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Abstract
Combinatorial methods to decompose morphogrammatic systems are introduced.
Some very first attempts to apply Mathematica and Combinatorica to the topics in question are 
undertaken. A concept of a double refinement of partitions is introduced additionally to the well 
known partitions and refinements of partitions. The distinction of recursive and explicit definitions of 
morphograms are considered.
Decomposition strategies by partitions and refinements of partitions are crucial to deal with highly 
complex morphic and polycontextural systems. 
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Motivations for a double refinement of morphogrammatic 
constellations

There are many disciplines where the concept of polycontexturality plays a crucial role. It is often proposed that systems
that  are  involving  different  observational  positions  to  be  adequately  observed,  described,  managed  or  produced,  are
necessarily involved in polycontextural considerations.

It is less known that the study of polycontexturality is not just given by a study of polycontextural logic as it was proposed
by Gotthard Gunther (1900 - 1984) but also by morphogrammatics as Gunther himself introduced in the late 1960s.

This paper takes another turn. The question is: How to decompose complex polycontextural systems (structurations)?

Decomposition of systems is a kind of partition as it is well known in combinatorics. Henc, the question is concretized by
the question: How to partition complex polycontextural systems (structurations)?

Partitions of natural numbers are well studied and taught at an early stage of education. The number 5 might be partitioned
into parts like 5=4+1, 3+2, 2+2+1, 2+1+1+1 and 1+1+1+1+1. 

Morphogrammatic interpretations of number systems as introduced by Gotthard Gunther in his paper "Natural numbers in
trans-Classical  systems"  demands  for  new  techniques  of  decomposition  of  complexions  to  deal  with  the  partition  of
systems of morphograms.

More at: http://memristors.memristics.com/Fibonacci/Fibonacci%20Sequences%20in%20trans-Classical%20Systems.html

The concept and formalism of morphograms is based on the Stirling numbers of the second kind, StirlingS2.

Hence, StirlingS2 of the number 4 gives the partition: (1, 7, 6, 1).

A first refinement of this results is given by the multinomial partitions of the Stirling partitions.



Therefore, the refinement of Stirling (1, 7, 6, 1) is given by: (1, 4, 3, 6, 1).

All that is well known and elaborated in the literature of combinatorics. Albeit not necessarily in study groups of polycontextu-
rality.

A less known possibility of refinement is proposed as a second refinement of the multinomial partitions that seems to be
naturally possible. Because it is a refinement of the refinement it might be called a second-order refinement. Up to now, I
haven’t found the concept and a formula for this refinement in the literature.

Such a second refinement of (1, 7, 6, 1) delivers: (1, 3+1, 3, 3+2+1, 1).

Thus, the complete chain of the numbers of partitions of the natural number 4 is given by: 

           [4]:   (1, 7, 6, 1)  ï (1, 4, 3, 6, 1)  ï (1, 3+1, 3, 3+2+1, 1)

It seems that the second kind of refinement is depending or enabled by a morphogrammatic understanding of the results of
the first  refinement that is not anymore ruled by a strictly extensional  or formalistic understanding of  the distributions,
numerical or differential, i.e. EN-structural.

Therefore two refinements, like [1,1,1,2] and [1,2,2,2] or [2,1,1,1] of the partition of the number 4: (3,1), which are formally
representing the same refinement, are considered morphogrammatically as different in respect of a second refinement.

Polycontextural systems are based on morphogrammatic constellations. Fusion and decomposition of  complex polycontex-
tural systems are well based on the fusion/de-fusion principles of morphogrammatic systems.

A classical example in the literature of morphogrammatics for such de-fusion is the decomposition of morphograms into
their monomorphies.

The strategy follows several steps of combinatorial decompositions.

The  steps  are  obvious:  
Partitions, IntegerPartitions, StirlingS2, First Refinements T[m,n], Second refinements D(T[m,n])

This approach offers a 3 step classification and reduction of morphogrammatic complexions that are the basic patterns of
polycontextural constellations.

A polycontextural thematization of a complexion of objects of any sorts applies simultaneously on all 3 basic levels of the
classification.

Partitions P[n]
Manipulate@Pane@Text@Column@Row@8n, " = ", Row@Ò," + "D<D&êüRest@IntegerPartitions@n,kDD,LeftDD
88n,5,"number"<,2,20,1<,
88k,20,"maximum number of parts"<,2,20,1<,
AutorunSequencingØ81<D

number

maximum number of parts

5 = 4 + 1
5 = 3 + 2
5 = 3 + 1 + 1
5 = 2 + 2 + 1
5 = 2 + 1 + 1 + 1
5 = 1 + 1 + 1 + 1 + 1

"Partitions of Integers" from the Wolfram Demonstrations Project
 http://demonstrations.wolfram.com/PartitionsOfIntegers/
Contributed by: Stephen Wolfram
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Stirling Partitions
The following considerations about a possible second-order refinement of partitions will take just three cases into account,
i.e. for m=4,5,6.

It is easily possible that this concept of a second refinement has been treated in extenso in the literature for combinatorics.
Unfortunately, I couldn't find any elaborations to this topic. Therefore, I present here my first, still descriptive and not yet
fully operative, results.

‹ Table@StirlingS2@4, mD, 8m, 4<D »
Input

Table@StirlingS2@4, mD, 8m, 4<D

Stirling numbers of the second kind

TableForm@Table@StirlingS2@n,kD, 8n, 0,7<, 8k,0,n<DD

StirlingS2@n,kD

Values

n m 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

2 0 1 1 0 0 0 0 0

3 0 1 3 1 0 0 0 0

4 0 1 7 6 1 0 0 0

5 0 1 15 25 10 1 0 0

6 0 1 31 90 65 15 1 0

7 0 1 63 301 350 140 21 1

Column@Table@Binomial@i, jD, 8i, 0, 10<, 8j, 0, i<D, CenterD

81<
81, 1<

81, 2, 1<
81, 3, 3, 1<

81, 4, 6, 4, 1<
81, 5, 10, 10, 5, 1<

81, 6, 15, 20, 15, 6, 1<
81, 7, 21, 35, 35, 21, 7, 1<

81, 8, 28, 56, 70, 56, 28, 8, 1<
81, 9, 36, 84, 126, 126, 84, 36, 9, 1<

81, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1<
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‹ TableForm@Bell@nD, 8n, 0,7<, 8,0,n<DD
Bell@nD
Input

BellB@nD

n Bn

0 1

1 1

2 2

3 5

4 15

5 52

6 203

7 877

8 4140

9 21147

10 115975

Set Partition Refinement Lattice (Stirling)
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Robert Dickau
"Set Partition Refinement Lattice"
 http://demonstrations.wolfram.com/SetPartitionRefinementLattice/
 Wolfram Demonstrations Project
 Published: March 7, 2011

The Stirling partition (1, 7, 6, 1) gets by a first refinement the values: (1, (4, 3), 6, 1)

A next step of refinement produces the second-order refinement of [4] with (1, 4,  3,  6, 1) becoming: (1, (3+1, 3), 3+2+1, 1).

The refinement steps for a morphogrammatic system Morph[4] is therefore: 

Morphogrammatic refinement for Morph@4D

StirlingS2 first refinement second refinement
H1, 7, 6, 1L ï H1, 4 + 3, 6, 1L ï H1, 3 + 1, 3, 3 + 2 + 1, 1L.
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Morphogrammatic refinement for Morph@4D

StirlingS2 first refinement second refinement
H1, 7, 6, 1L ï H1, 4 + 3, 6, 1L ï H1, 3 + 1, 3, 3 + 2 + 1, 1L.

First refinement of the Set Partition

,

 , , , 

, ,  ,

, , , , , ,

.

Second refinement by coloring or wighting

Instead of using different colors I will use integers as a tool to define the subclasses of the second refinement. With this
numerical approach, different measures of ‘weight’ of a morphogram might be introduced to support further classifications.

This approach might not be strictly combinatorial but it seems to do the job for now.

EXAMPLE

Enumeration scheme MG

 =  
2 3
1 4

Weights are the sum of the components of the morphogram MG.

,

 , , ,       

, ,  ,

, , ,      , ,      ,

.

First refinement of MG[4]

1 1
1 1
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1 1
1 1

 
1 2
1 1

2 1
1 1

1 1
1 2

1 1
2 1

2 2
1 1

1 2
1 2

2 1
1 2

 
1 2
1 3

1 2
1 3

2 1
1 3

2 3
1 2

2 2
1 3

2 3
1 3

2 3
1 4

W e i g h t s
4, (5, 7), 6, (6, 7, 8), 10.

Hence, the subclasses of morphograms corresponding to the classification by the weight of the morphograms are represented by  the
refinement: 1+(3+1)+3+(3+2+1)+1

Second refinement MG[4]

  
1 1
1 1

   
1 2
1 1

2 1
1 1

1 1
1 2

1 1
2 1

  
2 2
1 1

1 2
1 2

2 1
1 2

  
1 2
1 3

1 2
1 3

2 1
1 3

2 3
1 2

2 2
1 3

2 3
1 3

  
2 3
1 4

- Tcontexture 4; Bell 4 = 15 :  {1,7,6,1}

No.  Partition   morphograms 

S1  =  [4]:             [1,1,1,1]     :   (1)
S2  =  [3,1]:          [1,1,1,2],  [1,1,2,1],[1,2,1,1];   [1,2,2,2]   :  (3+1)
S3  =  [2,2]:          [1,1,2,2],  [1,2,1,2],  [1,2,2,1]                :  (3)
S4 = [2,1,1]:      [1,1,2,3], [1,2,1,3], [1,2,3,1];  [1,2,2,3], [1,2,3,2];  [1,2,3,3]  : (3+2+1)
S5 = [1,1,1,1]:   [1,2,3,4]  :     (1) .

Classification by dnf or permutation equivalence classes.

- Dcontexture 4:

val it = [[1,1,1,1],[1,1,2,2],[1,1,1,2],[1,1,2,3],[1,2,3,4]] : int list list
- dnf[1,1,2,2] = dnf[1,2,1,2];
val it = true : bool

- dnf[1,2,3,3] = dnf[1,1,2,3];
val it = false : bool

Diagram of the Second refinement

 [1,1,1,1]

@1, 1, 1, 2D, @1, 1, 2, 1D, @1, 2, 1, 1D; @2, 1, 1, 1D

@1, 1, 2, 2D, @1, 2, 1, 2D, @1, 2, 2, 1D

@1, 2, 2, 3D, @1, 2, 3, 2D; @1, 1, 2, 3D, @1, 2, 1, 3D, @1, 2, 3, 1D; @1, 2, 3, 3D

@1, 2, 3, 4D
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 [1,1,1,1]

@1, 1, 1, 2D, @1, 1, 2, 1D, @1, 2, 1, 1D; @2, 1, 1, 1D

@1, 1, 2, 2D, @1, 2, 1, 2D, @1, 2, 2, 1D

@1, 2, 2, 3D, @1, 2, 3, 2D; @1, 1, 2, 3D, @1, 2, 1, 3D, @1, 2, 3, 1D; @1, 2, 3, 3D

@1, 2, 3, 4D

Diagram of the First refinement

 [1,1,1,1]

@1, 1, 1, 2D, @1, 1, 2, 1D, @1, 2, 1, 1D; @2, 1, 1, 1D

@1, 1, 2, 2D, @1, 2, 1, 2D, @1, 2, 2, 1D

@1, 2, 2, 3D, @1, 2, 3, 2D; @1, 1, 2, 3D, @1, 2, 1, 3D, @1, 2, 3, 1D; @1, 2, 3, 3D

@1, 2, 3, 4D

1 1
1 1

1 2
1 1

2 1
1 1

1 1
1 2

1 1
2 1

2 2
1 1

1 2
1 2

2 1
1 2

1 2
1 3

1 2
1 3

2 1
1 3

2 3
1 2

2 2
1 3

2 3
1 3

2 3
1 4
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             4
             ¯
        1- 7 - 6-1
       á   ¯   ¯  ä

     1 - 4 + 3 -6 - 1

   á     ¯  ¯  ¯     ä

 1 - 3 + 1 -3- 3 + 2 + 1 -1

First refinements of Partitions by T[m,n]
Column@runs@li : 8__Integer<D := HHLength êü Split@ Ò DLL &@Sortü liD;
Table@Apply@Multinomial, Partitions@wD, 81<D ê

Apply@Times, Hruns êü Partitions@wDL!, 81<D, 8w, 8<D, LeftD

81<
81, 1<
81, 3, 1<
81, 4, 3, 6, 1<
81, 5, 10, 10, 15, 10, 1<
81, 6, 15, 15, 10, 60, 20, 15, 45, 15, 1<
81, 7, 21, 21, 35, 105, 35, 70, 105, 210, 35, 105, 105, 21, 1<
81, 8, 28, 28, 56, 168, 56, 35, 280, 210,
420, 70, 280, 280, 840, 560, 56, 105, 420, 210, 28, 1<

http : êê oeis.org ê A080575

A080575: Triangle of multinomial coefficients

4:  (1,4,3,6,1)

5:  (1,5,10,10,15,10,1)

6:  (1, 6, 15, 15, 10, 60, 20, 15, 45, 15, 1 ) 

7:  (1, 7, 21, 21, 35, 105, 35, 70, 105, 210, 35, 105, 105, 21, 1)

"Row 4 represents 1*k(4)+4*k(3)*k(1)+3*k(2)^2+6*k(2)*k(1)^2+1*k(1)^4 and T(4,4)=6 
since there are six ways of partitioning four labeled items into one part with two items and two 
parts each with one item.” (Tilman Neumann)

http://oeis.org/A080575

The combinatorial meaning of the first refinement T[m,n] is expressed by the statement:
“T[n,m] = count of set partitions of n with block lengths given by the m-th partition of n in the 
canonical ordering.”

http://www.tilman-neumann.de/index.html

For n=4 the 5 integer partitions in canonical ordering with corresponding set partitions and counts 
are:

   [4]       -> #{1234} = 1

   [3,1]     -> #{123/4, 124/3, 134/2, 1/234} = 4   

   [2,2]     -> #{12/34, 13/24, 14/23} = 3

   [2,1,1]   -> #{12/3/4, 13/2/4, 1/23/4, 14/2/3, 1/24/3, 1/2/34} = 6

   [1,1,1,1] -> #{1/2/3/4} = 1

Thus row 4 is [1, 4, 3, 6, 1].

“Row 4 represents 1*k(4)+4*k(3)*k(1)+3*k(2)^2+6*k(2)*k(1)^2+1*k(1)^4 and T(4,4)=6 
since there are six ways of partitioning four labeled items into one part with two items and two 
parts each with one item.” 
http://oeis.org/A080575

This classical method for the determination of the first refinement also gives a direct hint to define 
the classifications for the second refinement.

Refinements in Morphogrammatics.cdf   9



ü The idea of a second refinement

A further analysis would have to take the formula T[n,m] and its components into account find the 
solution for a mathematical definition of the second-order refinement of partitions out of the 
formula.

Here, I shall start with a first descriptive analysis.

Descriptive analysis

a.) [3,1]     -> #{123/4, 124/3, 134/2, 1/234} = 4   

This production has a refinement into 
 #{123/4, 124/3, 134/2 and
     1/234}

delivering the morphograms:
[1,1,1,2],[1,1,2,1],[1,2,1,1],  : 3
[1,2,2,2].                              : 1

b.)  [2,1,1]   -> #{12/3/4, 13/2/4, 1/23/4, 14/2/3, 1/24/3, 1/2/34} = 6

This production has a refinement into 3 groups:
#{12/3/4, 13/2/4, 14/2/3      : 3
1/23/4, 1/24/3                     : 2
1/2/34                                  : 1

corresponding to the morphograms:
[1,1,2,3],[1,2,1,3],[1,2,3,1],
[1,2,2,3],[1,2,3,2],
[1,2,3,3].

In other words, the analysis of the ‘fine’ analysis gives a hint how to define the further step of a ‘fine-
analysis of the fine-analysis’.

The partition [2,1,1] has 6 canonical results:
1. {12/3/4, 13/2/4, 1/23/4} : is producing a repetition of “1”,
2. {14/2/3,  1/24/3}            : is producing a repetition of “2”,
3. {1/2/34}                         : is producing a repetition of “3".

Therefore, the second fine-analysis of “[2,1,1]" produces the partition: (3,2,1) out of the integer 
partitions of number 6.

[2,1,1]   -> #{12/3/4, 13/2/4, 1/23/4, 14/2/3, 1/24/3, 1/2/34} = 6 = (3+2+1)

This procedure is represented by the T[m,n]-formula:
1*k(4)+4*k(3)*k(1)+3*k(2)^2+6*k(2)*k(1)^2+1*k(1)^4 

Second-order Refinements
A further step in the analysis of Stirling numbers, additionally to the ‘refined’ analysis (based on the 
Bell coefficients) is achieved with a kind of a fine-analysis of T[m,n], i.e. a fine-analysis of the fine-
analysis, that takes the different representations of the partitions into account.

D(T[m,n]) is classifying the results from T[m,n] into a second refinement.

Example

S2=[3,1]: [1,1,1,2],[1,1,2,1],[1,2,1,1],[1,2,2,2],  :
(4) = 3+1: ([1,1,1,2],[1,1,2,1],[1,2,1,1]) + ([1,2,2,2]).

The representant [1,2,2,2] is differentiated from the other representants with the value 1 as repeti-
tion. Hence, [1,2,2,2] is different from the representants  ([1,1,1,2],[1,1,2,1],[1,2,1,1]). Therefore, this 

difference supports a further analysis, the fine-analysis of the fine-analysis. 
Especially, kref[1,1,1,2] =MG [1,2,2,2], and [2,1,1,1] =MG [1,2,2,2]. 

The canonical representation of the partitions is supposing a lexical ordering of its elements. There-
fore, a morphogram [2,1,1,1] is not in lexical order and is therefore not accepted. It has to be 
replaced by the morphogrammatically equivalent pattern [1,2,2,2].

10   Refinements in Morphogrammatics.cdf



The canonical representation of the partitions is supposing a lexical ordering of its elements. There-
fore, a morphogram [2,1,1,1] is not in lexical order and is therefore not accepted. It has to be 
replaced by the morphogrammatically equivalent pattern [1,2,2,2].

ü Comparison
First refinement of Bell coefficients                                  StirlingS2                         Bell

1;

1, 1;

1, 3,  1;  

1, 4,  3,  6, 1;                                                                     1, 7, 6, 1                           : 15   

1, 5, 10, 10, 15,  10,  1;                                                     1, 15, 25, 10, 1                  : 52

1, 6, 15, 15, 10,  60, 20, 15,  45,  15,  1;                              1, 31, 90, 65, 15, 1            : 203

1, 7, 21, 21, 35, 105, 35, 70, 105, 210, 35, 105, 105, 21, 1;  1, 63, 301, 350, 140, 21,1  : 877

ü Small table of second-order fine-analysis of partitions
3: 1, 2+1, 1
4: 1, (3+1, 3), 3+2+1, 1
5: 1, (4+1, 6+4), (6+3+1, 12+2+1), 4+3+3, 1
6: 1, 6=5+1, 15=10+5, 10, 15=10+4+1, 60=30+15+15, 
     20=10+6+3+1, 15, 45=30+12+3, 15=5+4+3+2+1, 1.

Second-order refinement of [4] with 1, 4,  3,  6, 1 becomes: 1, (3+1, 3), 3+2+1, 1.

ü Elaborated examples for a double refinement of Tcontextures 

ü Tcontexture 5

No.  Partition   morphograms  TM[5,5]: (1,5,10,10,15,10,1), (Bell 5 = 52)

• (5):    (1)

   [1,1,1,1,1],

• (4,1):        (4+1)

   [1,1,1,1,2], [1,1,1,2,1],[1,1,2,1,1],[1,2,1,1,1]; [1,2,2,2,2].

• (3,2):         (6+4)

   [1,1,1,2,2],[1,1,2,1,2],[1,1,2,2,1],[1,2,1,1,2],[1,2,1,2,1],[1,2,2,1,1];

   [1,2,2,2,1],[1,2,2,1,2],[1,2,1,2,2],[1,1,2,2,2],

• (3,1,1):       (6+3+1)

   [1,1,1,2,3],[1,1,2,1,3],[1,1,2,3,1],[1,2,1,1,3],[1,2,1,3,1],[1,2,3,1,1];

   [1,2,2,2,3],[1,2,2,3,2],[1,2,3,2,2]; [1,2,3,3,3].

• (2,2,1):      (12+2+1)

    [1,1,2,2,3],[1,1,2,3,2], [1,1,2,3,3],[1,2,1,2,3],[1,2,1,3,2],[1,2,2,1,3],[1,2,2,3,1],[1,2,3,1,2];

   [1,2,3,2,1],[1,2,1,3,3],[1,2,3,1,3],[1,2,3,3,1];

   [1,2,2,3,3],[1,2,3,2,3],[1,2,3,3,2].

• (2,1,1,1):   (4+3+3)

   [1,1,2,3,4],[1,2,1,3,4],[1,2,3,1,4],[1,2,3,4,1];

   [1,2,2,3,4],[1,2,3,2,4],[1,2,3,4,2];

   [1,2,3,3,4],[1,2,3,4,3],[1,2,3,4,4].    

• (1,1,1,1,1): (1)

   [1,2,3,4,5] .

Second refinement: D(TM[5,5]): 1, (4+1, 6+4), (6+3+1, 12+2+1), 4+3+3, 1.

 

Refinement 1 5 10 10 15 10 1

SecondRef 1 4+1 6+4 6+3+1 12+2+1 4+3+3 1

Stirling 1 Ñ 15 Ñ 25 10 1
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                       5                           : number

                        ¯

        1 - 15 –––––––– 25 ––––– 10 ––– 1            : Stirling

       á    ¯           ¯        ä      ä 

    1 –- 10 + 5 ––––––– 10 + 15 –––––– 10 ––– 1        : refinement1

   á    á    ¯         ¯   ¯          ä     ä

 1 - 6 + 4 4 + 1 - 6 + 3 + 1 12 + 2 + 1 - 4 + 3 + 3 - 1  : refinement2

Tcontexture 6
Partition[6]

6" = "5 + 1
6" = "4 + 2
6" = "4 + 1 + 1
6" = "3 + 3
6" = "3 + 2 + 1
6" = "3 + 1 + 1 + 1
6" = "2 + 2 + 2
6" = "2 + 2 + 1 + 1
6" = "2 + 1 + 1 + 1 + 1
6" = "1 + 1 + 1 + 1 + 1 + 1

StirlingSn[6]

1, 31, 90, 65, 15, 1    

First refinement TM[6,6]

1,6,15,15,10,60,20,15,45,15,1

Second refinement [6]

First Refinement 1 6 15 15 10 60 20 15 45 15 1
SecondRefinement 1 5+1 10+5 10+4+1 10 30+15+15 10+6+3+1 15 30+12+3 5+4+3+2+1 1

Stirling 1 Ñ 31 Ñ 90 Ñ 65 Ñ Ñ 15 1

Elaboration of the second refinement for Tcontexture 6: D(TM[6,6])

No.  Partition   morphograms  

• 6  :     1              [1,1,1,1,1,1]  

• (5,1)                 : 6 = 5+1          

[1,1,1,1,1,2],[1,1,1,1,2,1],[1,1,1,2,1,1],[1,1,2,1,1,1],[1,2,1,1,1,1]; 

[1,2,2,2,2,2].

• (4,2)                : 15 = 10+5

 [1,1,1,1,2,2],[1,1,1,2,1,2],[1,1,1,2,2,1],[1,1,2,1,1,2],[1,1,2,1,2,1],

[1,1,2,2,1,1],[1,2,1,1,1,2],[1,2,1,1,2,1],[1,2,1,2,1,1],[1,2,2,1,1,1];

[1,2,2,2,2,1],[1,2,2,2,1,2],[1,2,2,1,2,2],[1,2,1,2,2,2],[1,1,2,2,2,2].

• (4,1,1)            : 15 = 10+4+1

 [1,1,1,1,2,3],[1,1,1,2,1,3],[1,1,1,2,3,1],[1,1,2,1,1,3],[1,1,2,1,3,1],

[1,1,2,3,1,1],[1,2,1,1,1,3],[1,2,1,1,3,1],[1,2,1,3,1,1],[1,2,3,1,1,1];

 [1,2,2,2,2,3],[1,2,2,2,3,2],[1,2,2,3,2,2],[1,2,3,2,2,2]; [1,2,3,3,3,3].

• (3,3)                : 10 

 [1,1,1,2,2,2],[1,1,2,1,2,2],[1,1,2,2,1,2],[1,1,2,2,2,1],[1,2,1,1,2,2],

 [1,2,1,2,1,2],[1,2,1,2,2,1],[1,2,2,1,1,2],[1,2,2,1,2,1],[1,2,2,2,1,1].

• (3,2,1)             : 60 = 30+15+15

 [1,1,1,2,2,3],[1,1,1,2,3,2],[1,1,1,2,3,3],         (30)

 [1,1,2,1,2,3],[1,1,2,1,3,2],[1,1,2,2,1,3],[1,1,2,2,3,1],[1,1,2,3,1,2],

 [1,1,2,3,2,1],[1,1,2,1,3,3],[1,1,2,3,1,3],[1,1,2,3,3,1],[1,2,1,1,2,3],

 [1,2,1,1,3,2],[1,2,1,2,1,3],[1,2,1,2,3,1],[1,2,1,3,1,2],[1,2,1,3,2,1],

 [1,2,2,1,1,3],[1,2,2,1,3,1],[1,2,2,3,1,1],[1,2,3,1,1,2],[1,2,3,1,2,1],

 [1,2,3,2,1,1],[1,2,1,1,3,3],[1,2,1,3,1,3],[1,2,1,3,3,1],[1,2,3,1,1,3],

 [1,2,3,1,3,1],[1,2,3,3,1,1];

[1,2,2,2,1,3],[1,2,2,2,3,1],[1,2,2,1,2,3],           (15)

   [1,2,2,1,3,2],[1,2,2,3,2,1],[1,2,2,3,1,2],[1,2,1,2,2,3],[1,2,1,2,3,2],

   [1,2,1,3,2,2],[1,2,3,2,2,1],[1,2,3,2,1,2],[1,2,3,1,2,2],[1,1,2,2,2,3],

   [1,1,2,2,3,2],[1,1,2,3,2,2];

[1,1,2,3,3,3],[1,2,3,3,3,1],[1,2,3,3,1,3],           (15)

   [1,2,3,1,3,3],[1,2,1,3,3,3],[1,2,2,2,3,3],[1,2,2,3,2,3],[1,2,2,3,3,2],

   [1,2,3,2,2,3],[1,2,3,2,3,2],[1,2,3,3,2,2],[1,2,3,3,3,2],[1,2,3,3,2,3],

   [1,2,3,2,3,3],[1,2,2,3,3,3].
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• (3,2,1)             : 60 = 30+15+15

 [1,1,1,2,2,3],[1,1,1,2,3,2],[1,1,1,2,3,3],         (30)

 [1,1,2,1,2,3],[1,1,2,1,3,2],[1,1,2,2,1,3],[1,1,2,2,3,1],[1,1,2,3,1,2],

 [1,1,2,3,2,1],[1,1,2,1,3,3],[1,1,2,3,1,3],[1,1,2,3,3,1],[1,2,1,1,2,3],

 [1,2,1,1,3,2],[1,2,1,2,1,3],[1,2,1,2,3,1],[1,2,1,3,1,2],[1,2,1,3,2,1],

 [1,2,2,1,1,3],[1,2,2,1,3,1],[1,2,2,3,1,1],[1,2,3,1,1,2],[1,2,3,1,2,1],

 [1,2,3,2,1,1],[1,2,1,1,3,3],[1,2,1,3,1,3],[1,2,1,3,3,1],[1,2,3,1,1,3],

 [1,2,3,1,3,1],[1,2,3,3,1,1];

[1,2,2,2,1,3],[1,2,2,2,3,1],[1,2,2,1,2,3],           (15)

   [1,2,2,1,3,2],[1,2,2,3,2,1],[1,2,2,3,1,2],[1,2,1,2,2,3],[1,2,1,2,3,2],

   [1,2,1,3,2,2],[1,2,3,2,2,1],[1,2,3,2,1,2],[1,2,3,1,2,2],[1,1,2,2,2,3],

   [1,1,2,2,3,2],[1,1,2,3,2,2];

[1,1,2,3,3,3],[1,2,3,3,3,1],[1,2,3,3,1,3],           (15)

   [1,2,3,1,3,3],[1,2,1,3,3,3],[1,2,2,2,3,3],[1,2,2,3,2,3],[1,2,2,3,3,2],

   [1,2,3,2,2,3],[1,2,3,2,3,2],[1,2,3,3,2,2],[1,2,3,3,3,2],[1,2,3,3,2,3],

   [1,2,3,2,3,3],[1,2,2,3,3,3].

• (3,1,1,1)             : 20 = 10+6+3+1

[1,1,1,2,3,4],[1,1,2,1,3,4],[1,1,2,3,1,4],[1,1,2,3,4,1],[1,2,1,1,3,4],

[1,2,1,3,1,4],[1,2,1,3,4,1],[1,2,3,1,1,4],[1,2,3,1,4,1],[1,2,3,4,1,1];

[1,2,2,2,3,4],[1,2,2,3,2,4],[1,2,2,3,4,2],[1,2,3,2,2,4],[1,2,3,2,4,2],

[1,2,3,4,2,2];

[1,2,3,3,3,4],[1,2,3,3,4,3],[1,2,3,4,3,3];

[1,2,3,4,4,4],

• (2,2,2)                 :15

[1,1,2,2,3,3],[1,1,2,3,2,3],[1,1,2,3,3,2],[1,2,1,2,3,3],[1,2,1,3,2,3],

[1,2,1,3,3,2],[1,2,2,1,3,3],[1,2,2,3,1,3],[1,2,2,3,3,1],[1,2,3,1,2,3],

[1,2,3,1,3,2],[1,2,3,2,1,3],[1,2,3,2,3,1],[1,2,3,3,1,2],[1,2,3,3,2,1],

• (2,2,1,1)              : 45 = 30+12+3

 [1,1,2,2,3,4],[1,1,2,3,2,4],[1,1,2,3,4,2],

   [1,1,2,3,3,4],[1,1,2,3,4,3],[1,1,2,3,4,4],[1,2,1,2,3,4],[1,2,1,3,2,4],

   [1,2,1,3,4,2],[1,2,2,1,3,4],[1,2,2,3,1,4],[1,2,2,3,4,1],[1,2,3,1,2,4],

   [1,2,3,1,4,2],[1,2,3,2,1,4],[1,2,3,2,4,1],[1,2,3,4,1,2],[1,2,3,4,2,1],

   [1,2,1,3,3,4],[1,2,1,3,4,3],[1,2,1,3,4,4],[1,2,3,1,3,4],[1,2,3,1,4,3],

   [1,2,3,3,1,4],[1,2,3,3,4,1],[1,2,3,4,1,3],[1,2,3,4,3,1],[1,2,3,1,4,4],

   [1,2,3,4,1,4],[1,2,3,4,4,1]

[1,2,2,3,3,4],[1,2,2,3,4,3],[1,2,2,3,4,4],[1,2,3,2,3,4],[1,2,3,2,4,3],

  [1,2,3,3,2,4],[1,2,3,3,4,2],[1,2,3,4,2,3],[1,2,3,4,3,2],[1,2,3,2,4,4],

  [1,2,3,4,2,4],[1,2,3,4,4,2]

[1,2,3,3,4,4],[1,2,3,4,3,4],[1,2,3,4,4,3]

• (2,1,1,1,1)        : 15 = 5+4+3+2+1

 [1,1,2,3,4,5],[1,2,1,3,4,5],[1,2,3,1,4,5],[1,2,3,4,1,5],[1,2,3,4,5,1];

 [1,2,2,3,4,5],[1,2,3,2,4,5],[1,2,3,4,2,5],[1,2,3,4,5,2];

 [1,2,3,3,4,5],[1,2,3,4,3,5],[1,2,3,4,5,3];

 [1,2,3,4,4,5],[1,2,3,4,5,4];

 [1,2,3,4,5,5].

• (1,1,1,1,1,1)     : 1

  [1,2,3,4,5,6] .

Test
Tcontexture 6 = 203
StirlingS2:   1, 31, 90, 65, 15, 1 
Refinement2: 1+6+15+15+10+60+20+15+45+15+1;

All morphograms that are dnf-equal mgi  = dnf mg j, with i,jœDcontexture(n), belong to the same 

class of a double refinement.

How to define and detect second-order refinements mathematically?

One method is to apply the concept of  ‘weighted’ deutero-normal form.
The other concept is to use permutations for the definition of classes of double-refinements.
Both are formally equivalent. But both are still just descriptive and not operative methods and not 
yet delivering directly combinatorial and numerical results.

An additional approach is using the e/n-structure of the morphograms. As a result, the first refine-
ment is easily established by the number of the distinctions E and N. But the second refinement 
demands a further interpretation of those results.
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An additional approach is using the e/n-structure of the morphograms. As a result, the first refine-
ment is easily established by the number of the distinctions E and N. But the second refinement 
demands a further interpretation of those results.

Example m = 6

• (2,1,1,1,1)        : 15 = 5+4+3+2+1

a.) [1,1,2,3,4,5],[1,2,1,3,4,5],[1,2,3,1,4,5],[1,2,3,4,1,5],[1,2,3,4,5,1],

b.) [1,2,2,3,4,5],[1,2,3,2,4,5],[1,2,3,4,2,5],[1,2,3,4,5,2],

c.) [1,2,3,3,4,5],[1,2,3,4,3,5],[1,2,3,4,5,3],

d.) [1,2,3,4,4,5],[1,2,3,4,5,4],

e.) [1,2,3,4,5,5],

From the set of morphograms of the class of the fist refinement (2,1,1,11), subclasses are defined 
by the permutation equivalence of morphograms.

Hence, the application of the permutation equivalence class building separates the class (2,1,1,1,1) 
into 5 subclasses a.) to e.).

Canonical  forms  for  (3,1)
[1,1,1,2],[1,1,2,1],[1,2,1,1]    :  3
[1,2,2,2].                              : 1

The  permutation  of  the  canonical  for  [1,1,1,2]  delivers  the  2  reperesentations  [1,1,2,1],[1,2,1,1].
But the morphogram [1,2,2,2] is not a permutation of [1,1,1,2] nor is the pattern [2,1,1,1] an accepted canonical form. If we
accept the form as a canoncal permutation then the distinction between the 2 groups colapses. 

If we want to save the unristringed permuation mode, we have to accept that the pattern [2,1,1,1] is allowed and is neverthe-
less morphogrammatically equal to [1,2,2,2] but it is not anymore separating the group into two.

Hence,  the  general  result  woud  be:  
(3,1): [1,1,1,2],[1,1,2,1],[1,2,1,1], [2,1,1,1]. 

Hence it seems that the permutation argument is not yet properly elaborated as a mechanism of refinement.

Canonical  forms  for  (3,1,1,1)
For the case (3,1,1,1) of the partition p(6), there are 4 canonical representations to recognize;

I.    [1,1,1,2,3,4]
II.   [1,2,2,2,3,4]
III.  [1,2,3,3,3,4]
IV. [1,2,3,4,4,4].

Permutations of canonical forms

The case IV. 

[1,2,3,4,4,4] is singular, because there is only one canonical representation possible.

The case III. 

[1,2,3,3,3,4] has just 2 different permutations that are canonically correct., i.e.  

                  [1,2,3,3,4,3],[1,2,3,4,3,3].

The case II. 

[1,2,2,2,3,4] has just 5 different permutations that are canonically correct. They are represented by:

                    [1,2,2,3,2,4],[1,2,2,3,4,2],[1,2,3,2,2,4],[1,2,3,2,4,2],[1,2,3,4,2,2].

The case I.

[1,1,1,2,3,4] has just 9 different permutations that are canonically correct. That is:  

                    [1,1,2,1,3,4],[1,1,2,3,1,4],[1,1,2,3,4,1],[1,2,1,1,3,4],[1,2,1,3,1,4],
                    [1,2,1,3,4,1], [1,2,3,1,1,4],[1,2,3,1,4,1],[1,2,3,4,1,1]. 

ü First refinement of the e/n-structure of MG(4)
The EN-analysis of MG[4] delivers directly a first refinement indicated by the number of Es and Ns. Groups with the same
number of Es and Ns are building a class of a classification by refinement.

What we can conclude is the fact that the EN-structures are mathematically directly corresponding to the combinatorics of
the first refinement of Stirling partitions.

First refinement and the e/n-distribution are combinatorically equal.
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This seems to be a new insight into the combinatorial structure of the descriptively developed morphogrammatics.

There is not yet a direct hint presented by this analysis for a second-order refinement.

A  second-order  refinement  has  to  consider  the  structure  of  the  e/n-patterns  to  get  enough  information  for  a  further
refinement.

How are those properties of the e/n-structures defined?

EN-analysis for MG(4)

- ENstructureEN [1,1,1,1];
val it = [[],[E],[E,E],[E,E,E]] 

- map ENstructureEN [[1,1,1,2],[1,1,2,1],[1,2,1,1], [1,2,2,2]];
val it =

  [[[],[E],[E,E],[N,N,N]],
  [[],[E],[N,N],[E,E,N]],
  [[],[N],[E,N],[E,N,E]],

  [[],[N],[N,E],[N,E,E]]]

- map ENstructureEN [[1,1,2,2],[1,2,1,2],[1,2,2,1]];
val it =

  [[[],[E],[N,N],[N,N,E]],
  [[],[N],[E,N],[N,E,N]],

  [[],[N],[N,E],[E,N,N]]] 

- map ENstructureEN [[1,1,2,3],[1,2,1,3],[1,2,3,1],  [1,2,2,3],[1,2,3,2], [1,2,3,3]];
val it =

 [[[],[E],[N,N],[N,N,N]],
 [[],[N],[E,N],[N,N,N]],
 [[],[N],[N,N],[E,N,N]],

 [[],[N],[N,E],[N,N,N]],
 [[],[N],[N,N],[N,E,N]],

 [[],[N],[N,N],[N,N,E]]]

- ENstructureEN [1,2,3,4];
val it = [[],[N],[N,N],[N,N,N]]

refinement  TM[4,4]:  1,4,3,6,1.
How to find the second refinement out of the e/n-struture: 1, (3+1), 3, (3+2+1), 1?

Analysis

[[],[N],[N,N],[E,N,N]] :   
N Ñ Ñ

N N Ñ

E N N
  :  [1,2,3,1]

[[],[N],[N,N],[N,N,E]] :    
N Ñ Ñ

N N Ñ

N N E
  :  [1,2,3,3]

Trivially, the results for the first refinements are isomorphic to the e/n-structure. This is trivial, because there is a bijection
between the morphograms and their e/n-structures. But the e/n-structure of the classification is independent of its numeric or
alphabetic representation. Therefore, a case like [2,1,1,1] and [1,2,2,2] is treated as the same e/n-structure from the very
beginning. They share the same e/n-structure, therefore they are the same.

What  counts  directly  for  the  first  refinement  are  just  the  number  of  Es  and  Ns.
But there is not yet any direct information left for the definition of a second refinement. 

ENstructureEN 5

- allENstructureEN 5;
val it =
  [[[],[E],[E,E],[E,E,E],[E,E,E,E]],   (1)

   [[],[E],[E,E],[E,E,E],[N,N,N,N]],
   [[],[E],[E,E],[N,N,N],[E,E,E,N]],

   [[],[E],[N,N],[E,E,N],[E,E,N,E]],  (5)
   [[],[N],[E,N],[E,N,E],[E,N,E,E]],

   [[],[N],[N,E],[N,E,E],[N,E,E,E]],
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   [[],[E],[E,E],[E,E,E],[N,N,N,N]],
   [[],[E],[E,E],[N,N,N],[E,E,E,N]],

   [[],[E],[N,N],[E,E,N],[E,E,N,E]],  (5)
   [[],[N],[E,N],[E,N,E],[E,N,E,E]],

   [[],[N],[N,E],[N,E,E],[N,E,E,E]],

   [[],[E],[E,E],[N,N,N],[N,N,N,E]],   (10)
   [[],[E],[N,N],[E,E,N],[N,N,E,N]],

   [[],[E],[N,N],[N,N,E],[E,E,N,N]],
   [[],[N],[E,N],[E,N,E],[N,E,N,N]],

   [[],[N],[E,N],[N,E,N],[E,N,E,N]],
   [[],[N],[N,E],[E,N,N],[E,N,N,E]],

   [[],[N],[N,E],[N,E,E],[E,N,N,N]],
   [[],[N],[N,E],[E,N,N],[N,E,E,N]],

   [[],[N],[E,N],[N,E,N],[N,E,N,E]],
   [[],[E],[N,N],[N,N,E],[N,N,E,E]],

   [[],[E],[E,E],[N,N,N],[N,N,N,N]],       (10)
   [[],[E],[N,N],[E,E,N],[N,N,N,N]],[[],[E],[N,N],[N,N,N],[E,E,N,N]],
   [[],[N],[E,N],[E,N,E],[N,N,N,N]],[[],[N],[E,N],[N,N,N],[E,N,E,N]],
   [[],[N],[N,N],[E,N,N],[E,N,N,E]],[[],[N],[N,E],[N,E,E],[N,N,N,N]],
   [[],[N],[N,E],[N,N,N],[N,E,E,N]],[[],[N],[N,N],[N,E,N],[N,E,N,E]],
   [[],[N],[N,N],[N,N,E],[N,N,E,E]],

   [[],[E],[N,N],[N,N,E],[N,N,N,N]],[[],[E],[N,N],[N,N,N],[N,N,E,N]],  (15)
   [[],[E],[N,N],[N,N,N],[N,N,N,E]],[[],[N],[E,N],[N,E,N],[N,N,N,N]],
   [[],[N],[E,N],[N,N,N],[N,E,N,N]],[[],[N],[N,E],[E,N,N],[N,N,N,N]],
   [[],[N],[N,E],[N,N,N],[E,N,N,N]],[[],[N],[N,N],[E,N,N],[N,E,N,N]],
   [[],[N],[N,N],[N,E,N],[E,N,N,N]],[[],[N],[E,N],[N,N,N],[N,N,N,E]],
   [[],[N],[N,N],[E,N,N],[N,N,E,N]],[[],[N],[N,N],[N,N,E],[E,N,N,N]],
   [[],[N],[N,E],[N,N,N],[N,N,N,E]],[[],[N],[N,N],[N,E,N],[N,N,E,N]],
   [[],[N],[N,N],[N,N,E],[N,E,N,N]],

   [[],[E],[N,N],[N,N,N],[N,N,N,N]],       (10)
   [[],[N],[E,N],[N,N,N],[N,N,N,N]],[[],[N],[N,N],[E,N,N],[N,N,N,N]],
   [[],[N],[N,N],[N,N,N],[E,N,N,N]],[[],[N],[N,E],[N,N,N],[N,N,N,N]],
   [[],[N],[N,N],[N,E,N],[N,N,N,N]],[[],[N],[N,N],[N,N,N],[N,E,N,N]],
   [[],[N],[N,N],[N,N,E],[N,N,N,N]],[[],[N],[N,N],[N,N,N],[N,N,E,N]],
   [[],[N],[N,N],[N,N,N],[N,N,N,E]],

  [[],[N],[N,N],[N,N,N],[N,N,N,N]]]         (1)

First refinement H5L : 1 5 10 10 15 10 1 .
Second Refinement H5L : 1, (4+1, 6+4), (6+3+1, 12+2+1), 4+3+3, 1

Fusion and decomposition
The fusion or coalition of two morphic dyads, [1,1], [1,2], is producing in SML 15 morphograms:

- kconcat[1,1][1,1];

val it = [[1,1,1,1],[1,1,2,2]] : int list list  : S1+S3

- kconcat[1,1][1,2];

val it = [[1,1,1,2],[1,1,2,1],[1,1,2,3]] : int list list : S2+S4

- kconcat[1,2][1,1];

val it = [[1,2,1,1],[1,2,2,2],[1,2,3,3]] : int list list  : S2+S4

- kconcat[1,2][1,2];

val it = [[1,2,1,2],[1,2,2,1],[1,2,1,3],[1,2,3,1],[1,2,2,3],[1,2,3,2],[1,2,3,4]] : S3+S4+S5

The type of the fusion of the dyads is: (2,3,3,7).

In contrast, the system of the 15 morphograms is classified by the 2-refinement type: (1, (3+1), 3, 
(3+2+1), 1).

ü CASE TEST for the partition (3,1,1,1)
Also this case has just 3 Es, it is nevertheless divided into 4 subgroups.

Obviously, for the second refinement not only the number of Es and Ns are of importance but also their positions in the
table.

The case of three Es:

•  (3,1,1,1)              :  20  =  10+6+3+1
[a.)  [1,1,1,2,3,4],[1,1,2,1,3,4],[1,1,2,3,1,4],[1,1,2,3,4,1],[1,2,1,1,3,4],
      [1,2,1,3,1,4],[1,2,1,3,4,1],[1,2,3,1,1,4],[1,2,3,1,4,1],[1,2,3,4,1,1],
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•  (3,1,1,1)              :  20  =  10+6+3+1
[a.)  [1,1,1,2,3,4],[1,1,2,1,3,4],[1,1,2,3,1,4],[1,1,2,3,4,1],[1,2,1,1,3,4],
      [1,2,1,3,1,4],[1,2,1,3,4,1],[1,2,3,1,1,4],[1,2,3,1,4,1],[1,2,3,4,1,1],

b.) [1,2,2,2,3,4],[1,2,2,3,2,4],[1,2,2,3,4,2],[1,2,3,2,2,4],[1,2,3,2,4,2],[1,2,3,4,2,2],

c.) [1,2,3,3,3,4],[1,2,3,3,4,3],[1,2,3,4,3,3],

d.) [1,2,3,4,4,4] .

EN-analysis for m=6

a.)  [1,1,1,2,3,4],[1,1,2,1,3,4],[1,1,2,3,1,4],[1,1,2,3,4,1],[1,2,1,1,3,4],
     [1,2,1,3,1,4],[1,2,1,3,4,1],[1,2,3,1,1,4],[1,2,3,1,4,1],[1,2,3,4,1,1],

  [[[],[E],[E,E],[N,N,N],[N,N,N,N],[N,N,N,N,N]],
   [[],[E],[N,N],[E,E,N],[N,N,N,N],[N,N,N,N,N]],
   [[],[E],[N,N],[N,N,N],[E,E,N,N],[N,N,N,N,N]],
   [[],[E],[N,N],[N,N,N],[N,N,N,N],[E,E,N,N,N]],
   [[],[N],[E,N],[E,N,E],[N,N,N,N],[N,N,N,N,N]],
   [[],[N],[E,N],[N,N,N],[E,N,E,N],[N,N,N,N,N]],
   [[],[N],[E,N],[N,N,N],[N,N,N,N],[E,N,E,N,N]],
   [[],[N],[N,N],[E,N,N],[E,N,N,E],[N,N,N,N,N]],
   [[],[N],[N,N],[E,N,N],[N,N,N,N],[E,N,N,E,N]],
   [[],[N],[N,N],[N,N,N],[E,N,N,N],[E,N,N,N,E]],

b.) [1,2,2,2,3,4],[1,2,2,3,2,4],[1,2,2,3,4,2],[1,2,3,2,2,4],[1,2,3,2,4,2],[1,2,3,4,2,2],

   [[],[N],[N,E],[N,E,E],[N,N,N,N],[N,N,N,N,N]],
   [[],[N],[N,E],[N,N,N],[N,E,E,N],[N,N,N,N,N]],
   [[],[N],[N,E],[N,N,N],[N,N,N,N],[N,E,E,N,N]],
   [[],[N],[N,N],[N,E,N],[N,E,N,E],[N,N,N,N,N]],
   [[],[N],[N,N],[N,E,N],[N,N,N,N],[N,E,N,E,N]],
   [[],[N],[N,N],[N,N,N],[N,E,N,N],[N,E,N,N,E]],

c.) [1,2,3,3,3,4],[1,2,3,3,4,3],[1,2,3,4,3,3],

Mediation and interaction between classifications
ü Hierachical versus heterarchical organizations

A hierachical order of the 3 different classifications of a partition system is naturally defined by the hierarchical steps of
refinements.

The opposite movement of refinement is a kind of specification or generalization.

Hence, the start of the refinement/specification has not be identified as the start number n of the classification.

As natural as to start with the natural number n it is as natural to start with the Stirling numbers StirlingS2 (n).

               

                       5                           : number

                        fi                              reduction

        1 - 15 –––––––– 25 ––––– 10 ––– 1            : Stirling

       á    ¯           ‡        ä      ä             differentiation

    1 –- 10 + 5 ––––––– 10 + 15 –––––– 10 ––– 1        : refinement1

   á    á    ¯         ¯   ¯          ä     ä         differentiation

 1 - 6 + 4 4 + 1 - 6 + 3 + 1 12 + 2 + 1 - 4 + 3 + 3 - 1  : refinement2

              

number
Æ : reduction

Stirling
¯ : differentiation

refinements
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This move prepare to distribute the classification over a contextural matrix where all levels are heterarchically mediated
together by the polyfunctorial operations of Diamond Category Theory.

Decomposing polycontextural systems
ü How are polycontextural systems composed

The  classical  text  that  introduces  polycontexturality  in  a  general  sense,  is  avaible  at:
http://www.vordenker.de/ggphilosophy/gg_life_as_polycontexturality.pdf

An  introduction  is  here:
http://www.vordenker.de/ggphilosophy/la_poly.htm

An  analysis  might  be  found  here:
http://memristors.memristics.com/Mereotopology/Mereotopology%20and%20Polycontexturality.pdf

A neat characterization of the meaning of the term polycontexturality in the context of “dramatic texts” is sketched by the
following paragraphs of Barbara Ventarola:

"1.In order to grasp the complexity of worldwide cultural networking, it is necessary to conceive of the cultural
net as a universal structure consisting of several interacting, overlapping nets, as a world of worlds or - as
Gotthard Gunther said - as a polycontextural structure of structures. The recourse to polycontextural theory
allows  the  multi-directional  circulation  of  conceptual  and  material  forms  to  be  taken  into  account  without
neglecting the "location of culture" (Bhabha) which should be borne in mind since it plays a particularly impor-
tant role in the hierarchical colonial interactions of cultures.

 2. The same complexity governs dramatic texts, which can be re-conceived of as systems that model and
evoke a (potentially) polycontextural world: Stemming from polycontextural subjects (their authors) and consist-
ing themselves of a network of several sub-systems (the semiotic structures constituting the text), the dramas
are able to refer to a plurality of cultural contexts at any time. One of the aspects of this textual multi-directional-
ity, which until now has mostly been neglected, is its capacity to pursue several pragmatic aims at the same
time by spreading them over diverse textual layers or ‘stages’. “

http://www.geisteswissenschaften.fuberlin.de/we03/forschung/drittmittelprojekte/dramanet/Veranstaltungen/Ventarola_Abstr
act.pdf

A scheme of an interaction of 3 different decentralized hierarchical taxonomies is depicted by Table VII.
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ü Interpretation
Morphograms are offering the structural localization and organization of the complexity and complication of different and
same contextures. 

What such an approach is intending is a societal  analysis of  the behavior of  complex systems that is independent of
statistical  analysis  as  well  as  from  combinatorial  analysis  that  is  based  on  the  identity  of  its  elements,  events  and
behaviours.

Contextures of polycontextural compounds (Gunther) are located, they have their ‘location of culture’ and their culture of
location. Obviously, the term ‘location’ is a structural stratageme and is independent from any identificational localizations
as it might be the case for mathematical group theory and for archaic cultures (human geography) too.

The  term “contexture”  is  highly  general.  Without  going  into  a  philosophical  exploration/explication  the  term is  neither
general nor particular. It is in a strict sense not even a term, notion or concept. It is characterized and differentiated only in
the conceptual network of its neighbor terms: poly-, dis-, trans-, inter- and intra-conxtural, and in distinction to its mor-
phogrammatics.

Polycontexturality is not just decentralized pluri-centrism.

It has a formal mathematical application, it appears in semiotic analysis, in text and drama theory. But it is also elaborated
in extenso for structural questions of the system of international law (Teubner), and obviously, it is, or could be, of rele-
vance, for countries that are in the process of separation (Basque country, Catalonia, Quebec, Scotland).

A contextural complexion, say of degree 4, is locating 6 different contextures together. 

The complexity  of  the  organized,  i.e.  mediated,  contextures  of  MG[4]  has  a  range of  just  15  different  constellations,
reaching from full differentiation to zero differentiation.

This is formally represented by the 15 morphograms of complexity 4 and complication 1. And defines the field or range of
polycontexturality for m=4.
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1 4

The morphogram 
1 1
1 1

 of the places for 4 elementary contextures, i.e. contextures that are defined by a self-cycle, hence

a kind of self-referentiality. Additionally, there are 2 contextures that are defined by the inter-relationship of the complexion
MG[4].

But all 6 contextures are, despite their different localization, of the same type. They have the same structuration.

In contrast, the morphogram 
2 3
1 3

 enables a contextural differentiation of its 4+2 contextures.
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In contrast, the morphogram 
2 3
1 3

 enables a contextural differentiation of its 4+2 contextures.

The question now is: How to decompose the whole field of polycontexturality into contexturally similar sub-fields?

Separtion in this context is not involved in any logical and set-theoretical disjunctions and divisions.

How it works was just demonstrated by the introduction of the 2 strategies of refinements.

Again, the scheme of the numbers of the refinements for Morph[4] is given by:

Morphogrammatic refinement for Morph@4D

StirlingS2 first refinement second refinement
H1, 7, 6, 1L ï H1, 4 + 3, 6, 1L ï H1, 3 + 1, 3, 3 + 2 + 1, 1L

There  are  other,  less  systematic  classifications  in  use:
•  junctional  versus  transjunctional  morphograms
• palindromic versus non-palindromic morphograms.

ü Some possible interpretative concretizations
Supposed the national system is reasonably structured by just 4 + 2 contextures.
What is the possible meaning of the morphograms?

MGH4, 1L =
1 1
1 1

: this homogeneous pattern corresponds to the general ideology of one nation,

one family, one truth, as it is the program of a central government.

The morphograms MG(4, 2) are allowing a minimal differentiation that  is distributed over the 4 loci. Say, there is one
homogeneous ideology that allows just one difference. And that is the acceptance of one and only one reality in contrast to
the rejected reality of a environment.

In fact, it is the case for the classical dichotomic (two-valued) logic, ontology and semiotics, and the politics based on it.

This difference occurs at different places.

It could be a difference in the educational system or even in the legal system as it appears in federalist countries.

Naturally, MG(4, 3) offers a further differentiation, distributed over the 4 places.  This difference enable the complexion to
draw a distinction in itself. It has therefore an internal and an external environment. 

The difference might be with the legal, the educational and the language system.

But there is still some tolerance in the distribution of the contextures.

This changes with the organizational structure of MG(4,4). Each place is occupied by a different contexture. 

This allows to differentiate between the self-differentiated system of MG[4,3] and its reflection by MG[4,4].

But morphograms are permutation invariant in respect of their valuations. Therefore, such an organization is not involved in
any identifications with a systematic location of a value as it is necessary in hierarchical systems. Thus all permutations of
MG(4,4) are morphogrammatically equivalent.  Permutations of MG(4,3) and MG(4,2) are morphogrammatically equivalent
in respect of their valuation, but not in respect of possible transpositions.

For example, Permutations@81, 2, 2, 3<Ddelivers value permutations and but a change of locations too. Therefore,
morphograms are equal under permutations only if their order is respected.

Hence, just the permutation {3,2,2,1} of {1,2,2,3} is morphogrammatically equivalent. All other permutations diver. 

In other words, morphograms are not permutation invariant but invariant under valuation. Just for the cases MG(m,m) and
MG(m,1) valuation and permutation of the values are coinciding.
Permutations@81, 2, 2, 3<D

881, 2, 2, 3<, 81, 2, 3, 2<, 81, 3, 2, 2<, 82, 1, 2, 3<, 82, 1, 3, 2<, 82, 2, 1, 3<,
82, 2, 3, 1<, 82, 3, 1, 2<, 82, 3, 2, 1<, 83, 1, 2, 2<, 83, 2, 1, 2<, 83, 2, 2, 1<<

The  morphogrammatic  pattern  MG[4,4]  =  
2 3
1 4

  has  24  non-redundant  representations.

These are the permutations of the set {1,2,3,4}.
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The  morphogrammatic  pattern  MG[4,4]  =  
2 3
1 4

  has  24  non-redundant  representations.

These are the permutations of the set {1,2,3,4}.
g = 81 Ø 2, 2 Ø 3, 3 Ø 4<

GraphPlot@g, VertexLabeling Ø True, DirectedEdges Ø TrueD

1 2 3 4

g = 81 Ø 2, 2 Ø 3, 3 Ø 4, 1 Ø 3, 2 Ø 4, 1 Ø 4 <

GraphPlot@g, VertexLabeling Ø True, DirectedEdges Ø TrueD

12

34

Permutations@81, 2, 3, 4<D

881, 2, 3, 4<, 81, 2, 4, 3<, 81, 3, 2, 4<, 81, 3, 4, 2<, 81, 4, 2, 3<, 81, 4, 3, 2<,
82, 1, 3, 4<, 82, 1, 4, 3<, 82, 3, 1, 4<, 82, 3, 4, 1<, 82, 4, 1, 3<, 82, 4, 3, 1<,
83, 1, 2, 4<, 83, 1, 4, 2<, 83, 2, 1, 4<, 83, 2, 4, 1<, 83, 4, 1, 2<, 83, 4, 2, 1<,
84, 1, 2, 3<, 84, 1, 3, 2<, 84, 2, 1, 3<, 84, 2, 3, 1<, 84, 3, 1, 2<, 84, 3, 2, 1<<

Patterns of possible decompositions and coalitions on the base of structural similarity

The undifferentiated field of MG[4] as a system
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The field MG[4] with its Stirling differentiation
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The field MG[4] with the first refinement of the Stirling differentiation
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The field MG[4] with the second refinement of the Stirling refinement
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As it  is obvious from the presented analysis, the decompositions, and in an inverse turn, the coalitions, are based on
structural consideration only, and are thus not depending on semantics, traditions, believes or other identifiable cultural
entities.

Morphograms are not just structural patterns but also morphic rules of morphogrammatic cellular automata.

Hence, the different classifications of morphogrammatic systems (structurations) are introducing a new classification of
poly-morphic cellular automata too.

ü Towards an application
Philip  J.  Koopman,  Jr  ,  A Taxonomy of  Decomposition Strategies Based on Structures,  Behaviors,  and Goals  (1995)
https://www.ece.cmu.edu/~koopman/decomp/decomp.html

Figure 1 shows an ad-hoc decomposition in which a design has structures S1, S2, .. , Sn; behaviors B1, B2, .. , Bp; and goals G1, G2, .. , Gq.

The multiple subdesigns 1 through m resulting from decomposition contain potentially modified versions of the original structure, behavior, and goal

attributes. For example, if G1 is a weight goal, G1
1 through G1

m would be the weight goals for the subdesigns 1 through m. Similarly, S1 might

be a structure which is actually an assembly of components S1
1 through S1

m, and B1 might be a behavior which emerges from an interaction of

behaviors B1
1 through B1

m.

Different modi of modeling
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Ñ categories elements
structures s1 s2
behaviors b1 b2
goals g1 g2

environments e1 e2
observers o1 o2

Static modeling versus dynamic modeling

Ñ categories elements
structures s1 s2
behaviors b1 b2
goals g1 g2

environments e1 e2
observers o1 o2

INTERCHANGE OF OBSERVERS
Reflectiono1-o2@Complexion@ Hsi, si+1L, Hbi, bi+1L, Hgi, gi+1L, Hei, ei+1L, Hoi, oi+1LDD
ï
Complexion@ Hsi+1, siL, Hbi+1, biL, Hgi+1, giL, Hei+1, eiL, Hoi+1, oiLD

INTERCHANGE OF OBSERVER and environment
Reflectiono1-e2@Complexion@ Hsi, si+1L, Hbi, bi+1L, Hgi, gi+1L, Hei, ei+1L, Hoi, oi+1LDD
ï
Complexion@ Hsi+1, siL, Hbi+1, biL, Hgi+1, giL, Hoi+1, eiL, Hei+1, oiLD

ReflHo1-e2L@x, Hei, ei+1L, Hoi, oi+1LD ï @x, Hei, oi+1L, Hoi, ei+1LD

ü Mediation of classifications

As much as the undifferentiated system of MG[4] represents the ontological reality of the taxonomy, all the further classifica-
tions, Stirling and its refinement, are just thematizations of a morphogrammatic design.

Therefore, it  is reasonable to conceive them as holding simultaneously as thematizations, and are thus enabled to be
mediated to a complexion of  different,  i.e.  discontextural  thematizations of  a possible structuration,  determined by the
complexity of 4 and the complication of 1.
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