iterates  the  produced  elements
iteratively and adds accretively a new element to the system.

Resulting in the production of the 5 trito-patterns with 3 elements:
[aaa], [aab], [aba], [abb], [abc].
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Difference notation for morphograms
Difference notation with ν=non-equal and ε=equal
The fact that the presentation of the morphograms by specific elements is arbitrary has to
be considered as crucial. Therefore, not the elements are determining the morphic patterns
but the differences between the elements.
This is well depicted for the example [ ].

  

A useful notation is given with the matrix of the ε/ν-structures.

• • •      • • •     • • •     • • •    • • O

                       

Comparison for systems with 2 elements an 3 places.
Little task in different worlds

Teacher: Given 2 elements and 3 places, how many different partitions of the three different
elements on the 3 places are possible?

Child: In which world should the partition happen? In the Leibniz, the Pascal, the Brown, the
Mersenne or the Stirling world? Or do you offer some others too?

The teachers task can be correctly answered by at least 5 different solutions.

   Leibniz        Brown      Mersenne     Stirling     Pascal        Proto

                      

There is a coincidence in the numbers of Brownian and Stirlingian tables for Sys(3,2). Also
Pascal and proto-structures are coinciding on this level, i.e. Sys(3,2) and Sys(3,3).

   Leibniz          Brown       Mersenne      Stirling       Pascal       Proto
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Crucial differences
Not just  the answers to the little  tasks depends on the world model  used but also the
structure  of  the  simples  operations,  like  succession,  addition,  reversion,  etcetera,  differ
significantly.

Leibniz world

The main model for succession is given by the Stroke calculus as it is fundamental for the
Leibniz world.

Stroke calculus

Rule1.  ==> |
Rule2. n ==> n |
Meta-Rule3.  n ∈ Var, repetition of Rule2.

The main feature is the abstract concatenation of an atomic element to the just produced
strokes, represented by n. Thus, Rule2. n ==> n |.

This simple feature differs depending on the world model.

Brownian world

For  the  Brownian  model,  the  successor  operation  is  still  in  the  spirit  of  the  Leibnizian
successor but modified by the specific Brownian features of commutativity.

Kindergarten and Differences-Handouts.nb 13 of 29

13/11/2013 13:23



       

Mersennian world

For the Mersennian model,  the successor operation is still  in the spirit  of  the Leibnizian
successor but modified by the specific Mersennian features of non-commutativity.
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Stirlingian world

For  the  Stirlingian  model,  the  successor  operation  is  not  anymore  in  the  spirit  of  the
Leibnizian successor.

The Stirlingian successor operation is defined by the feature of “retro-grade” recursivity.

Hence, the retrograde recursion gets a meta-rule which controls the successor-procedure in
respect of the structure of the added morphogram.
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1.2.  Palindromes all over the worlds
1.2.1.  Leibnizʼ palindromes
The rules for building classical palindromes are easy to understand. If we add to a given
element the same additional element on the right and on the left side, we get a palindrome:

For an alphabet ∑ = {•, •} we get:
• ==> • • •, • • •
• ==> • • •, • • •.

Leibniz palindromes are standard and well studied.

Instead of demonstrating many examples, the production rules are defining how to produce
palindromes. They are given with this little grammar, consiting on an alphabet and a set of
production rules.    
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Odd and even palindromes

Odd palindrome

With rule 3 we introduce a start token, say . Now S is , and  is palindrome.
Apply rule1 to S: S -->  S . Now S is   , is palindrome,
Apply rule2 to S: S --> (  S ) . Now S is   , is palindrome.
Apply rule1 to S: S  -->  S . Now S is       , is palindrome.
And so on.

The  order  of  the  application  of  the  rules  rule1  and  rule2  is  free.  The  result  is  always
symmetric, and therefore a palindrome. There are no surprises included in this parcel.

Even palindrome

A more interesting example is given with ( O • • ▲ ▲ • • O).
The alphabet is:  and a new
rule4: S --> ▲ S ▲,
rule5: S --> O S O.

With  rule  3  we  introduce  a  start  with  the  empty  token  .  Now  S  is  ,   is  a  nil-
palindrome.
rule4: S --> ▲ S ▲ ,
rule1: ▲ S ▲ -->  (▲ S ▲) ,
rule2:   ▲ S ▲  --> • (  ▲ S ▲  ) • ,
rule5: • (  ▲ S ▲  ) • --> O (• (  ▲ S ▲  ) • ) O.

With rule3 we replace S by : thus we get the palindrome: O • • ▲ ▲ • • O.
The same holds here. Free application of the rules, and no surprise in the box.

A simple palindromy checker for Leibniz palindromes

The  little  palindrome  production  rules  are  producing  palindromes.  The  same  rules
applied  backwards to an arbitray string lets easily decide if the string is a palindrome or not.

This is easily realized with two palyers, the head (H) and the tail (T) manager, deciding the
equality or non-equality of their states in respect to the positions.

     

1.2.2.  George Spencer Brownʼs palindromes
Partition based palindromes

Brownian constellations are order-free, i.e. their elements are commutative, and are allowed
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to change position. Hence, Brownian palindromes are free under permutation.
This commutativity poses a problem for a proper definition of Brownian palindromes.
Brownian constellations are mathematically heap, i.e. multi-sets, and not linear sequences.

Therefore, can a multi-set be palindromic?

A solution  is  given with  the  application  of  the  Brownian  standard  normal  form,  bnf,  of
constellations.

rev( ) = ( ) and ( ) = ( ).

The constellation ( ) is a palindrome because of its commutatiity.

Is the accepted Brownian constellation [• • •] a palindrome?

Because of the standard normal form convention for Brownian constellations, bnf, we know
that [• • •] =Brown [• • • ]. But, the pattern [• • •] is palindromic.

That  is,  the  standard  form  constellation  [•  •  •]  represents  the  set  of  equivalent
constellations
{[• • •], [• • •]}.

Brownian palindromes

PalBrown (4) = {(aa), (bb); (aaa), (bbb); (aaaa), (bbbb)}.

1.2.3.  Mersenneʼs palindromes
Mersenne situations are ordered sequences.  They can be read forwards and backwards,
hence they might be palindromic. Mersenne’s palindromes are similar to Leibniz palindromes
with the crucial difference that homogeneous sequences are equal, i.e. • • =  .
rev( ) = ( ) and ( ) !=  ( ).
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Mersennian palindromes

PalMers (4,2) = {(aa); (aaa), (aba), (bab); (aaaa), (abba), (baab)}

1.2.4.  Stirlingʼs palindromes
Stirling palindromes had been well studied recently.

           

Production examples for even palindromes   

P: w1!=w2: [w1= , w2= ]: P = [ , ]
P: w1=w2: [w1= , w2= ]: P = [ , ].

                                   PalStirling(4):
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                    rules        results           
P = [ , ]:   w1Pw2  : [ , , , ]  ; rule1(=rule2)
                   w3Pw3  : [ , , , ]   ; rule3
                   w3Pw4  : [ , , , ]   ; rule4
P = [ , ]:   w1Pw2  : [ , , , ]   ; rule1
                   w2Pw1  : [ , , , ]   ; rule2
                   w3Pw3  : [ , , , ]   ; rule3
                   w3Pw4  : [ , , , ]   ; rule4

Quite obviously, a pattern like [ ] doesn’t read forwards and backwards the same in a
Leibniz  world.  But  read  as  a  deep-structural  pattern  of  differences  it  does.  Hence,  the
pattern is a Stirlingian palindrome.

Test
The difference-structure of [   ] is:

This matrix is obviously symmetric. Thus, it represents a palindrome.
The same holds for the next example [    ]:

 .

Test
- ENstructureEN[1,2,3,1];
val it = [[],[N],[N,N],[E,N,N]] : EN list list
- ENstructureEN[1,3,2,1];
val it = [[],[N],[N,N],[E,N,N]] : EN list list

Matrix comparison

[1,2,3,1]   [1,3,2,1]

   

Therefore, the pattern ( ) is palindromic.

Bisymmetric examples
Bisymmetric examples
Is the pattern  [• • • O • O] a palindrome?

Reversion method

The naive method deals with the pattern as they are perceived and not with the differences
that are not perceived but recognized by analysis. Hence the inversion of the pattern  [• • •
O • O] is the pattern [O • O • • • ]. Both are differential symmetric and the matrix of the
differences are equal. Hence the patterns are palindromic.

ENstructureEN([• • • O • O]) = ENstructureEN(rev([• • • O • O])).

But with this approach we are not dealing with the differences as our primary objects but
with the patterns with their arbitrary elements.

(a) =[• • • O • O]    rev(a) = [O • O • • • ]
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Bisymmetry method

Morphograms  are  not  dealing  with  the  identity  of  their  elements,  but  with  the  pattern
defined by the differences between the elements only. Therefore we have to apply a different
method. This method is focusing on the differences they are notified with the matrix only.

The method is called bilateral symmetry, in short: bisymmetry.

ENstructureEN([• • • O • O]) =bisym rev(ENstructureEN([• • • O • O])).

Examples for Stirling palindromes

Palindromes pal(7,7):
   [1,1,1,1,1,1,1],[1,1,1,2,1,1,1],[1,1,1,2,3,3,3],[1,1,2,1,2,1,1],
   [1,1,2,1,3,1,1],[1,1,2,2,2,1,1],[1,1,2,2,2,3,3],[1,1,2,3,1,2,2],
   [1,1,2,3,2,1,1],[1,1,2,3,2,4,4],[1,1,2,3,4,1,1],[1,1,2,3,4,5,5],
   [1,2,1,1,1,2,1],[1,2,1,1,1,3,1],[1,2,1,2,1,2,1],[1,2,1,2,3,2,3],
   [1,2,1,3,1,2,1],[1,2,1,3,1,4,1],[1,2,1,3,2,1,2],[1,2,1,3,4,2,4],
   [1,2,1,3,4,5,4],[1,2,2,1,2,2,1],[1,2,2,1,3,3,1],[1,2,2,2,2,2,1],
   [1,2,2,2,2,2,3],[1,2,2,3,1,1,2],[1,2,2,3,2,2,1],[1,2,2,3,2,2,4],
   [1,2,2,3,4,4,1],[1,2,2,3,4,4,5],[1,2,3,1,2,3,1],[1,2,3,1,3,2,1],
   [1,2,3,1,3,4,1],[1,2,3,1,4,2,1],[1,2,3,1,4,5,1],[1,2,3,2,1,2,3],
   [1,2,3,2,3,2,1],[1,2,3,2,3,2,4],[1,2,3,2,4,2,1],[1,2,3,2,4,2,5],
   [1,2,3,3,3,1,2],[1,2,3,3,3,2,1],[1,2,3,3,3,2,4],[1,2,3,3,3,4,1],
   [1,2,3,3,3,4,5],[1,2,3,4,1,2,3],[1,2,3,4,1,5,3],[1,2,3,4,2,3,1],
   [1,2,3,4,2,3,5],[1,2,3,4,3,1,2],[1,2,3,4,3,2,1],[1,2,3,4,3,2,5],
   [1,2,3,4,3,5,1],[1,2,3,4,3,5,6],[1,2,3,4,5,1,2],[1,2,3,4,5,2,1],
   [1,2,3,4,5,2,6],[1,2,3,4,5,6,1],[1,2,3,4,5,6,7].
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1.3.  Logics in different worlds
1.3.1.  Logic in a Brownian world

Classical interpretation:
Log(CI) = {true ≡ }

"Here is how we shall model elementary logic using Laws of Form. We shall take the marked
state for the value T (true) and the unmarked state for the value F(false). We take NOT as
the operation of enclosure by the mark.” (l. Kauffman)

Log(CI) = {true ≡ }

      

Graphematical interpretation

The graphematical interpretation of the Brownian calculus is emphasizing the crucial fact of
its intrinsic commutativity.
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Semantics of the indicational domain
val({aa, ab, bb}) = {tt, tf, ff}

val(aa) = (tt)
val(ab) = (tf)
val(bb) = (ff).

Negation
non(tt) = ff
non(tf) = tf, because (ab) = (ba)

Statement: Negation in Brown is inversion (negation).

Hence, the conjunction of a true Brownian statement and its negation is a contradictional
statement.

Numerical truth-values
num(tt) = (1)
num(tf) = (2)
num(ff) = (3).

non(1, 2, 3) = (3, 2, 1)

Conjunction
(tt) (tt) --> (tt)
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(tt) (tf) --> (tf)
(tt) (ff) --> (ff)

(tf) (tt) --> (tf)
(tf) (tf) --> (tf)
(tf) (ff) --> (ff)

(ff) (tt) --> (ff)
(ff) (tf) --> (ff)
(ff) (ff) --> (ff)

Truth-tables:

1.3.2.  Logic in a Mersennian world
The distinctional domain of the Mersenne calculus is trichotomic too:

Mers = {tt, tf, ft}.

Negation

  

Statement: Negation in Mers is permutation.

Hence,  the  conjunction  of  a  true  Mersenne  statement  and  its  negation  remains  a  true
statement.

Conjunctiom

num({tt, tf, ft}) = (1,2,3)

non(1,2,3) = (1, 3, 2)

    

1.3.3.  Comparisons
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red:    Brown ∩ Mersenne
blue:   Mersenne \ {red, green}
green: Brown \ {red, blue}
Semiotics: Brown ∪ Mersenne

Comparision of truth-tables

        

standardized:

        

Proof-theory and tableaux calculi

For Mersenne calculi a branch of the tableau terminates if the same formulas contains the
signatures (tf) and (ft).
For  Brown  calculi  a  branch of  the  tableau terminates  if  the  same formula  contains  the
signatures (tt) and (ff).

1.4.  Cellular automata in different worlds
1.4.1.  CAs in Brownian worlds
A further understanding of the indicational calculus is offered by the study of its dynamism,
sketched as cellular automata.
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Example
indCA, r = 

1.4.2.  CAs in Mersenne worlds

1.4.3.  CAs in Stirling worlds

Homogeneous kenoCA  applications
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Heterogeneous kenoCA  compositions

Formal interpretation

2.  How are the 4 games inter-related?

2.1.  Systematic Diagrams
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      Connection table in normal form for sys(2,3)

      

      Connection table in normal form for sys(2,2)

      

2.2.  Systematic graphs
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2.3.  Polyfunctorial mediations
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