
                                                                                                                                              
                                                                                                                                               Summer-Edition 2017 

 

— vordenker-archive — 

Rudolf Kaehr 

(1942-2016) 

 

Title 

Memristics LISPs 

How to program memristive systems? 

 

Archive-Number / Categories 

3_04 / K11, K07 

 

Publication Date 

2011 
 

Keywords 

TOPICS: McCarthyʼs recursive LISP – F. L. Bauerʼs formal characteriszation of LISP – Recursive kenomic 

LISP – Special features of kenomic LISP – Examples of kenomic LISP – Bifunctoriality of CONS, 
CAR and CDR – Memristive self-referentiality – Ambiguity, double-meaning and morphograms –  

 

Disciplines 

Cybernetics, Computer Sciences, Artificial Intelligence and Robotics, Systems Architecture and Theory 

and Algorithms, Memristive Systems 
 

Abstract 

This draft is a first sketch of the basic definitions of a memristive polyLISP. The memristivity of the 

polyLISP refers to the fundamental retrogradness of its recursivity which is not just an iterative 

repetition of the “function itself” but a self-definition of the range and character of the operation 

involved. The hint to polycontexturality with the prefix “poly” hints to  the fact that iterability for 

retrograde functions is “polycontextural”, i.e. opening up  different contextural domains instead of 

remaining immanently inside a domain closed by its closure conditions like it holds for  classical 
recursivity. 

 

Citation Information / How to cite 

Rudolf Kaehr: "Memristics LISPs", www.vordenker.de  (Sommer Edition, 2017) J. Paul (Ed.),  

URL: http://www.vordenker.de/rk/rk_Memristics-LISPs_2011.pdf 

 

 

Categories of the RK-Archive 
K01  Gotthard Günther Studies 

K02  Scientific Essays 

K03  Polycontexturality – Second-Order-Cybernetics 

K04  Diamond Theory 

K05  Interactivity 

K06  Diamond Strategies 

K07  Contextural Programming Paradigm 

K08  Formal Systems in Polycontextural Constellations 

K09  Morphogrammatics 

K10  The Chinese Challenge or A Challenge for China 

K11  Memristics Memristors Computation 

K12  Cellular Automata 

K13  RK and friends 

 

 

http://www.vordenker.de/index.html
http://www.vordenker.de/index.html
http://www.vordenker.de/navigation.htm
https://de.wikipedia.org/wiki/Rudolf_Kaehr
http://www.vordenker.de/rk/rk_Memristics-LISPs_2011.pdf
http://www.vordenker.de/rk/rk_Memristics-LISPs_2011.pdf


Memristics' LISPs
How to program memristive systems?

Rudolf Kaehr Dr.phil „

«

Copyright ThinkArt Lab ISSN 2041-4358
 

Abstract
A first sketch of the basic definitions of a memristive polyLISP. The memristivity of the 
polyLISP refers to the fundamental retrogradness of its recursivity which is not just an 
iterative repetition of the “function itself” but a self-definition of the range and character 
of the operation involved. The hint to polycontexturality with the prefix “poly” hints to 
the fact that iterability for retrograde functions is “polycontextural”, i.e. opening up 
different contextural domains instead of remaining immanently inside a domain closed 
by its closure conditions like it holds for  classical recursivity. 

ULTRA DRAFT

1. Styles of thematizations

1.1. Four formal principle of memristics
Question: How to program memristive systems?

Four fundamental memristic strategies
The new approach of kenomic formal systems, calculi, machines, programming paradigms, is 
taking two very simple constructions, principles, strategies into account:

First: Retrograde recursivity
When ever something is repeated it has to be decided as what it shall be repeated. The scope 
or range of repetition of an element is fully depending on the history of former repetitions.

Second: Enaction
When ever something is annihilated, eliminated, erased, cancelled, its annihilation has to be 
registered, to be remembered, memorized at a location of registration. The registration of an 
annihilation might be involved as a proper object into further iter/alterations of repeatability 
and enaction.

The first principle is realized formally by the strategy of retrograde recursivity as it was 
introduced for keno- and morphogrammatics in the early 70s as a polycontextural answer to 
the topics of self-referentiality in Second-Order Cybernetics.

The second principle is realized by the strategy of enaction. Enacation seems to be a recent 
invention/insight, well motivated by a polycontextural interpretation of the concepts of memris-
tive systems (Chua, Williams) and a subversive move in the understanding of George Spencer 
Brown’s Law of Crossing beyond semiotics and logic sketched at first around 2010.

Therefore, iterability in general is not only happening as retrograde iter/alteration but as an 
inscription of memristive enaction too. 

Also the operation of enaction is new it nevertheless seems to have enough cultural back-
ground to be accepted as “natural”.

There are other important new principles which are omitted at this place, like the principle of 
localization of systems and operations and the principle of diamond environments.



Question: How to program memristive systems?

Four fundamental memristic strategies
The new approach of kenomic formal systems, calculi, machines, programming paradigms, is 
taking two very simple constructions, principles, strategies into account:

First: Retrograde recursivity
When ever something is repeated it has to be decided as what it shall be repeated. The scope 
or range of repetition of an element is fully depending on the history of former repetitions.

Second: Enaction
When ever something is annihilated, eliminated, erased, cancelled, its annihilation has to be 
registered, to be remembered, memorized at a location of registration. The registration of an 
annihilation might be involved as a proper object into further iter/alterations of repeatability 
and enaction.

The first principle is realized formally by the strategy of retrograde recursivity as it was 
introduced for keno- and morphogrammatics in the early 70s as a polycontextural answer to 
the topics of self-referentiality in Second-Order Cybernetics.

The second principle is realized by the strategy of enaction. Enacation seems to be a recent 
invention/insight, well motivated by a polycontextural interpretation of the concepts of memris-
tive systems (Chua, Williams) and a subversive move in the understanding of George Spencer 
Brown’s Law of Crossing beyond semiotics and logic sketched at first around 2010.

Therefore, iterability in general is not only happening as retrograde iter/alteration but as an 
inscription of memristive enaction too. 

Also the operation of enaction is new it nevertheless seems to have enough cultural back-
ground to be accepted as “natural”.

There are other important new principles which are omitted at this place, like the principle of 
localization of systems and operations and the principle of diamond environments.

Third: Bifunctoriality
LISP operations are concatenative. This holds for all LISP dialects. Therefore, all combinations 
of Lisp operators are faithfull to the Lisp operational closure.

The combination (composition) of two Lisp operations is a Lisp operation.

" opiœ Lisp: op(op(...(op))œ Lisp

Hence, op1, op2 œ Lisp  fl op2(op1) œ Lisp.

Structural law of associativity

op 1 Î Jop 2 Î op 3N = Jop 1 Î op 2N Î op 3N

The new feature of kenoLisp is bifunctoriality between two operations and two different Lisp 
systems.

op 1, 2œ Lisp 1, op 3,4 œ Lisp 2 JJop 1Î op 2N ˇ Jop 3Î op 4NN œ Lisp J2N

law CONS J4N

CONS Jl 1, l 2, l 3, l 4N

B
op 1 op 3

op2 op 4

F :

op 1

ˇ

op 3

*
op 2

ˇ

op 4

=

Jop 1 * op 2N

ˇ

Jop3 * op 4N

.

2   Author Name



S tructural law of bifunctoriality

Jop 1 * op 2N ˇ Jop3 * op 4N = Jop 1 ˇ op 3N * Jop2 ˇ op 4N

Fourth: Dissemination of Lisp over the kenomic matrix

Matrix model

@bif, id, idD O1 O2 O3

M1 LISP1.1 LISP2.1 LISP3.1

M2 - LISP2.2 -

M3 - - LISP3.3

Dissemination of bifunctoriality

Transpositional composition

CAR 1

ˇ1.2

CAR 2 ù2.1 CAR 1

ˇ2.3

CAR 3 ù3.1 CAR 1

B

Î 1.1

Î2.1 Î2.2

Î3.1 Î 3.3

F

CDR 1

ˇ1.2

CDR 2 ù2.1 CDR 1

ˇ2.3

CDR 3 ù3.1 CDR 1

=

HCAR 1 Î1.1 CDR 1L

ˇ1.2

HCAR 2 Î2.2 CDR 2L ù2.1 HCAR 1 Î2.1 CDR 1L

ˇ2.3

HCAR 3 Î3.3 CDR 3L ù3.1 HCAR 1 Î3.1 CDR 1L

1.2. Styles of thematizations
Example for retrograde kenomic CONS

retrograde recursion

  
cons MG : X = HabL ö cons HX; AL ö HX AL HX BL HX CL

type

The kenomic operator “CONS” as an operator for construction is in general not predefined like 
in classical Lisp to act on atomic terms which are ruled by the principles of identity and equal-
ity. The new approach to a morpho- and kenogrammatic or thematic Lisp is enabling “CONS” to 
chose, in the process of application, the mode of the further steps of the application by elect-
ing the data paradigm to be involved. The graphematic possibilities for the data paradigm at 
hand for now are:
1. the mode of semiotic identity with recursivity, 
2. the mode of contextural comlexity with proemial recursivity,
3. the mode of kenogrammatic similarity with retrograde recursivity, 
4. the indicational mode of “topology-free constellations of signs” with recursive enaction, and 
5. the mode of monomorphic bisimilarity of morphogrammatics with bisimulation and 
metamorphosis.

Article Title  3



Example for retrograde kenomic CONS

retrograde recursion

  
cons MG : X = HabL ö cons HX; AL ö HX AL HX BL HX CL

type

The kenomic operator “CONS” as an operator for construction is in general not predefined like 
in classical Lisp to act on atomic terms which are ruled by the principles of identity and equal-
ity. The new approach to a morpho- and kenogrammatic or thematic Lisp is enabling “CONS” to 
chose, in the process of application, the mode of the further steps of the application by elect-
ing the data paradigm to be involved. The graphematic possibilities for the data paradigm at 
hand for now are:
1. the mode of semiotic identity with recursivity, 
2. the mode of contextural comlexity with proemial recursivity,
3. the mode of kenogrammatic similarity with retrograde recursivity, 
4. the indicational mode of “topology-free constellations of signs” with recursive enaction, and 
5. the mode of monomorphic bisimilarity of morphogrammatics with bisimulation and 
metamorphosis.

Other modes are possible as further realizations of graphematic styles of inscription. Known 
examples are the deutero- and proto-structure of kenogrammatics. On the other side, there 
are fuzzy-logical concepts for the semiotics mode of thematization; and others.

THEMATIZATION : a, a, b, c ö

SET Ja, a, b, cN ö :a, b, c>

LIST Ja, a, b, cN ö Ja . a . b . cN

CONTEXTURE Ja, a, b, cN ö JJJa Ñ aNˇ dN Jcˇ e Nˇf N

KENOS Ja, a, b, cN ö BxyzF

INDIC Ja, a, b, cN ö Za b c^

MORPHIC Ja, a, b, cN ö BBxxF ByF B zFF

Domains of application
The semiotic or symbolic mode of thematization is ideal for atomistic binary physical systems 
as they occur in or as digital computers.

The contextural or interactional mode of thematization is ideal for ambigous complex physical 
systems as they occur in distributed and interacting digital computer and organic systems.

The kenogrammatical mode of thematization is ideal for pre-semiotic complex behavioural 
systems as they occur in memristive physical and cognitive/volitive systems. 

The indicational mode of thematization is ideal for singular decision systems as they occur in 
simple actional systems where identity of the agents is relevant but not the order of their 
appearance.

The monomorphic mode of thematization is ideal for metamorphic systems as they occur in 
complex memristive actional systems.

1.2.1. Graphematic systems
Semiotics               a=a, a≠b, with a(bc) = (ab)c
(A)"If the two given tokens of strings have different lengths, then they are different. If they 
have equal lengths, then go to (B)."
(B) "For each position i from 1 to the common length, check whether the atom at the i-th 
position of x equals the atom at the i-th position of y. If this is true for all positions i, then the 
given tokens are equal, otherwise they are different."

IF length(X) = length(Y) and "i xiœX, yiœY: xi ª yi THEN X = Y.

Indicational    a=a, a≠b, ab = ba, aa = a
(B') "Check whether each atom appears equally often in both string-tokens. If this is the case, 
then they are equal, otherwise they are different."

4   Author Name



Indicational    a=a, a≠b, ab = ba, aa = a
(B') "Check whether each atom appears equally often in both string-tokens. If this is the case, 
then they are equal, otherwise they are different."

 "i,j: xiœX, y jœY: {xi} = {yj} THEN X =Y

Kenogrammatics     a=b, (aa) ≠ (ab), (aa) ≠ (aaa)
(B'') "For each pair i,k, i<k, of positions, check whether within x there is equality between 
position i and k, and check whether wihin y there is equality between position i and k. If within 
both x and y there is equality, or if within both x and y there is inequality, then state equality 
for this pair of positions, otherwise state inequality for this pair of positions. If for each pair of 
positions there is equality, then x and y are equal. Otherwise they are not."

Deutero-Structure
(B''') "Take an atom a from x, find out the number k of atoms in x equal to a, and check 
whether in y there is an atom which occurs exactly k times. If not, then x and y are unequal. If 
yes, then remove the atoms just considered from x and y. If nothing is left, x and y are equal. 
Otherwise apply B''' to the remaining string-tokens."

Comparison
"The former are invariant w.r.t. permutations of the index set {1,...,n}, while the latter are 
invariant w.r.t. permutations of the alphabet A.”
SEMIOTIC ABSTRACTIONS IN THE THEORIES OF GOTTHARD GÜNTHER AND GEORGE SPENCER 
BROWN By Rudolf Matzka, Munich, May 1993

Monomorphics   a=b, (aa) ≠ (aaa), (aba) = (abba) 

The next feature of the operator “CONS" (also “append") is defined by the retrograde recursiv-
ity of iterability, i.e. the modes of ‘concatenation’ and ‘succession'.

Depending on the hermeneutical process of thematization, the operation “CON” might chose 
its mode of realization. It might switch between different styles, or it might stay stable for a 
chosen possibility of thematization.

In a polycontextural situation it might be preferable to use simultaneously differend modes of 
thematizations.

Hence, before any decision for a certain programming paradigm and then for the main topics, 
a decision, i.e. an election of the mode of ‘production’ has to be installed.
An explication of the difference of selection (for Lambda Calculus) and election (for Contextu-
ral Programming) might be found at:
http://works.bepress.com/thinkartlab/20/ 

2. Recursive symbolic Lisp

2.1. McCarthyʼs recursive LISP
Following the clear exposition of the definition of recursive LISP as McCarthy has outlined in his 
inaugurating paper “Recursive Functions of Symbolic Expressions and Their Computation by 
Machine, Part I, April 1960” I will try to sketch a deconstructive approach to the idea and 
definitions of a recursive kenomic LISP along this historical guidlines.

McCarthy:
a. A Class of Symbolic Expressions. We shall now define the S-expressions
   (stands for symbolic). They are formed by using the special characters
     ·
    )
    (
and an infinite set of distinguishable atomic symbols.

c. The Elementary S-functions and Predicates. We introduce the following
functions and predicates:

1. atom. atom[x] has the value of T or F according to whether x is an
atomic symbol. Thus
atom [X] = T            
atom [(X · A)] = F    

2. eq. eq [x;y] is defined if and only if both x and y are atomic. 
eq [x; y]= T if x and y are the same symbol, and eq [x; y] = F otherwise.

Thus eq [X; X] = T
eq [X; A] = F
eq [X; (X · A)] is undefined.

Article Title  5

http://works.bepress.com/thinkartlab/20/


Following the clear exposition of the definition of recursive LISP as McCarthy has outlined in his 
inaugurating paper “Recursive Functions of Symbolic Expressions and Their Computation by 
Machine, Part I, April 1960” I will try to sketch a deconstructive approach to the idea and 
definitions of a recursive kenomic LISP along this historical guidlines.

McCarthy:
a. A Class of Symbolic Expressions. We shall now define the S-expressions
   (stands for symbolic). They are formed by using the special characters
     ·
    )
    (
and an infinite set of distinguishable atomic symbols.

c. The Elementary S-functions and Predicates. We introduce the following
functions and predicates:

1. atom. atom[x] has the value of T or F according to whether x is an
atomic symbol. Thus
atom [X] = T            
atom [(X · A)] = F    

2. eq. eq [x;y] is defined if and only if both x and y are atomic. 
eq [x; y]= T if x and y are the same symbol, and eq [x; y] = F otherwise.

Thus eq [X; X] = T
eq [X; A] = F
eq [X; (X · A)] is undefined.

3. car. car[x] is defined if and only if x is not atomic. car [(e1 · e2)] = e1.
Thus car [X] is undefined.
car [(X · A)] = X
car [((X · A) · Y )] = (X · A)

4. cdr. cdr [x] is also defined when x is not atomic. We have cdr
[(e1 · e2)] = e2. Thus cdr [X] is undefined.
cdr [(X · A)] = A 
cdr [((X · A) · Y )] = Y

5. cons. cons [x; y] is defined for any x and y. We have 
cons [e1; e2] = (e1 · e2). Thus
cons [X; A] = (X A)
cons [(X · A); Y ] = ((X · A)Y )

car, cdr, and cons are easily seen to satisfy the relations
car [cons [x; y]] = x
cdr [cons [x; y]] = y
cons [car [x]; cdr [x]] = x, provided that x is not atomic. 

2. subst [x; y; z]. This function gives the result of substituting the S-
expression x for all occurrences of the atomic symbol y in the S-expression z.
It is defined by

subst [x; y; z] = [atom [z] ö [eq [z; y]ö x; T ö z];
T ö cons [subst [x; y; car [z]]; subst [x; y; cdr [z]]]]

As an example, we have
subst[(X · A);B; ((A · B) · C)] = ((A · (X · A)) · C)

6   Author Name



2. subst [x; y; z]. This function gives the result of substituting the S-
expression x for all occurrences of the atomic symbol y in the S-expression z.
It is defined by

subst [x; y; z] = [atom [z] ö [eq [z; y]ö x; T ö z];
T ö cons [subst [x; y; car [z]]; subst [x; y; cdr [z]]]]

As an example, we have
subst[(X · A);B; ((A · B) · C)] = ((A · (X · A)) · C)

3. equal [x; y]. This is a predicate that has the value T if x and y are the
same S-expression, and has the value F otherwise. We have

equal [x; y] = [atom [x] Ô atom [y]  Ô eq [x; y]]
Ó[¬ atom [x] Ô¬ atom [y]  Ô equal [car [x]; car [y]] Ô equal [cdr [x]; cdr [y]]].

The following functions are useful when S-expressions are regarded as lists.

1. append [x;y].
append [x; y] = [null[x] ö y; T ö cons [car [x]; append [cdr [x]; y]]]

An example is
append [(A, B); (C, D, E)] = (A, B, C, D, E)

2. among [x;y]. This predicate is true if the S-expression x occurs among the elements of the 
list y. 
We have

among[x; y] = ¬ null[y] Ô [equal[x; car[y]] Ó among[x; cdr[y]]].

3. pair [x;y]. This function gives the list of pairs of corresponding elements of the lists x and y. 
We have

pair[x; y] = [null[x] Ô null[y] ö NIL; ¬atom[x] Ô¬atom[y] ö  cons[list[car[x]; car[y]]; pair[c-
dr[x]; cdr[y]]].

An example is
pair[(A,B,C); (X, (Y, Z), U)] = ((A,X), (B, (Y, Z)), (C, U)).

John McCarthy, Recursive Functions of Symbolic Expressionsand Their Computation by Machine, 
Part I, MIT, April 1960
http://www-formal.stanford.edu/jmc/recursive.pdf 

2.1.1. F. L. Bauerʼs formal characteriszation of LISP

type LISP ≡

Jmode atom N lisp, car, cdr, cons, mklisp, mkatom, isatom :

mode lisp,
funct J:lisp l : Ÿ isatom JlN > lisp car,

funct J:lisp l : Ÿ isatom JlN > lisp cdr,

funct Jlisp, lispN lisp cons,

funct JatomN lisp mklisp,

funct J:lisp l : isatom JlN>N atom mkatom,

funct JlispN bool isatom,

law CAR : car Jcons Jk, lN = k,

law CDR : cdr Jcons Jk, lN = l,

law CONS : Ÿ isatom JlN cons Jcar JlN, cdr JlNN = l

law SATOM1 : isatom Jmklisp JaNN,

law ISATOM2 : Ÿ isatom Jcons Jk, lNN,

law MKATOM : mkatom Jmklisp JaNN = a,

law MKLISP : isatom mklisp Jmkatom JlNN = l

endoftype

F. L. Bauer, p .215 - 16

Algorithmische Sprache und Programmentwicklung , 1984

Article Title  7

http://www-formal.stanford.edu/jmc/recursive.pdf


F. L. Bauer, H. Wössner, H. Wassner,
Algorithmische Sprache und Programmentwicklung , 1984

2.1.2. First steps to an algebraic characterization kenomic LISP

mode keno-lisp Jm, nN c matrix Jm, nNª

c Jm, nN

Klisp Jm, nN c car, lisp Jm, nN c cdr , lisp Jm, nN c repl , lisp Jm, nN c transpO

type kenoLISP Jm, nN ≡

Kmode keno, matrix Km, nO O lisp Jm, nN,

car, cdr, cons, repl, transp, mklisp, mkkenom, iskenom :
mode kenolisp,

funct K:lisp l : Ÿ iskenom JlN > lisp car,

funct K:lisp l : Ÿ iskenom JlN > lisp cdr,

funct K:lisp l : iskenom JlN > lisp repl,

funct K:lisp l : iskenom JlN > lisp transp,

funct Jlisp, lispN lisp cons,

funct JkenoN lispmklisp,

funct J:lisp l : iskenom JlN>N kenomkkenom,

funct JlispN bool i.j iskenom i.j,

bi- funct Jlisp 1, lisp 2N J lisp 3 , lisp 4O cons
J4N,

8   Author Name



law CONS J4N

CONS Jl 1, l 2, l 3, l 4N =
l 1
ˇ

l 3

*
l 2
ˇ

l 4

=

Jl 1 * l 2N

ˇ

Jl 3 * l 4N

,

law CAR : car Jcons Jk, lN = k,

law CDR : cdr Jcons Jk, lN = l,

law EN : repl Jtransp JlNN = transp Jrepl JlNN,

law CONS : Ÿ iskenom JlN cons Jcar JlN, cdr JlNN= l i.j

law ISKENOM1 : iskenom Jmklisp Ja i.jNN,

law ISKENOM2 Ÿ iskenom Jcons Jk, lNN,

law MKKENOM : mkkenom Jmklisp Ja i.jNN = a i.j ,

law MKKENOM i.j+1 : mkkenom Jmklisp Jrepl JJa i.jNNN = a

law MKKENOM

i+1. j : mkkenom Jmklisp Jtransp JJa i.jNNN = a

law MKLISP : iskenom mklisp Jmkkenom Jl i.jNN= l i.j
endoftype

mode lisp Jm, nN c matrix Jm, nNª

c Jm, nN

Klisp Jm, nN c car, lisp Jm, nN c cdr , lisp Jm, nN c repl , lisp Jm, nN c transpO

2.2. Recursive kenomic LISP
2.2.1. Basic terms: atom, eq, equal, subst
Based on McCarthy’s presentation of LISP some first steps of its deconstruction shall follow.

Atoms are becoming kenoms and patterns of kenoms, i.e. monomorphies are building mor-
phograms.
1. kenom. kenom[x] has the value of Ti or Fi according to whether x is a kenomic symbol. 

Thus
kenom [X] = Ti            

kenom [(X · A)] = Fi, i,j œ s(m)

Monomorphy
For eq [X, A] = T ö monomorph[X . A] = T

2. eq-kenom. eq-kenom [x;y] is defined if and only if both x and y are kenomic. 
eq-kenom [x; y] = Ti  if x and y are of the same pattern, and eq-kenom [x; y] = Fi otherwise.

Thus eq-kenom [X; X] = Ti
X = pattern(A) ö eq-kenom [X; A] = Ti
eq-kenom [X; (X · A)] is undefined.

3. equal [x; y] = [atom [x] Ô atom [y]  Ô eq [x; y]]
Ó[¬ atom [x] Ô¬ atom [y]  Ô equal [car [x]; car [y]] Ô equal [cdr [x]; cdr [y]]].

Article Title  9



2. eq-kenom. eq-kenom [x;y] is defined if and only if both x and y are kenomic. 
eq-kenom [x; y] = Ti  if x and y are of the same pattern, and eq-kenom [x; y] = Fi otherwise.

Thus eq-kenom [X; X] = Ti
X = pattern(A) ö eq-kenom [X; A] = Ti
eq-kenom [X; (X · A)] is undefined.

3. equal [x; y] = [atom [x] Ô atom [y]  Ô eq [x; y]]
Ó[¬ atom [x] Ô¬ atom [y]  Ô equal [car [x]; car [y]] Ô equal [cdr [x]; cdr [y]]].

equal

equal - symbol : equal Bx; yF

equal - kenom : equal Bx; yF

equal -monomorph : equal Bx; yF

Bisimulation
eq-kenom [X; (X · A)] = U ö  $ bisimul [X; (X · A)] = T

Examples 
eq-kenom [a, a] = eq [a,b] = eq [b, z] = T, i.e eq[kenom1, kenom2E = T

eq-kenom [ab, ba] =T
non-eq-kenom [a, ab]
eq-kenom[aa, bb]=T ö monomorph[aa . aa] = T
eq-kenom [aba, abba] = U  ö  $ eq-bisimul [ab; abba] = T

Substitution
3. subst [x; y; z] = [atom [z] ö [eq [z; y]ö x; T ö z];
T ö cons [subst [x; y; car [z]]; subst [x; y; cdr [z]]]]

As an example, we have
subst[(X · A);B; ((A · B) · C)] = ((A · (X · A)) · C).
          m     h        H                         Hhêm

Kenomic substitution
H1= MG H 2, H1 ≠ sem H 2 fl

subst[m1, h1, H1] = subst[m2, h1, H2] 

Context rules for substitution CRS
" h, m1 œ H1, m2 œ H2, m1 = MG m2,

m1 ≠ sem m2, h ≠ sem m 1, m 2,

lengthJm 1N = lengthJm 2N,

kenomJm 1NËkenom JH1N = ø ,

kenomJm 2NËkenom JH2N = ø :

H1 = MG H2 î Substhím1
KH1O = MG Substhím2

KH2O ;

modulo CRS

10   Author Name



modulo CRS

Example

H 1 = BaabbaccF, H 2 = BaaccabbF,

H 1 = MG H 2, H1 ≠ sem H 2

DecJH 1N = JBaaF, BbbF, BaF, BccFN,

DecJH 2N = JBaaF, BccF, BaF, BbbFN,

h = BaaF, m 1 = BdddF, m 2 = BeeeF,

lengthJm 1N = lengthJm 2N,

m 1 ≠ sem m 2, h ≠ sem m 1, m 2,

semJm iNË sem JHiN = ø , i = 1, 2

DecJH 1 N = JBaaF, BbbF, BaF, BccFN

Subst JH 1N BaaFí
BdddF

JBaaF, BbbF, BaF, BccFN = JBdddF, BbbF, BaF, BccFN

Dec JH 2N = JBaaF, BccF, BaF, BbbFN

SubstJH 2N BaaFí
BeeeF

JBaaF, BccF, BaF, BbbFN = JBeeeF, BccF, BaF, BbbFN

H1 = MG H2 ï Subst JH 1N BaaFí
BdddF

= MG SubstJH 2N BaaFí
BeeeF

BaabbaccF = MG BaaccabbF ï BdddbbaccF = MG BeeeccabbF.

2.2.2. Kenomic CDR, CAR, CONS
3. car. car[x] is defined if and only if x is not atomic. car [(e1 · e2)] = e1.
Thus car [X] is undefined.
car [(X · A)] = X
car [((X · A) · Y )] = (X · A)
fl
CAR [(Xi.j . Ai.j)] =  Xi.j
CAR [(Xi.j . Ai.j) · Yi.j )] = (Xi.j . Ai.j).

Enactional car

CAREN [(Xi.j . Ai.j)] = Xi.j. (¶i.jN | Ai.j+1

CAREN [(Xi.j . Ai.j) · Yi.j )] = ((Xi.j . Ai.j) . (¶i.jN) | Yi.j+1

4. cdr. cdr [x] is also defined when x is not atomic. We have 
cdr[(e1 · e2)] = e2. Thus cdr [X] is undefined.
cdr [(X · A)] = A 
cdr [((X · A) · Y )] = Y
fl
CDR [(Xi.j . Ai.j)] = Ai.j
CDR [((Xi.j . Ai.j) · Yi.j )] = Yi.j

Enactional CDR

CDREN [(Xi.j . Ai.j)] = ((¶i.jN. Ai.j)| Xi.j+1

CDREN [((Xi.j . Ai.j) · Yi.j )] = ((¶i.jN. Yi.j ) | (Xi.j+1 . Ai.j+1)

5. cons. cons [x; y] is defined for any x and y. We have 
cons [e1; e2] = (e1 · e2). Thus
cons [X; A] = (X A)
cons [(X · A); Y ] = ((X · A) Y)
fl
Kenomic CONS
X = (A) ö CONS [X; A] = (X A)|(X B)
X = (X . A) ö CONS [(X · A); Y ] = ((X · A) Y)|((X · A) Z)

Article Title  11



3. car. car[x] is defined if and only if x is not atomic. car [(e1 · e2)] = e1.
Thus car [X] is undefined.
car [(X · A)] = X
car [((X · A) · Y )] = (X · A)
fl
CAR [(Xi.j . Ai.j)] =  Xi.j
CAR [(Xi.j . Ai.j) · Yi.j )] = (Xi.j . Ai.j).

Enactional car

CAREN [(Xi.j . Ai.j)] = Xi.j. (¶i.jN | Ai.j+1

CAREN [(Xi.j . Ai.j) · Yi.j )] = ((Xi.j . Ai.j) . (¶i.jN) | Yi.j+1

4. cdr. cdr [x] is also defined when x is not atomic. We have 
cdr[(e1 · e2)] = e2. Thus cdr [X] is undefined.
cdr [(X · A)] = A 
cdr [((X · A) · Y )] = Y
fl
CDR [(Xi.j . Ai.j)] = Ai.j
CDR [((Xi.j . Ai.j) · Yi.j )] = Yi.j

Enactional CDR

CDREN [(Xi.j . Ai.j)] = ((¶i.jN. Ai.j)| Xi.j+1

CDREN [((Xi.j . Ai.j) · Yi.j )] = ((¶i.jN. Yi.j ) | (Xi.j+1 . Ai.j+1)

5. cons. cons [x; y] is defined for any x and y. We have 
cons [e1; e2] = (e1 · e2). Thus
cons [X; A] = (X A)
cons [(X · A); Y ] = ((X · A) Y)
fl
Kenomic CONS
X = (A) ö CONS [X; A] = (X A)|(X B)
X = (X . A) ö CONS [(X · A); Y ] = ((X · A) Y)|((X · A) Z)

CONS, CAR and CDR

Enactional CAR

CAR BJX i.j. A i.jNF = X i.j. J¶ i.jN A i.j+1

CAR BJX i.j. A i.jN ÿ Y i.j NNF = JJX i.j. A i.jN . J¶ i.jNN Y i.j+1

Enactional CDR

CDR BJX i.j. A i.jNF = JJ¶ i.jN. A i.jN X i.j+1

CDR BJJX i.j. A i.jN ÿ Y i.j NF = JJ¶ i.jN. Y i.j N JX i.j+1 . A i.j+1N

Kenomic CONS

X = JAN ö CONS BX; AF = JX AN JX BN

X = JX . AN ö cons BJX ÿ AN; Y F = JJX ÿ AN YN JJX ÿ AN ZN

2.2.3. Enactional CAR and CDR as composed operators
Enaction was previously defined as a combination of replication and elimination. This fits 
together with an understanding of enactional operations as composed of replication and elimina-
tion in the sense of CDR and CAR in LISP. Replication is like transposition an operator belonging 
to the so called super-operators, ID, PERM, REPL, RED and BIF of polycontextural logic. Super-
operators are applicable to all internal LISP terms and operators, hence not only to CAR and 
CDR but to CONS, APPEND, etc. too.
In this context, the LISP operators CAR and CDR are modeled by the polycontextural operation 
of reduction (RED), while the new LISP operation of enaction is modeled by replication (REPL). 
Both together are defining the enactional CDR and CAR albeit based now not on lists but on 
morphograms.

Classical operations like CAR, CDR and CONS are defined by the identity mapping ID. Hence
ID(CAR) = CAR, ID(CDR) = CDR  and ID(CONS) = CONS. Thus, ID : X ö X with X= {CAR, CDR, 
CONS}. 

Both CAREN and CDREN are defined by CAR and CDR and the replicative operation of reflec-
tional enaction.

12   Author Name



Enaction was previously defined as a combination of replication and elimination. This fits 
together with an understanding of enactional operations as composed of replication and elimina-
tion in the sense of CDR and CAR in LISP. Replication is like transposition an operator belonging 
to the so called super-operators, ID, PERM, REPL, RED and BIF of polycontextural logic. Super-
operators are applicable to all internal LISP terms and operators, hence not only to CAR and 
CDR but to CONS, APPEND, etc. too.
In this context, the LISP operators CAR and CDR are modeled by the polycontextural operation 
of reduction (RED), while the new LISP operation of enaction is modeled by replication (REPL). 
Both together are defining the enactional CDR and CAR albeit based now not on lists but on 
morphograms.

Classical operations like CAR, CDR and CONS are defined by the identity mapping ID. Hence
ID(CAR) = CAR, ID(CDR) = CDR  and ID(CONS) = CONS. Thus, ID : X ö X with X= {CAR, CDR, 
CONS}. 

Both CAREN and CDREN are defined by CAR and CDR and the replicative operation of reflec-
tional enaction.

Replicational enaction for CAR and CDR
CAR EN ª CAR JREPLN :

CAR JREPL JX i.j. A i.jNN = CAR J X i.j . A i.jN A i.j+1 = X i.j. J¶ i.jN A i.j+1

CAR BREPL JJX i.j. A i.jN ÿ Y i.j NNF =

CAR JJX i.j. A i.jN . Y i.jN Y i.j+1 = JJX i.j. A i.jN . J¶ i.jNN Y i.j+1

CDR EN ª CDR JREPLN :

CDR BREPL JX i.j. A i.jNF = CDR JJX i.jN. A i.jN X i.j+1 = JJ¶ i.jN. A i.jN X i.j+1

CDR BREPL JJX i.j. A i.jN ÿ Y i.j NF =

CDR

JJX i.jN. A i.jN . Y i.j JX i.j+1 . A i.j+1N = JJ¶ i.jN. Y i.j N JX i.j+1 . A i.j+1N

Replicational enaction matrix
CAR REPL :

O 1 O 2

M 1 JX . AN 1.1 -

M 2 - -

O 1 O 2

M 1 JX . AN 1.1 -

M 2 A 1.2 -

O 1 O 2

M 1 JX.¶ N 1.1 -

M 2 A 1.2 -

CDR REPL :

O 1 O 2

M 1 JX . AN 1.1 -

M 2 - -

O 1 O 2

M 1 JX . AN 1.1 -

M 2 X 1.2 -

O 1 O 2

M 1 J¶ . AN 1.1 -

M 2 X 1.2 -

Transpositional enaction for CAR and CDR
CAR JTRANSPN :

CAR TRANSP JX i.j . A i.jN = X i.j. J¶ i.jN A i+1. j

CAR TRANSP JJX i.j . A i.jN ÿ Y i.j N = JJX i.j. A i.jN . J¶ i.jNN Y i+1

CDR JTRANSPN :

CDR TRANSP BJX i.j . A i.jNF = JJ¶ i.jN . A i.jN X i+1. j

CDR TRANSP BJX i.j . A i.jN ÿ Y i.j F = JJ¶ i.jN . Y i.j N JX i+1. j . A i+1. jN

Article Title  13



Transpositional enaction matrix
CAR TRANSP :

O 1 O 2

M 1 JX . AN 1.1 -

M 2 - -

O 1 O 2

M 1 JX . AN 1.1 A 2.1

M 2 - -

O 1 O 2

M 1 JX. ¶N 1.1 A 2.1

M 2 - -

CDR TRANSP :

O 1 O 2

M 1 JX . AN 1.1 -

M 2 - -

O 1 O 2

M 1 JX . AN 1.1 X 2.1

M 2 - -

O 1 O 2

M 1 J¶ . AN 1.1 X 2.1

M 2 - -

Both together :
F repl JF transpN = F trnsp JF replN : F i.j ö F i+1. j+1

Enaction defined with DEFUN :

CAR TRANSP: JDEFUN CAR TRANSP JXN JCAR JTRANSP JXNN

CDR TRANSP: JDEFUN CDR TRANSP JXN JCDR JTRANSP JXNN

CAR REPL: JDEFUN CAR REPL JXN JCAR JREPL JXNN

CDR REPL: JDEFUN CDR REPL JXN JCDR JREPL JXNN.

2.2.4. Rules for CAR, CDR and CONS
car, cdr, and cons are easily seen to satisfy the relations

1. car B cons B x; yFF = x

CAR BCONS BX; AFF = CAR BJX AN JX BNF = CAR JX AN CAR JX BN =

X i.j A i.j+1 X i.j B i.j+1 = X i.j X i.j A i.j+1 B i.j+1 .

CAR BCONS BX; AFF = X i.j ; X i.j A i.j+1 ; B i.j+1 .

CONS i.j+1 JCAR BCONS BX; AFFN = X i.j CONS i.j+1 JA i.j+1 ; B i.j+1N =

J X . XN i.j JA i.j+1 B i.j+1N .

BX ; AF CONS BX ; AF

14   Author Name



BX ; AF CONS BX ; AF

O 1

M 1 JX; AN 1.1

M 2 -

O 1

M 1 JX. AN 1.1 .1 JX . BN 1.1 .2

M 2 -

CAR EN BJX AN JX BNF CONS 1.2 JCAR BJX AN JX BNF N

O 1

M 1 JX . ¶N 1.1 .1 JX . ¶N 1.1 .2

M 2 A 1.2 B 1.2

O 1 O 2

M 1 JX . X N
1.1

-

M 2 JA B N 1.2 -

.

2. cdr Bcons Bx; yFF = y

CDR BCONS BX; AFF = CDR BJX AN JX BNF = CDR JX AN CDR JX BN =

A i.j X i.j+1 B i.j X i.j+1 = A i.j ; B i.j X i.j+1 X i.j+1.

CDR BCONS BX; AFF = A i.j ; B i.j X i.j+1 ; X i.j+1.

CONS J CDR BCONS BX; AFFN = CONS J A i.j ; B i.jN X i.j+1 = JA i.j B i.jN JX XN i.j+1.

BX ; AF CONS BX ; AF

O 1

M 1 JX; AN 1.1

M 2 -

O 1

M 1 JX. AN 1.1 .1 JX . BN 1.1 .2

M 2 -

CDR EN BJX AN JX BNF

O 1 O 2

M 1 JX . ¶N 1.1 .1 JX . ¶N 1.1 .2 JA 2.1 B 2.1N

M 2 - -

CONS 1.2 JCDR BJX AN JX BNF N CONS 1.2 JCDR BJX AN JX BNF N

O 1 O 2

M 1 JX . XN 1.1 J¶ . ¶N 1.1 JA B N

M 2 - -

2.1

O 1 O 2

M 1 JX . X N
1.1

JA B N 2.1

M 2 - -

.

Article Title  15



2.1 .

cons Bcar BxF; cdr BxFF = x, provided that x is not atomic.

CONS BCAR BXF; CDR BXFF = CONS BJ X 1.1. ¶N; J¶ . X 1.2NF =

CONS BJ X 1.1. ¶N; J¶ . X 1.2NF = CONS BX 1.1 ; X 1.2F = JX 1.1 X 1.2N =

X 1.1

·

X 1.2

.

CONS BCAR BX; AF; CDR BX; BFF = CONS BJ X 1.1. A 1.2N; J X 1.2 . B 1.1NF =

CONS

X 1.1

·

A 1.2

;
B 1.1

·

X 1.2

=

JX 1.1 B 1.1N

·

JX 1.2 A 1.2N

2.2.5. Formal approach
The idea of a kenomic LISP is based on two decisions. One is for a transition from lists to 
morphograms, the second is a dissemination of symbolic LISP over the kenomic matrix which is 
enabling new 'trans-contextural' operators, like mediation, replication and transposition.

Nevertheless, the new morphogram-based programming paradigm, polyLISP, kenoLISP or 
morphLISP, gets its first introduction as a mimickry of the methods of the list-based LISP.

LISPHm, nL= [LISP; ops, sops; n, mœ]

      Operators
      ops:
      CONS, CDR, CAR.

Super-Operators
sops :
ID : identity,
PERM : Permutation,
RED : Reduction,
Ì : transposition, BIF,
· : replication, Repl,
ˇ : mediation.

Object
Lisp i.j with operators CAR, CDR and CONS as basic ' intra - contextural ' operators.

KM

16   Author Name



KM J3, 2N =

JX 1.1 Ì X 2.1N Ì X 3.1

· ˇ · ˇ ·

JX 1.2 Ì X 2.2N Ì X 3.2

· ˇ · ˇ ·

JX 1.3 Ì X 2.3N Ì X 3.3

Mediation : J X 1.1 ˇ X 2.2 N ˇ X 3.3

Replication : J X i .1 ˇ X i .2 N ˇ X i .3

Transposition : J X 1. i ˇ X 2. i N ˇ X 3. i

2.2.6. Types of action
Typs of action on a kenomic object is either iterative, accretive, transposive or enactive and 
metamorphic.

Iteration

Op iter JOb i.jN = JOb i.j+1N

OP iter BJOb i.j. Ob i.jN . Ob i.j F = BJOb i.j. Ob i.jN i.j+1 . Ob i.j+1 F

Accretion

Op accr JOb i.jN = JOb i+1. jN

OP accr BJOb i.j. Ob i.jN ÿ Ob i.j F = BJOb i.j. Ob i.jN i+1. j . Ob i+1. j F

Enaction

OP EN BJOb i.j. OB i.jNF =

Ob i.j

· 1.2

Ob i.j+1

OP EN BJOb i.j. Ob i.jN ÿ Ob i.j F =

JOb i.j . Ob i.jN

· 1.2

Ob i.j+1

Transposition

OP REPL1 BJOb i.j. Ob i.jNF =

Ob 1.1

ˇ1.2

Ob 2.2 ù2.1 Ob 2.1

ˇ2.3

Ob 3.3 ù3.1 Ob 3.1

Null
Replication

Article Title  17



OP REPL1 BJOb i.j. Ob i.jNF =

Ob 1.1 Â 1.2 Ob 1.2 Â 1.3 Ob 1.3

ˇ1.2

Ob 2.2

ˇ2.3

Ob 3.3

2.2.7. Logical topics
atom BXF = T

atom BJX ÿANF = F œ LISP.

atomBX iF

ˇ

atom BX jF

atomBX iF = T i

ˇ ˇ

atom BX jF = T j

œ kenoLISP

atomBX iF

ˇ

atom BJX j. A jNF

atomBX iF = T i

ˇ ˇ

atom BJX j. A jNF = F j

œ kenoLISP

2.3. Special features of kenomic LISP
2.3.1. Retrograde recursivity
Despite the name “kenomic Lisp” the proposed kenomic Lisp is not dealing with lists but with 
kenomic patterns, i.e. morphograms. This has consequences for the concept of recursivity, 
crucial to Lisp, and applies to different aspects of the newly discovered features of retrograde 
recursivity.

2.3.2. Parallelism
Parallelism, concurrence and simultaneity of processes, actions and interactions are primordial 
in kenoLISP and morphoLISP. The feature of parallelism is obvious for polycontextural systems. 
Each contexture in a polycontextural compound has structural space for its own formalism and 
therefore programming languages.
For kenomic and morphogrammatic systems the case is slightly less obvious. It becomes 
‘natural’ with the understanding of kenomic operations. Kenomic operations are from the very 
beginning ‘dis-contextural’, delivering simultaneously different results.

2.3.3. Self-referentiality
A kind of self-referentiality is crucial for classical LISP especially for the definition of recursiv-
ity. 
But this kind of self-referentiality is not based on a chiastic interplay of terms and operations 
but on the concept of a “self"-application of functions on its previous values.

2.3.4. Enaction
The operation of enaction was introduced as a positive interpretation of the elimination of 
terms like with the double crossing in Spencer Brown’s calculus of indication: {{ }} = . Formal 
enaction accepts the elimination of the term but recalls it on another level of the formalism. 
Formal enaction is therefore understood as a memristive cancellation of terms.

18   Author Name



The operation of enaction was introduced as a positive interpretation of the elimination of 
terms like with the double crossing in Spencer Brown’s calculus of indication: {{ }} = . Formal 
enaction accepts the elimination of the term but recalls it on another level of the formalism. 
Formal enaction is therefore understood as a memristive cancellation of terms.

2.4. Examples of kenomic LISP
2.4.1. Kenomic CONS

Jcons a bN :

cons Ja aN cons Ja bN

ã é ãé

Ja . aN Ja . bN

X = JabN ö cons Jcons JabN aN ö cons JJa . bN aN ö

cons a JJa . bN aNö Ja. b. aN

cons b JJa . bN bNö Ja. b. bN

cons c JJa . bN cNö Ja. b. cN

.  

X = JabN cons Jcons JabN aN

cons JJa . aN aN

cons JJa . bN aN

cons a JJa . aN aN Ja. a. aN

cons b JJa . aN bN Ja. a. bN

cons a JJa . bN aN Ja. b. aN

cons b JJa . bN bN Ja. b. bN

cons c JJa . bN cN Ja. b. cN

.  

kenomic CONS example

cons Jcons Ja bN aN :

cons Jcons Ja bN aN cons Jcons Ja bN bN cons Jcons Ja bN c N

cons Ja bN a cons Ja bN b cons Ja bN c

ã é ã é ã é

a b a b a b

Article Title  19



kenomic CONS example

cons Jcons Ja bN aN :

cons Jcons Ja bN aN cons Jcons Ja bN bN cons Jcons Ja bN c N

cons Ja bN a cons Ja bN b cons Ja bN c

ã é ã é ã é

a b a b a b

kenomic cons

cons Jcons Ja bN aN :

cons Jcons Ja bN a b cN

cons Ja bN a b c

ã é

a b

Kenomic recursion of " cons J ab, ab N " :

cons Jab, abN = cons Jcons Jab, aN, aN :

cons Jab, aN = JabaN, JabbN, JabcN.

cons Jaba, aN = JabaaNÒ, JababN, JabacN,

cons Jabb, aN = JabbaN, JabbbNÒ, JabbcN,

cons Jabc, aN = JabcaN, JabcbN, JabccNÒ, JabcdN.

collect Jcons Jab, abNN = :JababN, JabbaN, JabacN, JabbcN, JabcaN, JabcbN, JabcdN>.

Results withÒ,

like JabccNÒ are in conflict with the structure of the pattern BabF of cons Jab, abN.

Therefore,

cons Jab, abN = :JababN, JabbaN, JabacN, JabbcN, JabcaN, JabcbN, JabcdN>.

20   Author Name



Production scheme

cons J ab, ab N = cons Jcons J ab, a N, a N

cons Jcons Ja bN aN aN :

cons Jcons Ja bN aN aN cons Jcons Ja bN bN aN cons Jcons Ja bN cN aN N

cons J Ja b a N aN cons J Ja b bN aN cons JJa b cN aN

ã é ã é ã é

abab abac abba abbc abca abcb abcd

LA- grammer for cons 1

cons JJa bN JabN N :

cons Jcons Jcons Ja bN aN bN cons Jcons Ja bN aN cN

ç å ç å

cons Jcons JabN aN b cons Jcons Ja bN aN c

ç å ç å

cons Ja bN a cons Ja bN a

ç å ç å

a b a b
JababN JabacN

Article Title  21



LA- grammer for cons 2

cons JJa bN JabN N :

cons Jcons Jcons Ja bN bN aN cons Jcons Ja bN bN cN

ç å ç å

cons Jcons Ja bN, bN a cons Jcons Ja bN bN c

ç å ç å

cons Ja bN b cons Ja bN b

ç å ç å

a b a b
JabbaN JabbcN

LA- grammer for cons 3

cons JJa bN JabN N :

cons Jcons Jcons Ja bN cN aN

cons Jcons Jcons Ja bN cN b N cons J cons Jcons Ja bN cN dN

ç å ç å ç å

cons Jcons Ja bN, bN a cons Jcons Ja bN cN b cons Jcons Ja bN cN d

ç å ç å ç å

cons Ja bN b cons Ja bN c cons Ja bN c

çå ç å ç å

a b a b a b
JabcaN JabcbN JabcdN

2.4.2. Kenomic CONS - and reduction

kenomic CONS example

cons Jcons Ja bN aN :

cons Jcons Ja bN aN cons Jcons Ja bN bN cons Jcons Ja bN c N

cons Ja bN a cons Ja bN b cons Ja bN c

ã é ã é ã é

a b a b a b

How are productions and their reductions related?
Obviously, there is an asymmetry between formula and solution involved. 

"S-expressions are the fundamental data objects of LISP. They consist of(1) atoms and (2) CONS-
cells.

A list is either (1) the atom NIL or (2) the result of CONSing an s-expression onto the beginning 
of an existing list."

”...the set of s-expression is closed under CONS,...list are s-expressions."

It follows that s-expressions are non-ambiguous.

Kenomic expressions are not covered by a unique tree but by several “parallel” trees. There-
fore, kenomic expressions have a set of trees, or a forest of trees, as their representation.

There is an asymmetry between operators (CONS, CAR, CDR) and data objects.

cons(cons(ab), a) ö (aba), (abb), (abc).
On the other hand we have:
reverse CONS: (aba), (abb), (abc) ö cons(cons(ab), a).

This offers a reduction method from objects to operators.

The syntactic structure of the example “cons(cons(ab), a)" is simply a singular tree while the 
kenomic structure is - in this case - a triple of trees.

22   Author Name



How are productions and their reductions related?
Obviously, there is an asymmetry between formula and solution involved. 

"S-expressions are the fundamental data objects of LISP. They consist of(1) atoms and (2) CONS-
cells.

A list is either (1) the atom NIL or (2) the result of CONSing an s-expression onto the beginning 
of an existing list."

”...the set of s-expression is closed under CONS,...list are s-expressions."

It follows that s-expressions are non-ambiguous.

Kenomic expressions are not covered by a unique tree but by several “parallel” trees. There-
fore, kenomic expressions have a set of trees, or a forest of trees, as their representation.

There is an asymmetry between operators (CONS, CAR, CDR) and data objects.

cons(cons(ab), a) ö (aba), (abb), (abc).
On the other hand we have:
reverse CONS: (aba), (abb), (abc) ö cons(cons(ab), a).

This offers a reduction method from objects to operators.

The syntactic structure of the example “cons(cons(ab), a)" is simply a singular tree while the 
kenomic structure is - in this case - a triple of trees.

cons Jcons JabN aN

ã é

cons JconsJabN aN

ã é

cons Ja bN a

ã é

cons JabN

ã é

a b

Hence, morphorams [aba], [abb], [abc] are operationally reducible to the form “cons(cons(ab), 
a)". That is, the 3 different morphograms have a common singular operational representation 
in “cons(cons(ab), a)". Or more generally, the operational CONS-representation is 
“CONS(CONS(X Y)X)". 

CONS JCONS JX YN XN

CONS JCONS JX YN XN CONS JCONS JX YN YN CONS JCONS JX YN ZN

Article Title  23



CONS JCONS JX YN XN CONS JCONS JX YN YN CONS JCONS JX YN ZN

2.4.3. Kenomic append as “possible continuations"
1. append [x;y].
append [x; y] = [null[x] ö y; T ö cons [car [x]; append [cdr [x]; y]]]

An example is
append@HA, BL; HC, D, ELD = HA, B, C, D, EL

Bmg1 mg2 mg3 mg1 mg2F

ç å

Bmg1 mg2 mg3 mg1F mg 2 : append

ç å

Bmg1 mg2 mg3F mg1 : append

ç å

Bmg1 mg2F mg3 : append

ç å

mg1 mg2 : append

LA JMGN = append J ' mg1 ' mg2 ' mg3 ' mg1 ' mg 2N = Jmg1 mg2 mg3 mg1 mg2N

keno - append J ab, aabN = abaab, baaab, bcaab, = JabaabN, JabbbaN, JabccaN

2.4.4. Kenomic CDR , CAR and CONS together

CDR BJX i.j . A i.jNF = JJ¶ i.jN. A i.jN X i.j+1

CDR BJJX i.j . A i.jN ÿY i.jNF = JJ¶ i.jN.Y i.jN JX i.j+1 . A i.j+1N.

cdr ENBJaa i.j . ba i.jNF = JJ¶ i.jN. ba i.jN aa i.j+1,

CAR BJX i.j . A i.jNF = X i.j . J¶ i.jN A i.j+1,

CAR BJX i.j . A i.jN ÿY i.jNF = JJX i.j . A i.jN . J¶ i.jNN Y i.j+1,

car i.jBJaa i.j . ba i.jNF = aa i.j . J¶ i.jN ba i.j+1.

X = JAN ö cons BX; AF = JX AN JX BN

X = JX.AN ö cons BJX ÿAN; YF = JJX ÿAN YN JJX ÿAN ZN.

cons =

24   Author Name



cons i.j Jcdr EN Jaa i.j . ba i.jN, car Jaa i.j . ba i.jNN =

cons i.j JJ¶ i.j. ba i.jN aa i.j+1N, Jaa i.j.¶ i.j ba i.j+1N =

cons i.j JJ ba i.j aa i.j+1N, Jaa i.j. ba i.j+1NN =

cons i.j J ba i.j , aa i.jN cons i.j+1 Jaa i.j+1, ba i.j+1N =

J ba i.j aa i.j ba i.jbb i.jN Jaa i.j+1ab i.j+1 aa i.j+1ba i.j+1 N =

cons i.j JJ ba i.j aa i.j+1N, Jaa i.j. ba i.j+1NN =

cons
ba i.j

aa i.j+1

,
aa i.j

ba i.j+1

= cons
J ba i.j , aa i.jN,

Jaa i.j+1, ba i.j+1N
= , BbifunctF

cons i.j J ba i.j , aa i.jN,

cons i.j+1 Jaa i.j+1, ba i.j+1N
=

J ba i.j aa i.j ba i.jbb i.jN

Jaa i.j+1ab i.j+1 aa i.j+1ba i.j+1N
=

J abbbN i.j JabaaN i.j

JaaabN i.j+1 JaabaN i.j+1
.

LISP : cons Jcdr Jaa . baN, car Jaa . baNN = cons JJ baN, JaaNN = Jba.aaN

2.5. Bifunctoriality of CONS, CAR and CDR
2.5.1. Bifunctoriality for CONS
Bifunctoriality of polyLISP is a new feature of memristive interchangeability, i.e. parallelism of 
compositions. Hence, also for kenomic systems interchangeability of its operations is crucial.

list1
ˇ

list3

*

list2
ˇ

list4

=

Jlist1 * list2
ˇ

Jlist3 * list4N

CONS HmL is retrograde recursive , bifunctorial and super - additive,
CDR and CAR are memristive enactive.

5. cons. cons @x; yD is defined for any x and y. We have
cons @e1; e2D = He1 ÿ e2L. Thus
cons @X; AD = HX AL
cons @HX ÿ AL; Y D = HHX ÿ AL YL.

Article Title  25



cons @HX ÿ AL; Y D = HHX ÿ AL YL.

X = HALöcons @X; AD = HX AL HX BL
X = HX.ALöcons @HX ÿAL; YD = HHX ÿAL YL HHX ÿAL ZL.

J1N cons Bx; yF

CONS J2N
Bx 1; y 1 x 2; y 2F

cons 1Bx 1; y 1F

ˇ

cons 2Bx 2; y 2F

:

cons Be1; e2F = Je1 ÿ e2N

CONS Je1 . e2 e3 . e4N =

e1
ˇ

e3

*

e2
ˇ

e4

=

Je1 * e2N

ˇ

Je3 * e4N

.

CONS J3N
Bx 1; y 1 x 2; y 2 x 3; y 3F .

cons BX; AF = JX AN

CONS J3N
BX 1; A 1 X 2; A 2 X 3; A 3F :

CONS J3N
BX 1; A 1 X 2; A 2 X 3; A 3F =

cons 1 BX 1; A 1F

cons 2 BX 2; A 2F

cons 3 BX 3; A 3F

=

JX 1 A 1N

JX 2 A 2N

JX 3 A 3N

=

X 1

X 2

X 3

A 1

A 2

A 3

JX 1 Î 1.0 .0 A 1N

ˇ 1.2 .0

JX 2 Î 0.2 .0 A 2N

ˇ 1.2 .3

JX 3 Î 0.0 .3 A 3N

=

X 1

ˇ1.2 .0

X 2

ˇ 1.2 .3

X 3

Î1 Î2 Î3

A 1

ˇ1.2 .0

A 2

ˇ 1.2 .3

A 3

26   Author Name



J2N cons BJX ÿ AN; Y F = JJX ÿ AN YN

CONS J3N
BJX 1. A 1N; Y 1 JX 2; A 2N Y 2 JX 3; A 3N Y 3F :

CONS J3N
BJX 1. A 1N; Y 1 JX 2; A 2N Y 2 JX 3; A 3N Y 3F :

cons 1 BJX 1. A 1N; Y 1F

cons 2 BJX 2. A 2N ; Y 2F

cons 3 BJX 3. A 3N; Y 3F

=

JJX 1. A 1N Y 1N

JX 2. A 2N Y 2

JX 3. A 3N Y 3

=

JX 1. A 1N

JX 2. A 2N

JX 3. A 3N

Y 1

Y 2

Y 3

.

JJX 1. A 1N Î 1.0 .0 Y 1N

JJX 2. A 2N Î 0.2 .0 Y 2N

JJX 3. A 3N Î 0.0 .3 Y 3N

=

JX 1. A 1N

JX 2. A 2N

JX 3. A 3N

Î1 Î2 Î3

Y 1

Y 2

Y 3

2.5.2. Bifunctoriality for enactional CAR and CDR
Enactional CAR

CAR EN BJX i.j . A i.jNF = X i.j . J¶ i.jN A i.j+1

CAR EN BJX i.j . A i.jN ÿ Y i.j F = JJX i.j . A i.jN . J¶ i.jNN Y i.j+1N.

CAR EN BJX i.j . A i.jNF =

X i.j

· 1.2

A i.j+1

:

X i.j . J¶ i.jN

· 1.2

A i.j+1 . NIL

=

X i.j

· 1.2

A i.j+1

Î1 Î2

J¶ i.jN

· 1.2

NIL

.

CAR =

Article Title  27



CAR EN BJX i.j. A i.jN ÿ Y i.j F =

JX i.j . A i.jN

· 1.2

Y i.j+1

:

JX i.j . A i.jN . J¶ i.jN

· 1.2

Y i.j+1 . NIL

=

JX i.j . A i.jN

· 1.2

Y i.j+1

Î1 Î2

J¶ i.jN

· 1.2

NIL

.

Enactional CAR

CAR EN BJX i.j. A i.jNF =

X i.j

· 1.2

A i.j+1

CAR EN BJX i.j. A i.jN ÿ Y i.j F =

JX i.j . A i.jN

· 1.2

Y i.j+1

Enactional CDR

CDR EN BJX i.j . A i.jNF = J¶ i.jN . A i.jN X i.j+1

CDR EN BJJX i.j . A i.jN ÿY i.jNF = J¶ i.jN .Y i.jN JX i.j+1 . A i.j+1N.

Enactional CDR

CDR EN BJX i.j . A i.jNF =

A i.j

· 1.2

X i.j+1

CDR EN BJX i.j . A i.jN ÿ Y i.j F =

JY i.j N

· 1.2

JX i.j+1 . A i.j+1N

With this connection to bifunctoriality established, the whole elaborted apparatus of polycon-
textural interchangeability of operations might be applied to develop a complex memristive 
polyLISP.

2.5.3. Typical cases of interchangeability of disseminated operations

28   Author Name



Transpositional composition

CAR 1

ˇ1.2

CAR 2 ù2.1 CAR 1

ˇ2.3

CAR 3 ù3.1 CAR 1

B

Î 1.1

Î2.1 Î2.2

Î3.1 Î 3.3

F

CDR 1

ˇ1.2

CDR 2 ù2.1 CDR 1

ˇ2.3

CDR 3 ù3.1 CDR 1

=

JCAR 1 Î1.1 CDR 1N

ˇ1.2

JCAR 2 Î2.2 CDR 2N ù2.1 JCAR 1 Î2.1 CDR 1N

ˇ2.3

JCAR 3 Î3.3 CDR 3N ù3.1 JCAR 1 Î3.1 CDR 1N

Matrix model

Bbif, id, idF O1 O2 O3

M1 LISP1.1 LISP2.1 LISP3.1

M2 - LISP2.2 -

M3 - - LISP3.3

Reflectional interchangeability

CONS 1 Â 1.2 CONS 1 Â 1.3 CONS 1

ˇ1.2

CONS 2

ˇ2.3

CONS 3

B

Î 1. i

Î2.2

Î 3.3

F

APPEND 1 Â 1.2 APPEND 1 Â 1.3 APPEND 1

ˇ1.2

APPEND 2

ˇ2.3

APPEND 3

=

JJCONS 1 Î1.1 APPEND 1N Â 1.2 JCONS 1 Î1.2 APPEND 1NN Â 1.3 JCONS 1 Î1.3 APPEND 1N

ˇ1.2

JCONS 2 Î2.2 APPEND 2N

ˇ2.3

JCONS 3 Î3.3 APPEND 3N

Matrix model

Article Title  29



Matrix model

Brepl, id, idF O1 O2 O3

M1 LISP1.1 - -

M2 LISP1.2 LISP2.2 -

M3 LISP1.3 - LISP3.3

2.5.4. QUOTE and EVAL
"Quote is a a one-argument operation that stops the evaluation process before it reaches its 
argument.” (Stark)

QUOTE data-expression ö data-expression.

QUOTE, again, is involved into iterability, and therefore the possibility to distinguish between 
iterative and accretive quotation is accessi-
ble.

QUOTE ACCR : data - expression i.j ö data - expression i.j+1

QUOTE ITER : data - expression i.j ö data - expression i.j

Polycontextural QUOTE
"In a polycontextural setting we are free to choose a more flexible interplay between quotation 
and interpretation. To quote means to put the quoted sentence on a higher level of a reflec-
tional order or to another heterachical actional level. We are not forced to limit ourselves to 
any kind of the well known intra-contextural meta-language hierarchies. Those local proce-
dures are nevertheless not excluded at all but localized to their internal place. 
To start the argumentation I simply map an index i to the sentences. A quotation is augmenting 
and an interpretation (evaluation) is reducing its value, say by 1.“
http://www.thinkartlab.com/pkl/lola/Godel_Games-short.pdf
http://sds.podval.org/self-ref.html

2.6. Memristive self-referentiality
2.6.1. Self in LISP
One of the most striking properties of LISP is its ability for self-referential definition crucial for 
the definition of recursion and a whole trend of AI programming.

Under the title “Self-processing”, Stark writes:  

"LISP’s ability to process itself is a direct consequence of (1) the representation of the 
language in its data structure, (2) the simple algebraic syntax, and (3) the presence of 
functions such as QUOTE, DEFUN, FUNCTION, EVAL, and APPLY.” (W. Richard Stark, 
LISP, Lore, and Logic, 1990, p. 92)

Those features are naturally implemented in the paradigm of kenomic LISP. The function 
“QUOTE” and “EVAL” might be leading to the accessibility of new self-referential construc-
tions. (cf. Godel Games)

But with the development of kenomic definitions of the basic operations of LISP, CDR, CDR and 
CONS even more direct constructions of self-referentiality are in sight. 

In fact, the kenomic retrograde recursivity of the basic operators is uncovered as a fundamen-
tally self-referential notion and construction.

As a consequence, the neat reflectional construction of self-referentiality proposed in my small 
paper “Gödel’s Games” gets a more direct realization on an even more profound level of the 
very understanding of iterability itself.

An important advantage of this kenomic concept of self-referentiality is the fact that it is 
stucturally determined in a way that avoids all those annoying misreadings and misunderstand-
ings of the term “self” in all those self-referential configurations and speculations. 

On the base of such fundamental properties of self-referentiality, constructions like enaction 
are supporting further aspects of operational self-applications.

30   Author Name

http://www.thinkartlab.com/pkl/lola/Godel_Games-short.pdf
http://sds.podval.org/self-ref.html


Those features are naturally implemented in the paradigm of kenomic LISP. The function 
“QUOTE” and “EVAL” might be leading to the accessibility of new self-referential construc-
tions. (cf. Godel Games)

But with the development of kenomic definitions of the basic operations of LISP, CDR, CDR and 
CONS even more direct constructions of self-referentiality are in sight. 

In fact, the kenomic retrograde recursivity of the basic operators is uncovered as a fundamen-
tally self-referential notion and construction.

As a consequence, the neat reflectional construction of self-referentiality proposed in my small 
paper “Gödel’s Games” gets a more direct realization on an even more profound level of the 
very understanding of iterability itself.

An important advantage of this kenomic concept of self-referentiality is the fact that it is 
stucturally determined in a way that avoids all those annoying misreadings and misunderstand-
ings of the term “self” in all those self-referential configurations and speculations. 

On the base of such fundamental properties of self-referentiality, constructions like enaction 
are supporting further aspects of operational self-applications.

2.6.2. Fundamental theorem for pure LISP
Fundamental theorem for pure LISP.
"Every algorithmically computable (in the informal sense) function can be computed by a 
program in pure LISP."

The new question is, can every memristive function of polyLISP be computed by a program in 
pure LISP?
In other words, is there a reduction mechanism which is able to reduce polyLISP to pure LISP? 
What exactly would it mean if kenomic LISP wouldn’t be reducible to pure LISP?

There is always a possibility of simulating a new formalism in terms of a traditional formalism. 
But again, simulations don’t become realization.

List of translations                                  Simulations
Kenom to atomic symbol                          Equivalence class of different symbols
Morphogram to list                                  Equivalence class of lists
Retrogradness to iterativity                      Double recursion with conditions
Enaction to elimination                            Elimination plus appending 
Poly- to monocontexturality                      Multi-sets of lists
Polyverse to universe                               Multi-sorted domains
Super-additivity to composition                 augmented composition
Polycontextural logic to logic                     Multi-valued or modal logics

and so on.

3. Monomorphic Lisp

3.1. General
(aba) = (abba)
a=b, (aa) ≠ (aaa)

Article Title  31



3.2. Concatenational
a≠b, (ab) = (ba), (aa) = (a)

comp: [(aa) (b) (cc)] ö [aabcc] 

decomp: [aabcc] ö [(aa) (b) (cc)]

3.3. Metamorphical
(aba) = (abba)

4. Diamond LISP
According to the quadralectics of diamond strategies, the simple oriented approach to a 
kenomic LISP might be distributed and located into the qaudralectics of distinctions.

From the circularity of a list to a chiastic resolution of self-referentiality.

5. Applications

5.1. Ambiguity, double-meaning and morphograms
"Ambiguity is the wild child of language interpretation. Whether from the point of 
view of the philosopher, linguist, psychologist, lexicographer, or computer scientist, 
ambiguity problems have relentlessly resisted taming.  
Lexical ambiguity, or polysemy, arises when a word, or a phrase, is associated in the 
language system with more than one meaning. Generativity refers to the notion that 
words seem to be able to be used in new and creative ways, reflecting the generative 
power of language, but at the lexical level.” (Judith Klavans)
http://www.aaai.org/Papers/Symposia/Spring/1995/SS-95-01/SS95-01-001.pdf
http://193.6.132.75/honlap/whatispolysemy.pdf 

A simple application  “Fruit flies like a banana.”
What’s the meaning of an ambiguous sentence like “Fruit flies like a banana.”?

As it is well known, the sentence has, at least, two meanings:
1. “the insects called fruit flies are positively disposed towards bananas.”
2. “Something called fruit is capable of the same type of trajectory as a banana.”
"These two potential meanings are partly based on the (at least) two ways in which the phrase 
can be parsed.”
(Alan P. Parkes, Introduction to Languages, Machines and Logic, 2002, p. 42)

Ambiguity in languages is reflected in the existence of more than one parse tree for one sen-
tence of that language.

There are two strategies to deal with ambiguity:
1. Disambiguation and
2. Mediation and Bisimulation.

The decision necessary for the purpose of formal languages and computation is disambiguation. 
Disambiguation is eliminating polysemy and ambiguity of sentences.
Hence, both meanings of the sentence might be chosen and used but separately or just one 
meaning might be involved in further steps of reasoning, depending on a further context.

On the other hand, the strategy of mediation is supporting the polysemy of ambiguous sen-
tences. As the example above is set, there is no context which could help to separate the 
meanings and to select one meaning only as prior to the other.

Hence, the sentence as such has both meanings at once. Therefore its logical status is demand-
ing for three and not only for two logical places to realize its polysemic ambiguity. Two loci for 
the separated meanings are necessary and one more for the sentence as such having both 
meanings at once. This third position is not reducible to a syntactical choice to contrast the 
semantics of the sentence because the sentence also has syntactically two disjunct parse 
trees. But more important, the focus of the understanding of the ambiguos sentence is on 
polysemy, i.e. on the semantic ambiguity of its meaning. A further step will show that the 
purely semantic approach is not offering a possibility for a ‘re-solution’ of the ambiguity 
problem of polysemic sentences. What is needed additionally is a pragmatic approach, here 
formalized with application of a morphogrammatic approach.

Thus, the third position, which places the double meaning of the sentence, shall be inscribed 
as the morphogram of the double sentence. A morphogram might be understood as an inscrip-
tion of pre-logical ‘meaning’. It therefore has to be able to deal consistently with semantic 
ambiguity without running into logical contradictions.

Binary tree analysis

32   Author Name

http://www.aaai.org/Papers/Symposia/Spring/1995/SS-95-01/SS95-01-001.pdf
http://193.6.132.75/honlap/whatispolysemy.pdf


There are two strategies to deal with ambiguity:
1. Disambiguation and
2. Mediation and Bisimulation.

The decision necessary for the purpose of formal languages and computation is disambiguation. 
Disambiguation is eliminating polysemy and ambiguity of sentences.
Hence, both meanings of the sentence might be chosen and used but separately or just one 
meaning might be involved in further steps of reasoning, depending on a further context.

On the other hand, the strategy of mediation is supporting the polysemy of ambiguous sen-
tences. As the example above is set, there is no context which could help to separate the 
meanings and to select one meaning only as prior to the other.

Hence, the sentence as such has both meanings at once. Therefore its logical status is demand-
ing for three and not only for two logical places to realize its polysemic ambiguity. Two loci for 
the separated meanings are necessary and one more for the sentence as such having both 
meanings at once. This third position is not reducible to a syntactical choice to contrast the 
semantics of the sentence because the sentence also has syntactically two disjunct parse 
trees. But more important, the focus of the understanding of the ambiguos sentence is on 
polysemy, i.e. on the semantic ambiguity of its meaning. A further step will show that the 
purely semantic approach is not offering a possibility for a ‘re-solution’ of the ambiguity 
problem of polysemic sentences. What is needed additionally is a pragmatic approach, here 
formalized with application of a morphogrammatic approach.

Thus, the third position, which places the double meaning of the sentence, shall be inscribed 
as the morphogram of the double sentence. A morphogram might be understood as an inscrip-
tion of pre-logical ‘meaning’. It therefore has to be able to deal consistently with semantic 
ambiguity without running into logical contradictions.

Binary tree analysis

 Fruit flies like a banana.                  Fruit flies like a banana.
               áä                                                á       ä
  Fruit flies    like a banana                      Fruit flies   like a banana
                     áä                                    áä                   áä             
                 like  a banana                   Fruit   flies           like  a banana

B1F : B2F :

BJabN, Jc, dNF BJa, bN, Jc, dNF

ã é ã é

JabN Jc, dN Ja, bN Jc, dN

ã é ã é ã é

c d a b c d

B1F : cons JJabN, cons Jc, dNN = cons JJabN, cdNN = JJabN cdN

B2F : cons Jcons JJa, bN, cons Jc, dNN = cons JJabN, JcdNN = JabcdN.

Article Title  33



MED JB1F, B2FN =

cons JJabN, cons Jc, dNN

ˇ

cons Jcons JJa, bN, cons Jc, dNN

=

JJabN cdN

ˇ

JabcdN

B3F : JZab^ cdN ª BISM JabcdN

JZab^ cdN ö Ja, b, c, dN

X

JabcdN ö Ja, b, c, d N

Fusion

fus Ja, bN = Zab^ de - fus JZab^N = JabN,

de - fus JZab^N = Jcar Zab^, cdr Zab^N = JabN

cons Ja, bN = JabN

de - cons JabN = Ja, bN

de - cons JabN = Jcar JabN, cdr JabNN

Null

BJabN, Jc, dNF ˇ BJa, bN, Jc, dNF ˇ BZab^, Jc, dNF

ã é ã é é

JabN Jc, dN Ja, bN Jc, dN J < a >, < b >N Jc, dN

ã é ã é ã é ã é ã é

c d a b c d < a > < b > < c > d

The operation of de/melting (or fusing together) is not anymore a formal operation in the 
sense of the lambda calculus or LISP. For both, the lambda calculus and LISP, the construct 
" X ab\ " with its ‘composed’ meaning “Fruit flies” is a singular term, i.e. a name for an 
ontological entity covered by the taxonomy of animals. Nevertheless, this singular name is 
synthesized, fused together, by two domains, the domain of fruits and the domain of flies. This 
enables a specific decomposition which is not part of the sentence as itself and its double 
meaning.

Hence, a decomposition of such a term needs a new abstraction, Xab\, paired with a new 
operator “de/fus”. 

The result of the exercise shows a mediation of both meanings of the sentence and a kind of a 
morphogrammatic deep-structure of the double-meaning of the sentence as its ‘meaning’ as 
such. This deep-structure is ‘unifying’ the two observer depending readings of the sentence 
into an observer-independent inscription of its double-meaning, as its morphogram.

Left-associated tree analysis

34   Author Name



The operation of de/melting (or fusing together) is not anymore a formal operation in the 
sense of the lambda calculus or LISP. For both, the lambda calculus and LISP, the construct 
" X ab\ " with its ‘composed’ meaning “Fruit flies” is a singular term, i.e. a name for an 
ontological entity covered by the taxonomy of animals. Nevertheless, this singular name is 
synthesized, fused together, by two domains, the domain of fruits and the domain of flies. This 
enables a specific decomposition which is not part of the sentence as itself and its double 
meaning.

Hence, a decomposition of such a term needs a new abstraction, Xab\, paired with a new 
operator “de/fus”. 

The result of the exercise shows a mediation of both meanings of the sentence and a kind of a 
morphogrammatic deep-structure of the double-meaning of the sentence as its ‘meaning’ as 
such. This deep-structure is ‘unifying’ the two observer depending readings of the sentence 
into an observer-independent inscription of its double-meaning, as its morphogram.

Left-associated tree analysis

                                                          Fruit flies like a banana.
Fruit flies like a banana.                              âà a-banana
           âà a banana                                âà like
         âà like                                      âàflies
Fruit-flies                                         Fruit

BJabN, c, dFˇBJa, b, c, dNF ˇBZab^, < c >, dNF

ç å ç å ç å

ç å d ç å d ç å å

JabN c ç å c ç å å å

a b < a > < b > < c > d
Fruit flies like a - banana

< subj - subj; verb > < verb; adv. > object

cons Jcons JZab^, cN, dN = BZab^ cdF

cons Jcons Jcons Ja, bN, c, dNN = BJabcdNF

cons Jcons Jcons planar J < a >, < b >N, < c >, dNN =

B
JabN

Zab^

JcN

Zc^

JdN

JdN
F.

cons planar J < a >, < b >N =
JabN

Zab^
, < c > =

JcN

Zc^
.

Both sentences are analyzed by a time-linear principle of possible continuations (Hausser).
In contrast, the third analysis is breaking in some respect the time-linearity and is introducing 
a planar extension of the ambiguous terms. Such planar constructions which are holding con-
flicting and antinomic terms together are covered by morphograms. Lists are not prepared to 
cover ambiguous terms because they are defined by atomic terms and linear constructions.

Article Title  35




