

 Summer-Edition 2017

— vordenker-archive —

Rudolf Kaehr

(1942-2016)

Title

Introducing and Modelling Polycontextural Logic

Archive-Number / Categories

1_31 / K07

Publication Date

1996

Keywords

Combinatory Logic, Computational Reflection, Functional Programming, Lambda-calculus,

Parallel Processing, Polycontexturality, Proemial Relationship, Semiotics

Disciplines

Artificial Intelligence and Robotics, Logic and Foundations, Theory of Science, Cybernetics

Abstract

Gotthard Günther introduced the proemial-relationship (PRS) as one of the basic trans-classical con-

cepts of polycontexturality. PRS pre-faces and constitutes as the mechanism of the difference making

’difference’ all relational and operational orders. The present paper develops a first step modelisation of

the proemial-relationship in analogy to graph-reduction based implementations of functional languages.

A proemial-combinator, PR, is designed and implemented, which is proposed as an extension of func-

tional programming languages and as an implementation technique for process-communication and
computational reflection.

Citation Information / How to cite

Rudolf Kaehr & Thomas Mahler: "Introducing and Modeling Polycontextural Logics", www.vordenker.de
(Sommer Edition, 2017) J. Paul (Ed.),

URL: http://www.vordenker.de/rk/rk-tm_Introducing-and-Modelling-Polycontextural-Logic_1996.pdf – originally
presented at: Thirteenth European Meeting on Cybernetics and Systems Research 1996 - EMCSR Wien 1996,
April 9-12

Categories of the RK-Archive
K01 Gotthard Günther Studies

K02 Scientific Essays

K03 Polycontexturality – Second-Order-Cybernetics

K04 Diamond Theory

K05 Interactivity

K06 Diamond Strategies

K07 Contextural Programming Paradigm

K08 Formal Systems in Polycontextural Constellations

K09 Morphogrammatics

K10 The Chinese Challenge or A Challenge for China

K11 Memristics Memristors Computation

K12 Cellular Automata

K13 RK and friends

http://www.vordenker.de/index.html
http://www.vordenker.de/index.html
http://www.vordenker.de/navigation.htm
https://de.wikipedia.org/wiki/Rudolf_Kaehr
http://www.vordenker.de/rk/rk-tm_Introducing-and-Modelling-Polycontextural-Logic_1996.pdf
http://www.vordenker.de/rk/rk-tm_Introducing-and-Modelling-Polycontextural-Logic_1996.pdf

Introducing and Modeling Polycontextural Logics

R. Kaehr and Th. Mahler
Institut für Kybernetik und Systemtheorie – ICS

Am Hülsenbusch 54, D-44803 Bochum
E-Mail: ics@ics.prima.ruhr.de

Abstract

Gotthard Günther introduced the proemial-
relationship (PRS) as one of the basic trans-
classical concepts of polycontexturality. PRS
pre-faces and constitutes as the mechanism
of the difference making ’difference’ all re-
lational and operational orders. The pre-
sent paper developes a first step modeli-
sation of the proemial-relationship in ana-
logy to graph-reduction based implementa-
tions of functional languages. A proemial-
combinator, PR, is designed and implemen-
ted, which is proposed as an extension of
functional programming languages and as
an implementation technique for process-
communication and computational reflec-
tion.
Keywords: combinatory logic, computa-
tional reflection, functional programming,
lambda-calculus, parallel processing, poly-
contexturality, proemial relationship, semio-
tics.

1 Introducing and Modeling
Polycontextural Logics

The idea of an extension of classical logic to cover
simultaneously active ontological locations was intro-
duced by Gotthard Günther (1900-1984, us-american
thinker, born in germany; colleague of Heinz von Foer-
ster at the BCL, Urbana). The ideas of Polycontex-
tural Logic originate from Günthers study of Hegel,
Schelling and the foundation of cybernetics in coope-
ration with Warren St. McCulloch [Gun95]. His aim
was to develop a philosophical theory and mathema-
tics of dialectics and self-refential systems, a cyberne-
tic theory of subjectivity as an interplay of cognition
and volition.

Polycontextural Logic is a many-system logic, a dis-
semination of logics, in which the classical logic sy-
stems (called contextures) are enabled to interplay
with each other, resulting in a complexity which is
structuraly different from the sum of its components
[Kae81] [Pfa91]. Although introduced historicaly as
an interpretation of many valued logics, polycontex-
tural logic does not fall into the category of fuzzy or

continous logics or other deviant logics. Polycontex-
tural logics offers new formal concepts such as multi-
negational and transjunctional operators.

The world has infinitely many logical places, and
it is representable by a two-valued system of logic in
each of the places, when viewed isolately. However,
a coexistence, a heterarchy of such places can only
be described by the proemial relationship in a poly-
contextural logical system. We shall call this relation
according to Günther the proemial relationship, for
it prefaces the difference between relator and relatum
of any relationship as such. Thus the proemial re-
lationship provides a deeper foundation of logic and
mathematics as an abstract potential from which the
classic relations and operations emerge.

The proemial relationship rules the mechanism of
distribution and mediation of formal systems (logics
and arithmetics), as developed by the theory of po-
lycontexturality. This relationship was characteri-
sed as the simultaneous interdependence of order and
exchange relations between objects of different logical
levels.

According to Günther ([Gun80b], p. 226): The pro-
emial relationship belongs to the level of the kenogram-
matic structure because it is a mere potential which
will become an actual relation only as either symme-
trical exchange relation or non-symmetrical ordered
relation. It has one thing in common with the clas-
sic symmetrical exchange relation, namely, what is a
relator may become a relatum and what was a rela-
tum may become a relator. Or to put it differently:
what was a distinction may become something which
is distinguished, and what has been distinguished may
become a process of distinction. The proemial relation-
ship crosses the distinction between form and matter.
[...] We can either say that proemiality is an exchange
founded on order; but since the order is only consti-
tuted by the fact that the exchange either transports a
relator (as relatum) to a context of higher logical com-
plexities or demotes a relatum to a lower level, we can
also define proemiality as an ordered relation on the
base of an exchange.

The proemial relationship implies the simultaneous
distribution of the same object over several logical
levels, which is not covered by classical theories of
types. In the following, a concept of such a coexi-

Eberhard v. Goldammer
Haftnotiz
Kaehr, R., Th. Mahler “Introducing and Modeling Polycontextural Logics”, Thirteenth European Meeting on Cybernetics and Systems Research 1996 - EMCSR Wien 1996, April 9-12, S. 207-212.

stence and parallelism will be developed which models
the kenogrammatic proemial relationship ([Gun80a],
[Gun80b]).

Due to the special properties of the proemial re-
lationship and the limitations of classical calculi, an
algebraic representation of the proemial relationship
must be self-referential, i.e. in classical formalisms it
has a paradoxical and antinomic structure. Because
of these fundamental difficulties with its formalisation,
an attempt will be made here to develop an operatio-
nal model of the proemial relationship.

To do this, the operational semantics of an abstract
combinatorical machine will be extended by a pro-
emial combinator PR [Dav92].

The proemial relationship describes the interdepen-
dence of an order relation −→, and an exchange rela-
tion m, between two operators and operands respecti-
vely. Between the operands xi and xi−1 and the ope-
rators Ri+1 and Ri exists a categorical coincidence re-
lationship, which constitutes the simultaneity of the
distributed order and exchange relations. Between
the constituents of the proemial relationship (order,
exchange, coincidence and locations) there exists a
chiastic interlocking mechanism of mutual foundati-
ons. Thus the concept of proemiality is not a concept
of the logic of relations (Peirce, Schröder) but pre-
faces – like the differance (Derrida) – all concepts of
relations as such [Kae95].

PR
(
Ri+1, Ri, xi, xi−1

)
:=

Ri+1 −→ xi

m
Ri −→ xi−1.

We distinguish the open from the closed form of the
proemial relationship ([Kae78], p. 5 f.). The closed

proemial relationship is cyclical:
Ri+1 −→ xi

m m
xi−1 ←− Ri

i.e. PR(PRi) = PRi. A different relationship
holds for the open proemial relationship: PR(PRi) =
PR(i+1). It has the following form:

i + 1: Ri+2 −→ xi+1

m
i: Ri+1 −→ xi

m
i− 1: Ri −→ xi−1

However, the simultaneous distribution of the same
λ-Terms over several logical levels cannot be model-

led in the λ-Calculus ([Cur69], [Bar80]).
The λ-Term (f x)(x f) uses f and x inside an ex-

pression both as an operator and as an operand. In-
side the λ-Calculus itself, as in all semiotically groun-
ded calculi, the identity of terms can be expressed as
unique objects. However their sameness cannot be
expressed.

The semiotic equality of the symbol `f’ in `(f x)’
with the symbol `f’ in `(x f)’ says nothing about
whether, within a reduction of the λ-Terms, these

identical terms are also physically equal, i.e. hand-
led as the same object.

The reason for this lies in the Token–Type–Relation
of the Semiotics on which the λ-Calculus is groun-
ded. The Token–Type–Relation subsumes all physi-
cally different, but equally represented Tokens under
one Type.

Since this step involves an abstraction from the phy-
sical realisation of the tokens, it is not possible to in-
fer the physical identity or non-identity of different
occurrences of symbol sequences from the terms of a
semiotically grounded calculus.

A calculus only operates with types and since the
type equality (or equivalently form equality ≡sem)
does not also imply token equality (i.e. physical or
pointer equality ≡z), it follows that such a calculus
cannot represent any concept of sameness.

Moreover, from the syntactic structure of λ terms,
one cannot deduce which reduction procedure should
be used to evaluate them. The above expression does
not indicate whether (f x) and (x f) should be eva-
luated sequentially (and if so, in what order) or simul-
taneously.

The question of the sameness of λ-term represen-
tations along with the choice of evaluation strategy
remains solely a matter of implementation techniques
for the λ-Calculus, since it does not concern the (se-
miotically grounded) term semantics.

In contrast, the proemial relationship introduces the
idea of a simultaneous distribution of the same object
over several reference systems which is exactly what
was not representable in the λ-Calculus. The model
of the proemial relationship proposed here is an at-
tempt to represent exactly this behaviour. It is based
on Günther’s conception of kenograms as empty slots,
where semiotic processes can be inserted.

The sameness of a term (which cannot be defined
on the semiotic level) is then determined through the
sameness of the kenogram where it is inserted. This
term which has been realised in one and the same
kenogram, can now serve simultaneously as operator
and operand within different semiotic processes1.

1.1 Implementation of the Proemial
Combinator PR

Based on the fundamental idea of the sameness
of semiotic processes within kenogrammatics, the
operational semantics of the proemial combinator
PR

(
Ri+1, Ri, xi, xi−1

)
can now be determined by

means of the operational semantics of a virtual com-
binator machine ([Tur79], [Dil88], [Dav92]).

This model makes use of the homogeneity of pro-
grams and data of the graph representation for the
combinator machine. In this way, a certain node z,
which is realised as a physical object at a particular
store address, can serve both as an operator and as an
operand within different application nodes.

Due to the parallel architecture of the combinator
machine, this exchange of roles (Operator ⇐⇒ Ope-

1For the relationship between semiotics and kenogram-
matics, see [Gun80c], [Kae82], [Kae92], [Kae95], [Mah93]

rand) within the same node z can be executed simul-
taneously.

Ri, Ri+1, xi and xi−1 can be arbitrary nodes of the
combinator graph. The order relation of the pro-
emial relationship, −→, represents here the applica-
tion app(rator,rand), which always guarantees a
unique distinction between operator and operand:

@ @
↙ ↘ ↙ ↘

Ri+1 xi Ri xi−1

Two such application nodes can occur in arbitrary
positions within a combinator program. Within such
a node, the role of a subnode as operator or operand is
always determined through the application structure.

If pointers are used in the combinator graph, it is
possible that xi and Ri indicate the same physical
Object z. Inside of app(Ri+1, xi), z plays the role
of operand and in app(Ri, xi−1) it plays the role of
operator:

@ @
↙ ↘ ↙ ↘

Ri+1 xi ≡z Ri xi−1

The pointer equality of xi und Ri, xi ≡z Ri, has
the effect that z plays the role of operator and ope-
rand within different applications (i.e. order relati-
onships). This position exchange within the order
relation app(rator,rand) serves as a model for the
exchange relation of the proemial relationship, ⇔. In
this way, Ri, Ri+1, xi and xi−1, with Ri ≡z xi satisfies
the schema for the proemial relationship:

Ri+1 −→ xi

m
Ri −→ xi−1.

The simultaneity of logical levels required by the
informal specification of the proemial relationship,
where z occupies different positions of the order rela-
tion app(rand,rator), will now be modelled so that
the application app(Ri+1, xi) and app(Ri, xi−1) can
be simultaneously evaluated.

The physical object z then serves simultaneously (in
the sense of the parallel architecture used) as operator
and operand within different applications. This theo-
retical concept leads to the following implementaion
of the proemial combinator PR:
|apply (PR, (stack as (ref(app((_,R1),_,_))::

ref(app((_,R2),_,_))::
ref(app((_,x1),_,_))::
(node as

(ref(app((_,x2),_,_))))::_))) =
let
val first = ref(app((R1,x1),ref Eval,ref []));
val second = ref(app((R2,x2),ref Eval,ref []));
in
(node :=
app((ref(app((ref(comb(CONS,ref Ready,ref [])),

first),ref Ready,ref [])),
second),ref Ready,ref []);

parEval (last stack, first);
parEval (last stack, second))

end

fun parEval (root,node) =
let

val emark = get_mark node;
val wq = get_q node;

in
if (! emark = Ready) then ()
else if (! emark = Busy) then
(make_wait root;
wq := root::(! wq))

else
(emark := Busy;
newTask node)

end;

The reduction of the combinator PR expects four
arguments, R1, R2, x1 and x2. From these, two
applications first = (app(R1,x1)) and second =
(app(R2,x2)) are constructed.

Both these nodes are first combined into one cons
object CONS(first,second). In this way some results
of the applications first and second remain and can
be inspected later.

In the next step, both the applications are given
over to the scheduling mechanism as parallel processes
via (parEval first) and (parEval second).

@
ª R

@
ª R

@
ª R

@
ª R

PR R1

R2

x1

@
ª R

@
ª R

x2

@
ª XXXXz

CONS @
ª R

R1 x1

-

parEval

parEval

R2 x2

figure 1: The graph reduction of PR(R1, R2, x1, x2)

This reduction schema is represented in Fig.(1).
The marking parEval on the nodes @(R1, x1) and
@(R2, x2) indicates that the reduction does not run
strictly but neither does it run non-strictly: the nodes
are not evaluated until they are combined into a
CONS object.

The synchronisation by means of (make wait
root; wq := [root]) can be ommitted, since first
and second are not subprocesses of an overruling strict
operator which waits for their computation results.
Instead they are autonomous, proemially connected
processes.

If R2 and x1 are realized as the same physical object
z then clearly the following reduction schema results
(figure 2).

In the context of R1, z is an operand but in the
context of x2, an operator. Since both applications
@(R1, z) and @(z, x2) are evaluated in parallel, this
reduction schema satisfies the exchange relation of the
proemial relationship.

@
ª R

@
­

­­À

R
@

ª XXz

@
ª R

PR R1

@
ª R

@
ª C

CW

x2

@
ª XXXXz

CONS @
ª R

R1

-

parEval

parEval

z
z

x2

figure 2: The graph reduction of PR(R1, z, z, x2)

1.2 Application Possibilities
Meta-level Architectures and Reflective
Programing
Under the key words Computational Reflection (CR)
and Meta-level-Architectures in fundamental compu-
ting research, attempts are made to extend the clas-
sical concept of computation, for example as it is for-
mulated in the λ-Calculus. In particular, the pro-
blem concerns the development of computation sy-
stems which `reflect’ over their computations.

According to Maes ([Mae88], p.22 ff.; [Smi82]) a re-
flective programming language has the property that
it explicitly makes methods available for reflective
computation.

In concrete this means that:
1. The interpreter for such a language must en-

sure that every program to be evaluated has ac-
cess to the data structures representing the pro-
gram itself (or certain aspects of it). Such a
program then has the possibility of manipulating
the data containing its own representation (meta-
computation).

2. The interpreter must further guarantee that a
(causal connection) exists between these data
and the aspects of the program which represent
them. The modification which a reflective pro-
gram carries out on its representation also mo-
difies the state and further execution of the pro-
gram (object computation). In this sense, the
meta-computation is reflected in the object com-
putation.

In such a system, representations of computation
instructions can either be evaluated as a program on
the object computation level, or alternatively (for ex-
ample, in an error situation) they can serve as the data
of a meta-computation level which could, for example,
correct the error.

This structure is represented in the following figure
(3). The exchange between the operator PRGi of
the object computation and the operand DATi of the
meta-computation can be described by the exchange
relation of the proemial relationship m.

The distinction between the program (operator)
and data (operand) within the one computation le-
vel corresponds to the order relation of the proemial
relationship.

It follows that the structure schema of a reflective
computation system corresponds exactly to that of
the proemial relationship, which is not the same as

metacomp.: PRG2 −→ DAT1

m
objectcomp.: PRG1 −→ DAT0

−→: program PRGi is applied to data DATi−1.
m: PRGi becomes DATi redarding the

metacomputation PRGi+1 and vice versa.

figure 3: Locigal levels of Computational Reflection

(Eigen)-behavior [Foe76]. Eigen-values and fixpoint
semantics needs transfinite recursions and are only of
value for describtions and not for finite constructions
of artificial systems.

Since the proemial combinator PR xi and Ri exists
as a single physical object, all modifications to xi also
act directly on Ri. In this way the pointer equality
xi ≡z Ri guarantees the causal connection between
meta-level and object level.

The proemial combinator PR is therefore suitable
for the modelling of reflective systems in the sense of
Maes’s definition.

In existing reflective systems (e.g. 3LISP[Smi82])
the meta and object levels are not realised as simul-
taneous processes, but instead execute purely sequen-
tially.

It follows that the meta-computations PRGi+1

which manipulate the object programs’s representa-
tion as data DATi, do not simultaneously influence
the object computation (PRGi −→ DATi−1).

They become effective only when the meta-
computation is terminated and the object level is
again activated, i.e. when the modified instructions
for the object computation are given over to the in-
terpreter.

This means that, at any particular point in time,
the whole computation will either be evaluated on the
meta-level or on the object level. It is always uniquely
determined whether an instruction serves as program
(operator) or as data (operand).

In contrast, the proemial combinator PR, along
with the programs based on it, enables the simulta-
neous coupling of object- and meta-computation.

In this way PR offers a parallel modelling concept
for reflective systems.

Generalisation of the Concept of Parallelism
The definition of the proemial combinator PR is ba-
sed on the physical coupling of parallel computations.
This modelling approach will now be extended to a
kenogrammatic notation for parallel processes.

To do this, the structure of parallel processes in the
above model will first be examined.

Kenogrammatics describes a pre-semiotic domain in
which the law of graphemic identity does not govern.
Kenogrammatics relates to polycontextural systems as
formal semiotics to classical calculi and embraces se-
miotics itself.

A computation PR f g x y has the form of the open
proemial relationship if g ≡z x and f 6≡z y. If g ≡z x

and f ≡z y then the computation corresponds to the
closed form.

The type of proemial relationship which applies to
the parallel evaluation of two combinator expressions
(f x) and (g y) cannot be determined from the term
structure; instead it can only be found out by looking
at the structure of pointer equality (≡z) and pointer
difference (6≡z) of f, x, g and y.

@ @
↙ ↘ ↙ ↘ combinator-

f x g y expressions
. .

6≡z ≡z 6≡z

≡z / 6≡z structure
6≡z 6≡z

6≡z

. .

◦ 4 4 2 kenogram structure

The ≡z / 6≡z-structure ist structure-isomorphic to
the ε/ν-structure of kenogram complexes [Mah93].

Due to this isomorphism, the above ≡z / 6≡z–
structure of f, x, g, y can be represented as the keno-
gram sequence ◦442 .

Since here x ≡z g and f 6≡z y, the sequence
◦442 corresponds to the open proemial relation-
ship.

The kenogram sequence ◦44◦ indicates the closed
proemial relation, since here x ≡z g and f ≡z y. The
kenogram sequence ◦◦◦◦ represents a situation in
which all four arguments of the proemial relationship
refer to the same object.

In addition, the sequences ◦◦◦4 and ◦444 in-
dicate proemial relationships, since x ≡z g applies to
them also. However, the remaining ten of the total of
fifteen kenogram sequences of length 4 indicate situa-
tions of pointer equality and difference which do not
satisfy the proemial relationship (since x 6≡z g there
is no exchange relation).

Since proemial conditions only occur in some of the
total number of combinations for kenogram sequences,
it is possible to regard the proemial relationship as a
special case of a more general concept of parallelism
which allows all possible ≡z / 6≡z-structures.

Due to the isomorphism between ≡z / 6≡z- and ε/ν-
structures, the structure of parallel computation en-
abled by the PR combinator can be described within
the framework of kenogrammatics.

Physical coupling and interaction between proces-
ses can then generally be formally represented by ke-
nogrammatic operations.

For example, if a computation (h z) with structure
◦4 is to be added to two existing parallel computati-
ons (f x) and (g y) having a (closed proemial) struc-
ture ◦44◦ , then for the resulting combined com-
putation (f x)‖(g y)‖(h z) several ε/ν–structures are
possible:

f x g y h z
ν ε ν ?1 ν

ν ν ?2 ?5

ν ?3 ?6

?4 ?7

?8

The resulting eight degrees of freedom ?i can be
filled with ε or ν [Mah93]. The possible kenogram
sequences are then:
◦44◦ @ ◦4 = { ◦44◦◦4, ◦44◦◦2,

◦44◦4◦, ◦44◦42,
◦44◦2◦, ◦44◦24,
◦44◦2?}.

The indexed chain @i determines single elements of
this set. It can also be used to determine precisely
specified couplings of parallel processes.

1.3 Prospects
In the model developed here, the transclassical aspects
of the proemial relationship occur only (as shown)
from the perspective of a particular interpretation of
the proemial combinator PR as an emergent surface
phenomenon. It does not belong to the architecture
of the combinator machine as an inherent feature.

It may be said therefore, that the approach given
here is not a transclassical model, but instead only a
particular application and interpretation of a classical
formalism.

This restriction must necessarily apply, since the
model is formulated within the linguistic framework of
classical formal systems and programming languages
(ML, HASKELL) i.e. positive languages. In positive
languages, the designational values of propositions are
positive, in negative languages, the designational va-
lues are both positiv and negative.

A possible next step would to develop a new com-
plete programming language for the computation mo-
del or to integrate it within existing systems. These
programming languages could then be used for the im-
plementation of coupled parallelism (in particular po-
lycontextural logics and arithmetics, self-referential,
heterarchical and autopoietic systems) [Kae88].

By means of such functional languages which would
only require a few extended constructs, it would be
possible to develop formal models of process communi-
cation and interaction of structurally complex systems
(e.g. operating systems and artificial living systems).

The fundamental barrier to the representation of
the proemial relationship lies in the concepts of ob-
ject, symbol and identity in classical semiotics and all
positive linguistic symbolic systems based on it (for-
mal, algorithmic and autological systems).

Of particular interest for an adequate formalisation
of the proemial relationship is therefore a critique and
renewed conception of the model presented here from
the perspective of Günther’s Theory of Negative Lan-
guages [Gun79].

References
[Bar80] Barendregt, H.P.: The Lambda-calculus.

Its Syntax and Semantics. Amsterdam,
North-Holland, 1980.

[Cur69] Curry, H.B., Feys, R.: Combinatory Lo-
gic. Amsterdam, North-Holland, 1969.

[Dav92] Davies, A.J.T.: An Introduction to
Functional Programming Systems Using
Haskell. Cambridge Computer Science
Texts 27, Cambridge University Press,
1992.

[Dil88] Diller, A.: Compiling Functional Lan-
guages. New York, John Wiley & Sons,
1988.

[Foe76] Von Foerster, H.: Objects: Tokens for
(Eigen)-behaviors. In: ASC Cybernetics
Forum VIII (3,4), S. 91-96, 1976.

[Gun78] Günther, G.: Idee und Grundriß einer
nicht-aristotelischen Logik. Die Idee und
ihre philosophischen Voraussetzungen. 2.
Auflage, Hamburg, Verlag Felix Meiner,
1978.

[Gun79] Günther, G.: Identität, Gegenidentität
und Negativsprache. In: Hegeljahrbuch
1979, Pahl-Rugenstein, pp.22-28.

[Gun80a] Günther, G.: Beiträge zur Grundlegung
einer operationsfähigen Dialektik. Bd. 1-
3, Hamburg, Verlag Felix Meiner, 1976-
1980.

[Gun80b] Günther, G.: Cognition and Volition. A
Contribution to a Cybernetic Theory of
Subjectivity. In: [Gun80a] Bd.2.

[Gun80c] Günther, G.: Natural Numbers in Trans-
Classic Systems. Part I, II. In: [Gun80a]
Bd.2.

[Gun95] Günther, G.: Number and Logos. Un-
forgettable hours with Warren St. Mc-
Culloch. In: Jahrbuch für Selbstorga-
nisation Band 5: Realitäten und Ratio-
nalitäten. Kaehr, R., Ziemke, A. (Eds.),
Berlin, Huncker & Dumblot, 1995

[Har91] Van Harmelen, Frank: Meta-level Infe-
rence Systems. London, Pitman, 1991.

[Kae78] Kaehr, R.: Materialien zur Forma-
lisierung der dialektischen Logik und
der Morphogrammatik 1973-1975. In:
[Gun78], Anhang.

[Kae81] Kaehr, R.: Das graphematische Pro-
blem einer Formalisierung der transklas-
sischen Logik. In: Beyer, W.R.(Ed.): Die
Logik des Wissens und das Problem der
Erziehung. Hamburg, Felix Meiner Ver-
lag, 1981

[Kae82] Kaehr, R.: Einschreiben in Zukunft. In:
Hombach, D.(Ed.): Zeta 01. Zukunft
als Gegenwart. Berlin, Verlag Rotation,
1982.

[Kae88] Kaehr, R., Goldammer, von E.: Again
Computers and the Brain. In: Journal
of Molecular Electronics. Vol. 4, 1988, p.
31-37

[Kae92] Kaehr, R.: Disseminatorik: Zur Logik
der ‘Second Order Cybernetics’. Von den
‘Laws of Form’ zur Logik derReflexions-
form. In: Kalkül der Form., Baecker, D.
(Ed.), Frankfurt a. M., Suhrkamp Ver-
lag, 1993.

[Kae95] Kaehr, R., Mahler, Th.: Proömik
und Disseminatorik. I. Abbreviaturen
transklassischen Denkens, II. Opera-
tionale Modellierung der Proemialrela-
tion. In: Jahrbuch für Selbstorganisation
Bd.5: Realitäten und Rationalitäten.
Kaehr, R., Ziemke, A. (Eds.), Berlin,
Huncker & Dumblot, 1995

[Mae88] Maes, P., Nardi, D.: Meta-Level Ar-
chitectures and Reflection. Amsterdam,
North–Holland, 1988.

[Mah93] Mahler, Th., Kaehr, R.: Morphogram-
matik. Eine Einführung in die Theorie
der Form. Klagenfurter Beiträge, 1994.

[Pfa91] Pfalzgraf, J.: Logical Fiberings and po-
lycontextural systems. In: Fundamentals
of Artificial Intelligence Research, Ph.
Jorrand, J. Kelemen (Eds.), pp. 170-184,
New York, Springer, 1991

[Smi82] Smith, B.C.: Reflection and Semantics
in a Procedural Language. LCS Techni-
cal Report TR–272, MIT, Massachusets,
1982.

[Tur79] Turner, D.A.: A New Implementation
Technique for Applicative Languages.
Software Practise and Experience Bd. 9,
1979.

