Title
Tool Set for Morphic Cellular Automata Systems

Archive-Number / Categories
3_37 / K12, K09, K11

Publication Date
2014

Keywords / Topics
Morphograms, Cellular Automata, Elementary cellular automaton (ECA)

Disciplines
Computer Science, Artificial Intelligence and Robotics, Logic and Foundations of Mathematics, Cybernetics, Theory of Science

Abstract
Again, there is no ‘natural’ method to extend the classical ECA concept to a ‘trans-classical’ theory on the base of set-theoretical functions.

An extension of the function-based approach is easily achieved with an extension of the value-set from 2 elements to n>2. But such a concept of extension is abstract and there are no systematic criteria to chose the elements. The value-set might be arbitrarily extended to any size.

The analogous situation happened and still happens with the transition from 2-valued to multiple-valued logics.

Hence, the morphogrammatic approach to ECAs is an interpretation of the basic morphograms of morphogrammatics.

Citation Information / How to cite

Categories of the RK-Archive
K01 Gotthard Günther Studies
K02 Scientific Essays
K03 Polycontexturality – Second-Order-Cybernetics
K04 Diamond Theory
K05 Interactivity
K06 Diamond Strategies
K07 Contextural Programming Paradigm
K08 Formal Systems in Polycontextural Constellations
K09 Morphogrammatics
K10 The Chinese Challenge or A Challenge for China
K11 Memristics Memristors Computation
K12 Cellular Automata
K13 RK and friends
Functional and morphogrammatic definitions of ECA

Again, it easily happens to confuse the morpgram-based approach to elementary CAs with the original function-based approach as we know it. That happens naturally because of the coincidence of the objectified results. What differs is how the results are achieved (produced) and not so much what is reached (produced).

Functional representations of the morphoCAs are in fact simulations in the realm of functions, and not morphic realizations.

Again, there is no ‘natural’ method to extend the classical ECA concept to a ‘trans-classical’ theory on the base of set-theoretical functions.

An extension of the function-based approach is easily achieved with an extension of the value-set from 2 elements to n=2. But such a concept of extension is abstract and there are no systematic criteria to chose the elements. The value-set might be arbitrarily extended to any size.

The analogous situation happened and still happens with the transition from 2-valued to multiple-valued logics.

Hence, the morphogrammatic approach to ECAs is an interpretation of the basic morphograms of morphogrammat-ics.

In the case of complexity/complication of 4, i.e. for MG^{(4,4)} there are just 15 basic morphograms. To define the classical ECAs, not more than 8 morphograms are necessary as a base for interpretation.

This way to interpret morphograms by values and relabeling is not yet taking the genuine morphogrammatic level into account. Morphograms are introduced by differences and not by values of a function. The difference-oriented approach to morphogrammatic CAs is ruled by the e/\n-structuration of the domain of computation.

The first presentation of morphogrammatic based CAs had been restricted on a combination of just 4 to 5 mor- phosphograms per automaton.

The morphogrammatic approach enables an easy method of combining basic cellular automata to compound structures of well defined complex morphic automata.

The tool set contains the 15 basic morphograms and the two rules of composition: ruleCl for ‘classical’ and ruleM for ‘trans-classical structurations.

The tool set allows to define morphogrammatic compounds of basic morphograms for more complex CAs.

In this sense, a morphogram MG^{(9,3)} is defined as a mediation of 3 basic morphograms: e.g.

\[MG^{(9,3)} = MG^{(4,3)} \cup MG^{(4,3)} \cup MG^{(4,3)}. \]

Morphic CAs are therefore defined as interpretations of additive and mediative compositions of morphograms.

Additive compositions have the form:

\[\left[MG_{1}^{(4,m)} , MG_{2}^{(4,m)} , \ldots , MG_{m}^{(4,m)} \right], \text{ with } \begin{cases} m = 4 : \text{classical} \\ m = 5 : \text{transclassical} \end{cases} \]

While mediative compositions have the reflectional and interactional distribution form:

\[\left[MG_{1}^{(4,m)} \cup MG_{2}^{(4,m)} \cup \ldots \cup MG_{m}^{(4,m)} \right]. \]

Mediative composition examples for m=3:

\[\text{CA}^{(9,3)} : R^{1}_{1,2} \cup R^{2}_{3,2} = (R^{1}_{1} \cup R^{2}_{2}) \cup R^{3}_{3,2} \]

"\cup" : mediation

Other definitions and derivations from the morphogrammatic approach are naturally possible as different and non-standard interpretations of morphograms.

It is obviously the advantage of the morphogrammatic approach to enable such systematic automata-theoretical constructions and structurations.

"It might be thought that CA with greater values of k have also greater computational power, however this is not true. It is true that rules with $k = 1$ can be easily characterized because they describe linearly separable CA, but even rules with $k = 2$ can have extremely complex behaviors as in the case of rule 110, which is known to be equivalent to a Universal Turing Machine.

This phenomenon, already hypothesized by Wolfram, is called threshold of complexity. It is noteworthy to mention that not all rules with high complexity index have complex behaviors, [...]."

Giovanni E. Pazienza, Aspects of algorithms and dynamics of cellular paradigms

System of elementary morphic cellular automata rules

rules \(-\text{CA}^{(4,4)} = \sum_{k=1}^{4} S_n(4, k) = 1 + 6 + 7 + 1 = 15\)
There might be a difference between the pheno- and the geno-type of CAs. In other words, the surface-structure as an interpretation of morphograms, i.e., as a function- and set-oriented approach has to be distinguished from a morphogrammatic understanding of CAs that is pre-ordered as a pattern-oriented deep-structure of mappings and sets.

Structurally, the system of $CA^{2,2}_H$ with its 256 elements or mappings is inherently symmetric. That is not excluding that the behavior of some functions are asymmetric.

It turns out that not even dually defined CAs are behaving dually. That is, e.g., that the dual of rule 30 has not a dual representation of the rule 30.

In sharp contrast, the morphogrammatic system is with its 15 basic morphograms for $CA^{4,4}_H$ is inherently asymmetric. That obviously includes the symmetric subsystem of $CA^{2,2}_H$ too.

The morphogrammatic approach enables a simple modular construction of the automata.

Rule space for CA^{(m,n)}

CA^{(4,2)}: 16

<table>
<thead>
<tr>
<th>Rule 1</th>
<th>Rule 2</th>
<th>Rule 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.3</td>
<td>.4 .5</td>
<td>.7 .3 .4 .5</td>
</tr>
<tr>
<td>1.2 .9</td>
<td>.3 .4</td>
<td>.7 .3 .7 .3</td>
</tr>
<tr>
<td>1.2 .8</td>
<td>.4 .5</td>
<td>.7 .8 .4 .7</td>
</tr>
<tr>
<td>1.2 .9</td>
<td>.3 .4</td>
<td>.7 .9 .4 .7</td>
</tr>
<tr>
<td>1.7 .3</td>
<td>.4 .5</td>
<td>.7 .3 .7 .3</td>
</tr>
<tr>
<td>1.7 .3</td>
<td>.3 .4</td>
<td>.7 .3 .7 .3</td>
</tr>
<tr>
<td>1.7 .8</td>
<td>.4 .5</td>
<td>.7 .8 .4 .7</td>
</tr>
<tr>
<td>1.7 .9</td>
<td>.3 .4</td>
<td>.7 .9 .4 .7</td>
</tr>
</tbody>
</table>

CA^{(4,3)}: 32

<table>
<thead>
<tr>
<th>Rule 1</th>
<th>Rule 2</th>
<th>Rule 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 .3</td>
<td>.4 .5</td>
<td>.7 .3 .4 .5</td>
</tr>
<tr>
<td>1.2 .9</td>
<td>.3 .4</td>
<td>.7 .3 .7 .3</td>
</tr>
<tr>
<td>1.2 .8</td>
<td>.4 .5</td>
<td>.7 .8 .4 .7</td>
</tr>
<tr>
<td>1.2 .9</td>
<td>.3 .4</td>
<td>.7 .9 .4 .7</td>
</tr>
<tr>
<td>1.7 .3</td>
<td>.4 .5</td>
<td>.7 .3 .7 .3</td>
</tr>
<tr>
<td>1.7 .3</td>
<td>.3 .4</td>
<td>.7 .3 .7 .3</td>
</tr>
<tr>
<td>1.7 .8</td>
<td>.4 .5</td>
<td>.7 .8 .4 .7</td>
</tr>
<tr>
<td>1.7 .9</td>
<td>.3 .4</td>
<td>.7 .9 .4 .7</td>
</tr>
</tbody>
</table>

Appendix = .5;10;14

CA^{(4,4)}: (not complete)

<table>
<thead>
<tr>
<th>Rule 1</th>
<th>Rule 2</th>
<th>Rule 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.11 .3</td>
<td>.4 .5</td>
<td>.7 .3 .4 .5</td>
</tr>
<tr>
<td>1.11 .9</td>
<td>.3 .4</td>
<td>.7 .3 .7 .3</td>
</tr>
<tr>
<td>1.11 .8</td>
<td>.4 .5</td>
<td>.7 .8 .4 .7</td>
</tr>
<tr>
<td>1.11 .9</td>
<td>.3 .4</td>
<td>.7 .9 .4 .7</td>
</tr>
<tr>
<td>1.11 .12</td>
<td>.3 .4</td>
<td>.7 .12 .3 .4</td>
</tr>
<tr>
<td>1.11 .12</td>
<td>.9 .3</td>
<td>.7 .12 .9 .3</td>
</tr>
<tr>
<td>1.11 .12</td>
<td>.8 .4</td>
<td>.7 .12 .8 .4</td>
</tr>
<tr>
<td>1.11 .12</td>
<td>.9 .4</td>
<td>.7 .12 .9 .4</td>
</tr>
</tbody>
</table>

Appendix = .5;10;14

IntroShort-reduced.cdf
Program schemes for morphic CAs

Rule function scheme

\(\text{rules}_1 = \text{Mod} [\text{ReLabel}[[a, b, c]], n] \rightarrow d, \)
\(a, b, c, d \in \{0, 1, 2, 3\}, 1 \leq i \leq 5, 2 \leq n \geq 4 \)

Relabeling

\(\text{ReLabel}[L, \text{List}] := L / . \text{Map}[[1]] \rightarrow [[2]] \) \&,
\(\text{Transpose}[[\text{DeleteDuplicates}[L], \text{Range}[\text{Length}[\text{Union}[L]]]]] \)

Two functions are morphogrammatically equivalent if they are equal under relabeling.

Hence, the listed functions below are all representing in the context of CA\(^{132}\)

the same morphogram R7, i.e.

```
- -
- -
```

List of functions

\{0, 0, 1\} \rightarrow 0, \{0, 0, 2\} \rightarrow 0, \{0, 0, 3\} \rightarrow 0, \{1, 1, 0\} \rightarrow 0, \{1, 1, 2\} \rightarrow 0, \{1, 1, 3\} \rightarrow 0, \{2, 2, 0\} \rightarrow 0, \{2, 2, 1\} \rightarrow 0, \{2, 2, 3\} \rightarrow 0, \{3, 3, 0\} \rightarrow 0, \{3, 3, 1\} \rightarrow 0, \{3, 3, 2\} \rightarrow 0

Morphogrammatic equivalence

\(\text{Mod} [\text{ReLabel}[[0, 0, 1]], 2] \)
\(\text{Mod} [\text{ReLabel}[[0, 0, 2]], 2] \)
\(\text{Mod} [\text{ReLabel}[[0, 0, 3]], 2] \)
\(\text{Mod} [\text{ReLabel}[[1, 1, 0]], 2] \)
\(\text{Mod} [\text{ReLabel}[[1, 1, 2]], 2] \)
\(\text{Mod} [\text{ReLabel}[[1, 1, 3]], 2] \)
\(\text{Mod} [\text{ReLabel}[[2, 2, 0]], 2] \)
\(\text{Mod} [\text{ReLabel}[[2, 2, 1]], 2] \)
\(\text{Mod} [\text{ReLabel}[[2, 2, 3]], 2] \)
\(\text{Mod} [\text{ReLabel}[[3, 3, 0]], 2] \)
\(\text{Mod} [\text{ReLabel}[[3, 3, 1]], 2] \)
\(\text{Mod} [\text{ReLabel}[[3, 3, 2]], 2] \)

\(\text{Debug} \) Out[6]= True
Permutations

Morphogram R13: \[\begin{array}{ccc} \& \& \\ \& \& \\ \& \& \end{array} \], is represented in CA$^{(4,3)}$ by the following functions.

List of functions

(Debug) In[7]:= rca[[13]] :=
{ {0, 1, 1} -> 2,
 {0, 2, 2} -> 1,
 {0, 3, 3} -> 2,
 {1, 0, 0} -> 2,
 {1, 2, 2} -> 0,
 {1, 3, 3} -> 2,
 {2, 0, 0} -> 1,
 {2, 1, 1} -> 0,
 {3, 1, 1} -> 2,
 {3, 0, 0} -> 1,
 {3, 2, 2} -> 0
}

Morphogrammatic equivalence

(Debug) In[8]:= Mod[ReLabel[{0,1,1},3]] ==
Mod[ReLabel[{0,2,2},3]] ==
Mod[ReLabel[{0,3,3},3]] ==
Mod[ReLabel[{1,0,0},3]] ==
Mod[ReLabel[{1,2,2},3]] ==
Mod[ReLabel[{1,3,3},3]] ==
Mod[ReLabel[{2,0,0},3]] ==
Mod[ReLabel[{2,1,1},3]] ==
Mod[ReLabel[{2,2,2},3]] ==
Mod[ReLabel[{3,0,0},3]] ==
Mod[ReLabel[{3,1,1},3]] ==
Mod[ReLabel[{3,2,2},3]]

(Debug) Out[8]= True

Basic composition scheme for morphoRules

The function RCA denotes the composed rules based on the rule space defined by the combination of the sub-rules rca.

This approach is nicely modular and allows easily to compose morphic elementary cellular automata.
The rule space is defined by the composition of the 15 basic morphograms for CA4,6.
The functional definition of the morphograms might differ depending on the understanding of its mechanism.

(Debug) In[91]:= ruleMN[a_, b_, c_, d_, e_] :=
Flatten[{rca[{a}], rca[{b}], rca[{c}], rca[{d}], rca[{e}], rca[{f}]}
]

(Debug) In[92]:= ruleM[a_, b_, c_, d_, e_] :=
Flatten[{rca[{a}], rca[{b}], rca[{c}], rca[{d}], rca[{e}]}
]

(Debug) In[93]:= ruleCl[a_, b_, c_, d_] :=
Flatten[{rca[{a}], rca[{b}], rca[{c}], rca[{d}]}
]

(Debug) In[12]:= morphoRules := { ruleCl, ruleM, ruleMN}
General CA scheme

Presentation[
 ArrayPlot[CellularAutomaton[
 ruleDef[MG(m,n)], morphoRules, ruleSpace
 {init}, steps],
 {Graphics}]]

presentation =
{TabView, SlideView, MenuView, etc}

Introduction

How does it work? Relabeling (i.e., trito-normal form, tnf) and separation.

Example

ruleM[{{1, 11, 3, 9, 15}}]

\[
\begin{array}{ccccc}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]

ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}

Step 1

ArrayPlot[CellularAutomaton[
 ruleM[{{1, 11, 3, 9, 15}}],
 {{1}, 0}, 1],
 ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}, Mesh -> True]

\[
\begin{array}{ccc}
\bullet & \bullet & \bullet \\
\end{array} = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 1 & 0 \end{pmatrix}
\]

[0, 1, 0] corresponds : [1, 0, 1], hence the next step is [1, 0, 1] -> 0 or [1, 0, 1] -> 1.
Because rule 3 is involved and not rule 8, the next step is 1 and not 0.

Mod[ReLabel[{{0, 1, 0}}, 2]

{1, 0, 1}

Hence, \[
\begin{array}{ccc}
0 & 1 & 0 \\
- & 1 & - \\
\end{array}\]
Step 2

[2,1,0] corresponds by relabeling to [1,2,0], hence the next step is: [1,2,0] -> 0 or [1,2,0] -> 1 or [1,2,0] -> 2 or [1,2,0] -> 3.

In contrast to a set-based approach, there are no other possibilities involved on the level of morphogrammatics. Because rule 15 is involved and not rule 5 or rule 10 or rule 14, the next step is 3 and not 0, 1 or 2.

The head of the morphogram

\[
\text{Mod[ReLabel[{2, 1, 0}], 3]} \quad \{1, 2, 0\}
\]

The morphogram 15

\[
\text{Mod[ReLabel[{2, 1, 0, 3}], 4]} \quad \{1, 2, 3, 0\}
\]

Diagram of the separation procedure

Decision procedure

- rule set, init string
 - ↓
 - string at pos = (Nr., l)
 - ↓ ReLabel
 - relabeled(string)
 - ✓ ↓ \ NextGen
 - \ ↓ ✓ ∈ rule – set?
 - \ (yes; no)
 - ✓ \ apply rule
 - ↓
 - result
On the level a functional implementation of the morphic cellular automata, like in this paper, the genuine concept of morphic interaction is replaced by a corresponding set of 'pre-given' functions.

TabView for CA\(^{(4,4)}\) rules

Table of explicit rules for CA\(^{(4,4)}\)

Applications

```mathematica
(Debug) In[15]:=
ruleM[{a_, b_, c_, d_, e_}] := Flatten[{rca[a], rca[b], rca[c], rca[d], rca[e]]}

rule = 6.7.3.13.15

(Debug) In[89]:=
ArrayPlot[CellularAutomaton[
ruleM[{6, 7, 3, 13, 15}],
{{1}, 0}, 22],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]
```

```
rule set = \{1, 11, 3, 9, 15\}, init

Example 1

\[\begin{align*}
[0, 1, 0] & : \text{string at pos (Nr. = 1, l = 3)} \\
\downarrow & \text{ReLabel} \\
[1, 0, 1] & \\
\checkmark & \downarrow \checkmark \text{NextGen} \\
[1, 0, 1, 0], [1, 0, 1, 1], [1, 0, 1, 2] & \\
\checkmark & \checkmark \in \text{rule-set?} \\
(\text{yes; no}) & \\
\checkmark & \checkmark \\
\text{apply: stop} \\
[1, 0, 1, 1] & = \text{rule3} \\
\downarrow & \\
\text{result} = [1]
\end{align*}\]

Example 2

\[\begin{align*}
[2, 1, 0] & : \text{string at pos (Nr. = 2, l = 3)} \\
\downarrow & \text{ReLabel} \\
[1, 2, 0] & \\
\checkmark & \downarrow \checkmark \text{NextGen} \\
[1, 2, 0, 0], [1, 2, 0, 1], [1, 2, 0, 2], [1, 2, 0, 3] & \\
\checkmark & \checkmark \in \text{rule-set?} \\
(\text{yes; no}) & \\
\checkmark & \checkmark \\
\text{apply: stop} \\
[1, 2, 0, 3] & = \text{rule15} \\
\downarrow & \\
\text{result} = [3]
\end{align*}\]

http://memristors.memristics.com/CA-Compositions/Memristive\%20Cellular\%20Automata\%20Compositions.pdf
Mesh view

(Debug) In[17]= ArrayPlot[CellularAutomaton[
  ruleM[{6, 7, 3, 13, 15}],
  {{1}, 0}, 22],
  ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}, Mesh -> True]

Rule verification

(Debug) In[20]= ruleM[{6, 7, 3, 13, 15}]

Dynamic representation of classic morphoCAs

Classic rules

Classical examples : ruleCL, 16

(Debug) In[21]= ruleCL[{a__, b__, c__, d__}] :=
  Flatten[{rca[{a}], rca[{b}], rca[{c}], rca[{d}]}]
Dynamic representation of transclassic morphoCAs

rule = 1.2.8.13.10

(Debug) In[26]= ArrayPlot[CellularAutomaton[
  ruleM[{1, 2, 8, 13, 10}],
  {{1}, 0}, 222],

rule = 1.11.3.9.15

(Debug) In[27]= ArrayPlot[CellularAutomaton[
  ruleM[{1, 11, 3, 9, 15}],
  {{1}, 0}, 22],

IntroShort-reduced.cdf
rule = 6.7 3.13 15

(Debug) In[28] = ArrayPlot[CellularAutomaton[
    ruleM[{6, 7, 3, 13, 15}],
    {{1}, 0}, 222],
    ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]
rule = 6.13.11 12 15

(Debug) In[29]: = ArrayPlot[CellularAutomaton[
ruleM[{6, 13, 11, 12, 15}],
{{1}, 0}, 222],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]

rule = 1.13.11.12.15

(Debug) In[30]: = ArrayPlot[CellularAutomaton[
ruleM[{1, 13, 11, 12, 15}],
{{1}, 0}, 222],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]
```
(* Debug *)
In[31]:= ArrayPlot[CellularAutomaton[
ruleM[{6, 13, 11, 12, 15}],
{{1}, 0}, 222],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]
```

```
(* Debug *)
Out[31]=
```

```
(* Debug *)
In[32]:= ArrayPlot[CellularAutomaton[
ruleM[{1, 13, 11, 12, 15}],
{{1}, 0}, 222],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]
```

```
(* Debug *)
Out[32]=
```
rule = 6.8 .11 .13 .14

(Debug) In[33]= ArrayPlot[CellularAutomaton[
    ruleM[{6, 8, 11, 13, 14}],
    {{1}, 0}, 222],
    ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]

(Debug) Out[33]=

(Debug) In[34]= ArrayPlot[CellularAutomaton[
    ruleM[{6, 8, 11, 13, 14}],
    {{1}, 0}, 222],
    ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]

(Debug) Out[34]=

IntroShort-reduced.cdf
rule = 6.2.8.13.15

(Debug) In[35]:= ArrayPlot[CellularAutomaton[
  ruleM[{6, 2, 8, 13, 15}],
  {{1}, 0}, 222],
  ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]

rule = 1.7.12.13.15

(Debug) In[36]:= ArrayPlot[CellularAutomaton[
  ruleM[{1, 7, 12, 13, 15}],
  {{1}, 0}, 222],
  ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]
rule = 6.7.3.13.15

(Debug) In[37]:= ArrayPlot[CellularAutomaton[
ruleM[{6, 7, 3, 13, 15}],
{{1}, 0}, 222],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]
rule = 1.7.8.13.15

(Debug) In[38]:= `ArrayPlot[`CellularAutomaton[
    ruleM[{1, 7, 8, 13, 15}],
    {{1}, 0}, 222],
    ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}]

(Debug) Out[38]=

IntroShort-reduced.cdf
Dynamic presentation of CA\(^{(4,3)}\) examples, 68 automata

Extended rules: ruleMN

```
ruleMN[\{a_, b_, c_, d_, e_, f_\}] := Flatten[\{rca[a], rca[b], rca[c], rca[d], rca[e], rca[f]\}]
```

Examples

- `ruleMN[[1, 7, 8, 13, 5, 15]]`
- `ruleMN[[1, 7, 8, 13, 10, 15]]`

ruleMN[{1, 7, 8, 13, 14, 15}]

**SlideView of ruleMN examples**

Different initial conditions

**Multiple seeds: {1,0,1,0,1}**

(Debug) In[44] := ruleM[{1, 7, 3, 13, 15}],
                {{1, 0, 1, 0, 1}, 22],
        ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}, ImageSize -> 400]

Random: [1,100]
\(\text{ArrayPlot[CellularAutomaton[}
\text{ruleM[\{1, 7, 3, 13, 15\}],}
\text{RandomInteger[\{1, 100\}, 222],}
\text{ColorRules -> \{1 -> \text{Red}, 0 -> \text{Yellow}, 2 -> \text{Blue}, 3 -> \text{Green}\}, ImageSize -> 400]}\)
rule test

(Debug) In[46] = ruleM[{1, 7, 3, 13, 15}]
(Debug) In[47]= `ArrayPlot[CellularAutomaton[
  ruleM[5, {7, 8, 13, 15}],
  RandomInteger[1, 100], 222],
  ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}, ImageSize -> 400]
ruleMN[{1,7,8,13,14,15}], 222, random, example 1

(Debug) In[48]= ArrayPlot[CellularAutomaton[
  ruleMN[{1, 7, 8, 13, 14, 15}],
  RandomInteger[1, 100], 222],
  ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}, ImageSize -> 400]
ruleMN[[1, 7, 8, 13, 14, 15]], 222, random, example 2

(Debug) In[49]:= ArrayPlot[CellularAutomaton[
    ruleMN[{1, 7, 8, 13, 14, 15}],
    RandomInteger[{1, 100}], 222],
    ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}, ImageSize -> 400]
ruleMN[{1,7,8,13,14,15}], 222, random, example 3

(Debug) In[50] := ArrayPlot[CellularAutomaton[
   ruleMN[{1, 7, 8, 13, 14, 15}],
   RandomInteger[{1, 100}], 222],
   ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}, ImageSize -> 400]
rule test

(Debug) In[51]= ruleMN[{1, 7, 8, 13, 14, 15}]
Towards analysis

Steps from n to m
from to [111, 222]

(Debu) In[75]= `ArrayPlot[CellularAutomaton[
    ruleM[{1, 7, 3, 13, 15}],
    RandomInteger[1, 100], {{111, 222}}],
    ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}, ImageSize -> 400]

Selections

Every tenth step from 111 to 222

(Debu) In[76]= `ArrayPlot[CellularAutomaton[
    ruleM[{1, 7, 3, 13, 15}],
    RandomInteger[1, 100], {{111, 222, 10}}],
    ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green}, ImageSize -> 400]

Dynamic range of steps

rule = 6.7 .3 .13 .15, range = 555
Manipulate[ArrayPlot[CellularAutomaton[
    ruleM[{6, 7, 3, 13, 15}], {{1}, 0}, n],
    ColorRules -> {1 -> Red, 0 -> Yellow, 2 -> Blue, 3 -> Green},
    ImageSize -> 400], {n, 2, 555, 1}]
Differentiations for [1, 7, 8, 13, -], with dynamic step range

rule = 6.7 .3 .13 .15, seed = {1, 0, 1, 0, 1}