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Abstract 
Morphograms as a new mode of inscription had been introduced into the academic world by 

Gotthard Gunther (1900 - 1984) with his theory of “transjunctional operations” for a cybernetic 

logic of self-reflection at the BCL at the 1st of April 1962. His concept of a transformation system 

of mediated morphograms by a reflector operator has been studied in my dissertation 

“Materialien 1973-75”, published 1976, based on a project at the FeOLL GmbH, 1973-75, (Prof. H. 

Stachowiak, G. Thomas, J. Seehusen), and brought to a formal and programmed elaboration by 

different collaborators around 1988 guided by Wolfgang Niegel and students, Munich, and then 

finally formalized, programmed and published 1993 as the book “Morphogrammatik” as the report 

No. 1 of the research project “Theorie komplexer biologischer Systeme” (Volkswagen-Stiftung) and 

also published at the IFF Klagenfurt by Thomas Mahler/Rudolf Kaehr, and made accessible later on 

the Website “Polycontextural Logic” at Techno.net, later ThinkArt Lab Glasgow. 

Meanwhile new approaches emerged, especially with the understanding of morphograms not just as 

pre-logical patterns but also as rules (operators), realized by the concept of morphogrammatic 

cellular automata.  

This paper is sketching a further approach toward a better understanding of morphogrammatics: 

Morphic Finite State Machines, more exactly, Morphic Difference Machines. It seems that the 

difference-theoretical aspect of morphogrammatics gets an even more direct thematization and 

formalization in the context of an analogon to FSMs.  

Some preliminary combinatorial elaborations are added with the application of SML-procedures. 

The cocept of asymmetric palindromes is sketched. “Derrida’s Machines” 

(http://www.thinkartlab.com/pkl/media/DERRIDA'S%20MACHINES.pdf) is the title of a 

continuing research program that went public 2004. 

(Work in progress v. 0.8.5.5, Jan. 2013) 

1.  Some types of Automata 
"But the paradox is that: In the language, there are only differences, without positive terms.  

That is the paradoxical truth.” Ferdinand de Saussure 

"(...) Dans la langue il n’y a que des différences. Bien plus: une différence suppose en général des termes positifs 

entre lesquels elle s’établit; mais dans la langue il n’y a que des différences sans termes positifs. 

"Qu’on prenne le signifié ou le signifiant, la langue ne comporte ni des idées ni des sons qui préexisteraient au 

système linguistique, mais seulement des différences conceptuelles et des différences phoniques issues de ce 

système. 

"Mais dire que tout est négatif dans la langue, cela n’est vrai que du signifié et du signifiant pris séparément; dès 

que l’on considère le signe dans sa totalité, on se trouve en présence d’une chose positive dans son ordre.”  

Ferdinand de Saussure, Cours de linguistique générale, Payot, 1975, p. 166-167. 

mailto:rkaehr@btinternet.com


1.1.  FSA, IFA, CA and morphic Automata 

1.1.1.  Motivation: the ubiquity of automata 

Automata are everywhere. They come in the form and realizations as mechanical, 
electro-mechanical, electric, electronic, chemical, etc. physical devices and paper. 
They are used to control traffic at the railway and underground stations, they serve 
for the tickets as tickets automata, or for cigarettes, and so on. Nobody has to care 
about their theoretical status, except theoreticians. Such automata in their simplest 
form are called finite state automata or finite state machines, or for short FSA or 
FSM. They are perfect models to study abstractly the behavior of simple physical 
automata. 

For computer scientist, FSMs are perfect models for computation. Unfortunately they 
lack of a memory function. Therefore, the use of FSAs is limited. It is not a big deal 
to fill this gap. Augmented automata with memory are doing the job. Well known as 
pushdown automata and finally as Turing machines. Everybody knows their name but 
not necessarily how they work. 

As usual in mathematics, there are further abstractions at hand. The mathematical 
concept of physical finite state automata gets a further abstraction: different 
symbolic FSAs that have the same behavior are abstractly equivalent. This defines the 
chain of physical automata to symbolic FSMs and to abstract equivalence classes of 
FSMs. One of thoese types of abstraction of FSMs is called quotient automaton. 

The path to the mathematical abstractions is clear. After having used physical 
devices millions of times, an abstraction of its physical use to an abstract 
representation follows naturally. An abstract treatment of automata becomes crucial 
if the automata systems are growing into highly complex configurations. 

All those abstract concepts of automata are faithful to their physical origins. Even 
the Abstract State Machines, ASM, of Yuri Gurevich is considered not with 
abstractions but with a more concrete representation of “real world” events. The 
states for ASMs are not just symbols but models, algebras, 
structures representing real world constellations. 

Having lived long enough to have encountered million times physical automata and 
often enough their mathematization and their conceptual applications in all kinds of 
sciences, the question arises: Is there not time for a further ‘abstraction'? Even if this 
kind of abstraction turns out to be more a reflection and subversion than a 
mathematical abstraction, it might nevertheless be considered as a natural 
abstraction from the existing models of computation. 

Does it really matter anymore what is processed, and on what level of abstraction 
these procedures happen? Whatever is processed in this classical approach, physically 
and theoretically, is based on identity. It certainly would be absurd to ask for an 
automaton in which its objects would dissolve into hot air while being processed. 

But it isn’t specially absurd to focus on the actions of the automaton as such and to 
ask if the actions have to be considered as the same or as different. Nothing more. 
Sameness and differentness distributed in specific configurations of sameness and 
differentness are replacing ‘state-based’ symbolic concepts and their identity as 
equality and non-equality. 

A machine concept that is thematizing and formalizing just the aspects of actional 
sameness and differentness is deliberated from its identity-theoretical heritage. With 
that, all constituents of the FSM are endangered: the states and transitions of the 
FSM are ‘bracket’ out and reserved for the classical, identity-based concepts of 
automata. 



Such new kinds of machines shall be called differentiation machines. The use of the 
term differentiation might get more explanation with the connection to the concepts 
of differences and distinctions. Obviously all terms that have to be deconstructed and 
taken out of their origins and involvement into identity. This approach also shouldn’t 
be confused with an attempt of “programming the Ready-to-Hand” of Heideggerian 
AI (Hubert L. Dreyfus) because latter doesn’t attempt to deconstruct its own medium, 
the presumed programming languages as such. 

"Ce mouvement (actif) de la (production de la) différance sans origine, n’aurait-on 
pu l’appeler, tout simplement et sans néographisme, différenciation? Entre autres 
confusions, un tel mot eût laissé penser à quelque unité organique, originaire et 
homogène, venant éventuellement à se diviser, à recevoir la différence comme un 
événement. Surtout, formé sur le verbe différencier, il annulerait la signification 
économique du détour, du délai temporisateur, du <<différer>>." (Derrida, 
Différance) 

The new differentiation machine is ‘calculating’ differences that are distributed in a 
system that is defined by its differences and that is defining its differences. 

The self-referentiality of this description of “differentiation” marks the departure of 
difference machines from state machines. State machines are based on identifiable 
atomic states in transitions with an initial and a final state, in finite or infinite steps. 
Difference machines are not based on “identifiers” which are identifying something (a 
sign) as something in the mode of “is-abstractions” but are evoking ("imaginative re-
creation") something, i.e. themselves as something different. 

This new approach shall be modeled in analogy to classical finite state machines as 
far as the new intuition survives. Other approaches to conceptualize and formalize 
differentiation machines shall follow. 
http://www.thinkartlab.com/pkl/lola/ConTeXtures.pdf 

How to classify morphogrammatic machines? 
If we stipulated that a morphic machine might iteratively repeat its actional structure 
or it might decide to augment its differentiation by choosing an accretive repetition 
and differentiate its actional base further by accretively augmenting retrograde 
recursively its domain by a new, not yet decided and included differentiation, then 
we would have to offer a mathematical model that would be able to cope with such a 
structural demand. 

It is stipulated that classical machine models are not designed to respond to such 
vivid situations. 
A morphogrammatic machine might therefore be modeled in analogy to an organism 
that is adapting towards the requests and conditions of its morphic environment. 

How does that contrast to Gurevich’s Abstract State Machine (ASM) model of 
computation? It is understood that the ASM approach is one of the most advanced 
general models of computation. 

“A state is an algebra (structure)" 
"The central and new idea of ASM is easily described: It is the systematic way of how 
symbols occurring in the syntactic representation of a program are related to the real 
world items of a state. In fact, a state of an ASM may include any real world objects 
and functions. In particular, the ASM approach does not assume a symbolic, bit level 
representation of all components of a state.”  
http://www2.informatik.hu-
berlin.de/top/download/publications/Reisig2006_classroom.pdf 

The question is not if the ASM approach is covering “real world” objects and functions 
by it computational model. The question that comes first is probably more 
philosophical and fundamental and therefore not easily accepted by computer 



scientists, the question is: Are “real world” data really just “abstract” and 
identifiable objects, i.e. events, occurrences, functions, relations, transitions, etc.? 

"In particular, the ASM approach does not assume a symbolic, bit level representation 
of all components of a state. Herein it differs from standard computation models - 
and most obviously to Turing Machines - where a state is a (structured) collection of 
symbols. 

"But conventional computation concentrates on the transformation of symbols, not 
dwelling too deeply on what they stand for.” (ibd., p. 3) 

This exercise is focusing on the (deconstruction of the) transition rule (function). The 
consequences for the concepts of the alphabet, the states and the initial and the 
final state will be reflected later and will be conceived then as the pre-conditions of 
the new understanding of the transition function as an act of differentiation and the 
concept of the morphogrammatic finite state machines (FSM) as such. 

Elementary cellular automata are collections of simple finite state machines. 

In earlier approaches, the order was inverse. The focus was on the ‘non'-alphabetic 
characteristics of kenoms (kenograms) and its paradoxical consequences, especially 
for the definition of a beginning of a formal language or an automaton. The new 
approach plays with the fact of the Stirling character of kenogram sequences and 
morphograms and a standard representation of the ‘non'-representable alphabet and 
kenogrammatic sequences and their non-linear constellations. A further reflection 
(deconstruction) has to take the ‘infinity’ of the stream-property of morphograms 
into account. 

One of the most elucidate analysis of an abstract theory of computation is given by 
Gurevich’s Abstract State Machines (ASM). 

This way of thinking was reflected in my “Skizze-0.9.5” from 2003. (Parts are 
published by Fink Verlag 2012, ISBN: 978-3-7705-5419-5) 

Like with Konrad Zuse, computation is defined by Gurevitch as a step-wise transition 
in time (Levin), guided by rules, from an initial to a terminal object, in the mode of 
finite or infinite, parallel or serial configurations, the result of the computation. This 
approach is extended without changing its basic concept to non-terminal and parallel 
situations too. 

Computation (in the Framework of FSM M = )  
1. ro = q0,                            : initial 

2. δ (ri, ω ) = r  for 0<=i> n : transition 
3. rn = ∈ F                            : terminal. 

Also written as r0   rn. 

http://www.cs.cmu.edu/~fp/courses/flac/lectures/lecture05.ps 

Obviously, the limits of this paradigm are clear: no interactivity. Computation is 
conceived as problem-solving and not as a media of interacting computational 
processes, without beginning nor end (Peter Wegner’s interactivity, Turing’s Oracle 
Machines). 



 

 

 

1.1.2.  Finite state machines 

FSA 
"The finite state automaton (FSA) or finite state machine is a very important model 
that has been widely used in computer science and industry. The automaton can 
perform very complex computational tasks with only finite internal states and fixed 
transition rules. 

“Usually, there are two kinds of FSAs. Finite state acceptors (recognizers) only accept 
information and jump between different states but do not generate any output 
information. These machines are widely used as language recognizers. Another class 
is called finite state transducers, which are able to generate output information as 
well as accept input information. They can be designed as controllers. 

Mealy and Moore 
"Another class is called finite state transducers, which are able to generate output 
information as well as accept input information. They can be designed as controllers." 

Finite State Machine 
"We consider non-deterministic finite state machines with no accepting states, 
defined as follows.  

A finite state machine (FSM) is a quadruple M = (Σ, Q, q , δ), where Σ is the alphabet 
of input symbols, Q is the set of states, q0 is the initial state, and δ is 
the transition function, which maps Q × Σ to subsets of Q. If every δ(q, a) contains 
exactly one state, then M is deterministic.  
In this case we may write δ(q, a) = q’ instead of δ(q, a) = {q' }." Dana Angluin et al, 
Mutation Systems 

Wolfram’s IFAs 
"By adding a tape with finite size and some other constraints to the FSA, we can study 
the behavior just like one-dimensional cellular automata (CAs). Wolfram has 
enumerated all possible patterns of two-state two-color and three-state two-color 
IFAs.” 



Cellular automata 

"An alphabet Σ is a finite nonempty set of symbols. Σ* denotes the set of all finite 
strings of symbols from Σ. The empty string is denoted λ. A language is any subset of 
Σ* . Σkdenotes those elements of Σ* of length k. The symbols in a string s of 
length n are indexed from 1 to n  and s[i] denotes the ith symbol of s. 

"A cellular automaton C = (Σ, δ) is composed of an alphabet of symbols Σ and a set 
δ transition rules of the form axb <-> ayb for substitutions or ab <-> axb 
for insertions and deletions, where a, b, x, y ∈ Σ.  
The idea is that the value of a given cell of the automaton may change only when 
both its neighbors have specific values. 

"For s1, s2 ∈ Σ* , s1 can reach s2 in one step of C , denoted s1 ->C s2 , if applying one 
transition rule to s1 yields s2 . And s1 can reach s2 in C if s1 ->*C s2 . Given an input 
string s ∈ Σ* , a snapshot of C on input s is any string s’ such that s can reach s’ in C.” 
Dana Angluin et al, Mutation Systems 
http://www.cs.yale.edu/homes/aspnes/papers/lata2011-proceedings.pdf 

Turing machines 
Finite state machines have a limited memory. This restricts the range of 
computability. Turing machines are not finite machines but have an infinite tape to 
store information. Hence, their range of computability encompasses that of finite 
state machines. Memory is not disturbing the general concept of transitions. 

Büchi automata 
Considering streams of events, another kind of automata has to be introduced. 

"A Büchi automaton is a type of ω-automaton, which extends a finite automaton 
to infinite inputs. It accepts an infinite input sequence iff there exists a run of the 
automaton that visits (at least) one of the final states infinitely often. Büchi 
automata recognize the omega-regular languages, the infinite word version of regular 
languages.” 

"An ω-automaton (or stream automaton) is a variation of finite automaton that runs 
on infinite, rather than finite, strings as input. Since ω-automata do not stop, they 
have a variety of acceptance conditions rather than simply a set of accepting states.” 
(Pandya) 

"Stream automata, e.g. {Büchi, Muller, parity }-automata, accept languages of infinite 
words (ω-regular languages)." (Venema)    

1 

1Remarks to algebra and co-algebra for morphic streams (in German). 
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"Universal Coalgebra provides the notion of a coalgebra as the natural mathematical 
generalization of state-based evolving systems such as (infinite) words, trees, and 
transition systems.”  
http://staff.science.uva.nl/~yde/papers/2010/font-auto2010.pdf 

1.1.3.  Morphic automata 

Morphic automata are an experimental concept developed in this paper. Morphic 
finite state machines (automata), MorphoFSA or MorphoFSM, are opting for a 
difference-oriented approach of computation, and are therefore contrasting to all 
existing kinds of abstract machines by their deconstruction of the identity of the 
concept of a state, its alphabet and its transitions. 

Transitions for MorphoFSA are not relations or functions, thus transitions but 
differentiations. Differentiations are also not covert by the concept of distinctions in 
the sense of Spencer-Brown’s Laws of Form. The concept of differentiations as 
applied for the introduction of finite differentiation machines, MorphoFSA, has to be 
separated from the calculus of differentiation as I have developed as a 
complementary calculus to the calculus of indication. There it was called 
a Mersenne calculus. 

Therefore, MorphoFSA are at first build in analogy and used as a support for the 
strategy of surpassing the limits of identity-dominated machines. MorphoFSA are not 
dealing with states as sings, symbols, information, real world representations etc. but 
with differences as such. Differences in this sense are not relations, functions or 
operations between or with objects, sympols, signs. The leading metaphor for 
MorphoFSA is living matter in the sense of autopoietic 
structurations/differentiations/distinctions, and not symbolic or physical control 
systems of information processing. 

1.2.  Finite State Machines 

1.2.1.  Recalling definitions 

JFLAP defines a finite automaton (FA) M as the quintuple 

M = (Q, Σ, δ, qs, F)  
   where 
Q is a finite set of states {qi | i is a nonnegative integer} 
Σ is the finite input alphabet 
δ is the transition function, δ : D -> 2Q where D is a finite subset of Q × Σ* 
qs (is member of Q) is the initial state 
F (is a subset of Q) is the set of final states . 

A string w is accepted by a finite automaton M iff there is a labeled path lp 
such that 
• lp is valid for M; 
• the label of lp is w; 
• the start state of lp is the start state of M; and 
• the end state of lp is an accepting state of M. 

3.4.1 Finite Automata 
A finite automaton (FA) M consists of: 
• a finite set QM of symbols (we call the elements of QM the states of M); 
• an element sM of QM (we call sM the start state of M); 
• a subset AM of QM (we call the elements of AM the accepting states of M); 
• a finite subset TM of { (q, x, r) | q, r ∈ QM and x ∈ Str }. 
http://www.jflap.org/ 



Numeration 
Following the successive construction of the word “abbba” in the formal language, 
the numeration of the transitions of the FA for the selected word of the formal 
language follows automatically. 
Hence, a recognition of a word starts with its first element, continues linearly, step 
by step, and ends with its last element (halt state). 

Properties for an acceptance 
1. machine in acceptance (halt) state, 
2. input is exhausted, 
3. string accepted. (Parkes, p.55) 

Example 

Debugger ready with string "abbba" 
Symbol = ,  remaining string = "abbba", states = [], accepting = false 
Symbol = a, remaining string = "bbba", states = [2], accepting = true 
Symbol = b, remaining string = "bba", states   = [1], accepting = true 
Symbol = b, remaining string = "ba", states     = [1], accepting = true 
Symbol = b, remaining string = "a", states       = [1], accepting = true 
Debugger: stopped (no more characters to process) 

Further literature 
Thomas Hanneforth, Finite-state Machines: Theory and Applications (2010) 
http://tagh.de/tom/wp-content/uploads/FSM_UnweigtedAutomata.pdf 

1.2.2.  Motivations for morphic FSA 

A first step of deconstruction 
Abstractions from states in respect of actions: “turnOn” and “turnOff” are obviously 
morphogramatically equivalent. What is of interest from a morphogrammatic point of 
view is not what is changed, i.e. the semantics of the change, “On”, “Off”, 
but how it is changed, i.e. the form of the action involved. Thus its interactivity. And 
not any physical details. For both direction, “On” and “Off”, the same form of 
activity gets realized. That is, the same complexity/complication and time-structure 
of the action is involved. The opposite semantics of “On” and “Off” loses its 
significance if the focus is on the inter-activity instead on its material objects. In this 
scenario it strictly doesn’t matter what’s on the plate. 

Interactivity means here: “neither open nor closed” and “open and closed at once”, 
hence the new (meta)state is just this paradoxical interplay. Therefore a meta-state 
is a diamond bi-object in the sense of diamond category theory. 

"The number and names of the states typically depend on the different possible 
states of the memory, e.g. if the memory is three bits long, there are 8 possible 
states.” (WiKi) 

Hence, 32= 8 gets reduced in the actional approach to Sum(StirlingSn2(3, 2))= 4. 

What might then a keno-state be? How can it be represented? 
A nice model of a keno-state is just a model of a simple FSM, here a transducer 
model, itself. 

 

                                        
keno-state = [1, open; 2, closed] 
Thus, a keno-state represents the activity measured in mn of a FSM as such in contrast 



to the form of the activity measured as Sum[StirlingSn2[m, n]]. 
 

                               

 

                       

With the strategy of Stirling-abstractions and standard notation of kenograms as 
replacement of identitive signs, the whole machinery of automata theory remains still 
applicable. Without this strategy of “abstraction and acception” it seems to be more 
or less impossible to advance and surpass, step-wise, philosophical speculations 
towards mathematical constructions. As a first attempt to understand the strategy, 
this step might be conceived just as a change in the data structure of the machine, 
from identitive to morphogrammatic ‘data’ structures. Thus, not yet touching the 
mechanism of the machine as such. 

Hence, a kenogram sequences kseq is represented by a standard alphabet of signs in a 
lexical order. 

A morphogram of a binary action is of the form [aa] or [ab]. 
If both 'states" are involved in the same kind of actions then nothing happens, i.e. no 
differentiation is involved: [aa].  
If the 'states' are representing opposite actions the form of the interactivity is: [ab]. 
The action [aa] is realized in morphic FSM as a self-application (self-differentiation), 
while the action [ab] is realized in MorphoFSA as a differentiation. 

This game might be continued for arbitrary length of morphograms with two and only 
two kenograms. 
More interesting is the case for general morphograms of arbitrary complexity. Such a 
complexity of arbitrary morphograms is represented in MorphoFSA with the amount 
of positions of differences. 

As for kenogrammatic cellular automata the crucial consequence of the 
morphogrammatic approach is demonstrated with the definition of the transition 
function with a transition (differentiation) from a Cartesian or Cantorian paradigm to 
a Stirling option. 
http://memristors.memristics.com/CA-
Overview/Short%20Overview%20of%20Cellular%20Automata.pdf 

Glossary for FSM 
1) FSM              A collection of states and transitions that outline a path of actions 
that may occur. 
2) State         A state is a position in time. For example, when you are at the bus 
stop, you are  
                     currently in a waiting state. 
3) Event        An event is something that happens in time. For example, the bus has 
arrived. 
4) Action    A task performed given a certain event that occurred. For example, you 
enter the bus. 
5) Transition    A link between 2 states. May be unidirectional or bidirectional. 

New: 
0) Keno          A collection of interactivities between the transitions of FSMs as 
objects.  



                     A state in a kenoFSM is a standard representation of an interactivity of 
a transition  
                     (transformation) and therefore classical states are conceived as 
automorphisms,  
                     i.e. as interactivity onto itself. 

http://www.generation5.org/content/2003/FSM_Tutorial.asp 

With this model of keno-states or meta-states it is easy to understand the reduction 
of FSM with its Cartesian combinatorics to kenoFSM with their Stirling combinatorics. 

transition-substitution = (Objects = {signs, patterns, monomorphies}, Operations = { 
concatenation, fusion, bisimilarity}) 
symbolicCA =   [grid=lattice, cells=atomic, signs, concatenation] 
kenoCA =        [grid, cells, patterns, concatenation] 
morphoCA =    [grid=multi-layers, cells=leveled, monomorphy, fusion] 
transition-substitution = (concatenation, fusion, bisimilarity). 

"Substitutions transform a sequence into another sequence. So do other mechanisms 
known as cellular automata." 

http://www.dtic.mil/dtic/tr/fulltext/u2/p010899.pdf 

 

2.  Morphogrammatic FSA 

2.1.  Some descriptions 

Morphograms of morphogrammatic languages, interpreted as kenogram 
sequences, kseq, are build step-wise retrograde-recursively and not just recursively 
as for strings of a formal language. 

The class of words ω over an alphabet Σ for a formal language is: Σ* = 

{ω1ω ωn | k>= 0, ∀ωi ∈ Σ}. 

Example 
Σ = {a,b, c}, then Σ* is the set: {ε, a,b,c, aa, an, ac, ba, bb, bc, ca, cb, cc, aaa, aab, 
aac, ...} 
The class of morphograms μ over a kenogrammatic ‘sign repertoire’ Κ in standard 
normal form is: Sum(Sn2(Κ, n)). 

Example 
K = {a,b, c}, then Κ* is the set: {ε, a, aa, ab, aaa, aab, aba, abb, abc,...}. 

The semiotic universe is Σ* is defined by the star or Kleene closure: 

Σ* =  Σi =  Σ  Σ2 ∪ Σ3 ∪ ... ∪ Σn. 

The kenomic (morphogrammatic)trito-universe TU is defined as  Κ = ([1], Tsucc) 
with val TU = from [1]. 
This construction of the trito-universe TU is based on an application of lazy-lists, that 

http://www.dtic.mil/dtic/tr/fulltext/u2/p010899.pdf


is a realization of the concept “evaluation-by-need”.  
http://www.thinkartlab.com/pkl/SML-sources.NJ/ALL-MG-nov2012.sml 

The automata FSA are recognizing words and languages from  Σ*, while the MorphoFSA 
are recognizing morphograms from Κ*. 

A language accepted by FSA is the set of words accepted by the automaton. Similarly, 
morphic languages accepted by a MorphoFSA are set of morphograms accepted by 
MorphoFSA. A word or a morphogram is accepted if the machine has an accepted final 
run for the word. 

http://memristors.memristics.com/CA-
Overview/Short%20Overview%20of%20Cellular%20Automata.pdf 
http://memristors.memristics.com/Graphematics/Graphematics%20of%20Cellular%20
Automata.html 

That’s so far the analogy. 

Morphogrammatics was developed in analogy to recursive word arithmetics in the 
book “Morphogrammatik” 1993, applying extensively methods of lazy lists and lazy 
programming. 

Hence, methods of producing recursively, and computing morphograms with the 
SML/NJ program, defined well the universe of kenogrammatics and 
morphogrammatics. 

But as for regular formal languages, it is another question to decide (recognize, 
accept) if a morphogram belongs to a specified morphogrammatic script or not. Finite 
state machines are applied to this decision problem for regular symbolic languages. 

It is proposed with this paper that MorphoFSA, i.e. morphogrammatic ‘finite state 
machines’, are doing the job for all specified morphogrammatic scriptures. 

A calculus is defined by 2 alphabets:  
1. the alphabet of signs, 
2. the alphabet of variables. 

Two semiotic words of a FSA are equal iff they are of the same length and all the 
occurrences of its atomic signs are equal at the same places of the comperaed words 
(strings). 

In contrast, two morphograms of a MorphoFSA are MG-equivalent iff they have the 
same EN structure: 
[A] =MG [B] iff  EN(A) = EN(B). 

ML-definition 

fun from ts = Cons(ts,fn () => from (Tsucc ts)); 
The set of all trito-sequences (morphograms) is calculated by val TU = from [1]; 
The first elements of the lazy list of morphograms is given by nfirstq (n, seq). 

fun nfirstq (0, xq)=[] 
|nfirstq (n, Nil)=[] 
|nfirstq (n, Cons(x,xf))= x::(nfirstq (n-1, xf ())); 

Example 
- nfirstq(23,TU); 
> val it =  
[[1],[1,1],[1,2],[1,1,1],[1,1,2],[1,2,1],[1,2,2],[1,2,3],[1,1,1,1], 
[1,1,1,2],[1,1,2,1],[1,1,2,2],[1,1,2,3],[1,2,1,1],[1,2,1,2],[1,2,1,3],[1,2,2,1], 
[1,2,2,2],[1,2,2,3],[1,2,3,1],[1,2,3,2],[1,2,3,3],[1,2,3,4]] : int list list 

-nfirstq (55, TU)4
 



The hint to lazy lists shows an important difference to algebraic list definitions of 
lists and finite state automata. Lazy lists are streams (sequences, Paulson) that are 
evaluated “by need”. Hence, problems of “infinite” streams for automata or 
automata of streams have to be analysed. 

Enumeration 
Morphograms are not build up of elements of an alphabet but are defined by the 
differences between their “elements’, i.e. the kenograms. Therefore, the 
enumeration of the “elements” of a morphogram has to adapt to the special property 
of retrograde recursivity. 

The best way to enumerate the constituents of a morphogram is therefore to 
enumerate its differences. 

Because morphograms are patterns and not sequences or lists, there are some options 
how to enumerate and where to start the numeration of its differences. 

Hence, a start or initial state is not a property of a morphogram as it is necessary for 
a string but a property of an observation. The observation is deciding with which 
element a description or recognition of a pattern will be opted as a start. 

One aspect of morphograms is their retrograde-recursive construction, the other is 
the recognition procedure by an automaton of a ‘encountered' (given) morphogram. 

A convenient way to do this was introduced by the so-called epsilon/nu-enumeration, 
ε/ν-enumeration of the position of the kenomic differences. 

A word, here a morphogram, is read then as a sequence of ε/ν-situations.  
What counts is the transition or move of differentiation from one position (state) to 
another position. This is realizing a ν-difference or a move into itself, realizing an ε-
difference. These two types of differences correspond to the distinction of iteration 
and accretion in kenogrammatics. 

The labels of the differentiations from one position to another are the number of the 
differentiations or the number of runs, and not the elements of an alphabet to be 
used or recognized. 

The positions might be identified with the number of different kenograms involved in 
the definition of the morphogram. 

There are only two kinds of moves (transitions, differentiations) for a kenomic SFM: ε- 
or ν-transitions. But strictly, those ‘moves’ are not moves in a literal sense but acts 
of differentiations. 

Differentiation happens by the amount of positions (states) of the automaton, and not 
by the amount of elements of a sign-repertoire. This corresponds to the difference-
theoretical approach that signs (keno- and morphograms) are determined by located 
differences of the texture. 

Tape and matrix 
FSA are reading their words by reading step-wise the elements of the word from 
a tape. 
MorphoFSA are reading their morphogram according to a reading convention from 
a matrix, where the morphogram is inscribed as a pattern, i.e. a grid of differences. 
The pattern-structure is not dictating a singular linear step-by-step reading as it is 
the case for the linear strings of FSA-words. 

2.2.  The epsilon/nu-structure of morphograms 

2.2.1.  Differentiation and enumeration 



Encountered a string from a textual environment, say, as a possible input of a 
morphic automaton, we have to decide as what kind of text we want to thematize it. 
If we decide to thematize the textual event not as a semiotic, indicational, Mersenne 
or other type of sign, but as a kenogrammatic pattern, i.e. as a morphogram, we 
might have finally to decide on which level of the scriptural system of graphematics 
the event shall be accepted. Here, all patterns are understood as belonging to the 
trito-structure of kenogrammatics, thus, we are dealing with morphograms. This 
decision invites to build the epsilon/nu-structure (ENstructure) of the event 
(morphogram), now considered as a string or a pattern of kenograms. The ENstructure 
of this pattern gives the structure of the distributed differences of the pattern, 
denoted by “ϵ” for sameness (equivalence), and “ν” for differentness of the 
differences of the pattern. 

Complexions of MorphoFSA (M, n) 
In this setting up of morphogrammatics for the purpose to introduce morphic FSA, 
there are just these two kinds of differences that are differentiating 
between sameness and differentness in respect of the systematics of the automaton. 
Other differentiations are introduced for complexions of morphogrammatic systems, 

like MorphoFSA , where intra- and trans-contextural differences enter the game. 
Such complex MorphoFSAs are defined by the distinctions: (ε,ν,∐), with ∐ for 
dissemination. 

The transition rules and the order of their occurrence in the pattern (morphogram) of 
the morpic FSA are defined by the enumerated sequence of those distinctions. 

The minimal number of positions (states) of the morphic FSM is given by the 
aggregation of the pattern, AG(Str) = n. 

The  ε/ν -structure of a morphogram (kseq) gets calculated by the ML-function 
ENstructure: type enstruc = (int*int*EN) list list; 

 

 

ENstructure of trito-events [A] and [B] 
EN([A]): 
- ENstructure ["a”, “a”, “b”, “c"]; 
> [[], 
   [(1,2, E), 
   [(1, 3, N), (2, 3, N)], 
   [(1, 4, N), (2, 4, N), (3, 4, N)]]: enstruct. 



EN([B]): 
- ENstructure [ ]; 
> [[], 
   [(1,2, E), 
   [(1, 3, N), (2, 3, N)], 
   [(1, 4, N), (2, 4, N), (3, 4, N)]]: enstruct. 

Equivalence based on EN 
[A] =MG[B] iff EN([A]) = EN([B]). 

ENtoKS 
ENtoKS builds the morphogram, ks, in standard notation, tnf, out of the ENstructure. 
ENtoKS(ENstructure ks) = ks 
ENtoKS  [[], 
   [(1,2, E), 
   [(1, 3, N), (2, 3, N)], 
   [(1, 4, N), (2, 4, N), (3, 4, N)]] = [1, 1, 2, 3]. 

Numeration of the e/v-tupels by k(i,j) and subsystems n 

            

Number of a subsystem at place (i, j): 
fun k (i,j)=((j*(j-1)) div 2)-i+1;   

Enumeration of the subsystems for n 
fun subsystems n=  
  sort(map (fn [i,j] => (k(i,j),[i,j]))  
             (maufn n 2)); 

Examples 

- k(4,7); 
val it = 18 : int 

- subsystems 7; 
val it = 
  [(1,[1,2]),(2,[2,3]),(3,[1,3]),(4,[3,4]),(5,[2,4]),(6,[1,4]),(7,[4,5]), 
   (8,[3,5]),(9,[2,5]),(10,[1,5]),(11,[5,6]),(12,[4,6]),(13,[3,6]),(14,[2,6]), 
   (15,[1,6]),(16,[6,7]),(17,[5,7]),(18,[4,7]),(19,[3,7]),(20,[2,7]), 
   (21,[1,7])] : (int * int list) list 

2.2.2.  The systematic status of morphograms 

Just abstractions? 
Again, the discussion of the systematic status of morphograms, say its 
epistemological, ontological, semiotical, mathematical, etc., status, is as old as their 
introduction by Gunther in the ‘60s. 

It was never denied that morphograms originated at first by a set-theoretically 
defined mathematical abstraction from the ‘combinatorial’ truth tables of 
propositional semantic-based logic. And then generalized by Dieter Schadach’s 
classification system of abstractions. Nevertheless, the question about the status of 
morphograms is by no way answered by the insistence on this fact of abstraction. The 
question is much more what was the use of this abstraction? Where did it led? And is 



this use of the abstraction establishing an abstract level upon the truth table, like 
quotient structures of model theory, or is their use by Gunther not in fact a 
deconstruction of the hierarchy of truth-tables and their abstraction? 

Philosophically, abstractions are building ideal structures, the declared aims of 
subversions are the deconstruction of ideality. Abstractions are establishing meta-
structures, subversions are unmasking deep-structures of semiotic systems. 

The use of the morphograms of classical truth-functional logic led to the discovery of 
its “morphogrammatical incompleteness”. Such an incompleteness, i.e. the addition 
of transjunctional morphograms to the abstractively gathered junctional 
morphograms of the truth functions is obviously not covered by the rules of 
abstraction as such. Hence, the symmetry of base structure and abstraction over it is 
disturbed towards an asymmetry. Abstractions, combined with deconstructive 
applications, are characterizing the methods of introducing morphograms not as 
abstractions but as a result of subversion. 

Needless the mention that the abstractive aspects of this subversion is saved and 
productively used for the study of mathematical properties of morphograms, 
morphogrammatics and kenogrammatics. Especially studies in the combinatorics of 
kenogrammatics had been crucial to define the new territory of reflection. 

Therefore, there is no surprise that the difference-theoretical characterization of 
morphograms by the epsilon/nu-structure is faithfull to its abstract counter-part, the 
equivalence classes build over strings of signs. As clearily elaborated in the book 
“Morphogrammatik” there are different ways to uncover morphograms, and one, 
certainly, is the application of equivalence classes. 

Hence, there is an isomorphism between the equivalence classes that are defining 
morphograms and the representation of the morphograms by the e/v-structure. This 
fact is well ruled by the ML-functions ENstructure and ENtoKS. Both are translating 
between the “equivalence classes” EN and KS, i.e. e/v-structure and kenogram 
sequence KS. 

In the case of quotient FSMs, the abstraction happens over the alphabet Σ. “For ∀ x, y 

∈ Σ* and a ∈ Σ: ≡A is an equivalence relation over Σ*." (cf. § 3.6.1) 

Special abstractions over the kenogrammatic trito-structure of morphic FSMs are well 
known as deutero- and proto-structures. As shown with the general system 
of graphematics, several more abstractions had been introduced quite early in the 
‘60s, and elaborated in several papers later. 

The parlance “that is just this and that, and nothing more” is not explaining why 
there are no similar formal theories in mathematics and logic as they had been 
developed under the presumption of the kenogrammatic subversion. 

One of such subversive constructions is disseminating the whole machinery of set or 
category theory over a kenomic grid. Then, there are irreducibly distributed chances 
to build multitudes of different types of equivalence classes at hand. The attempt to 
build again equivalence classes over distributed notions and constructions of 
equivalence classes is “just” building an additional candidate of the distribution, and 
“nothing else”, especially no sublimation of the differences between distributed 
polycontextural theories. 

This paper is not going into the intriguing arguments and constructions for a more 
elaborated introduction of kenograms and morphograms. A lot had been developed in 
recent papers. For example: 
http://www.thinkartlab.com/pkl/media/Chinese%20Grammar/What%20Chinese%20Gr
ammar.pdf 



Also semiotic terms in this paper are used vaguely, or at least in reference to the 
literature not mentioned here, and restricted to the context of formal languages, 
where a symbol or sign is used just as a mark. 
Mathematical semiotics is ingeniously developed by the semiotician Alfred Toth and 
presented as an impressive research output at: http://www.mathematical-
semiotics.com/ 

2.2.3.  General scheme of a subversion strategy 

 

http://memristors.memristics.com/CA-
Overview/Short%20Overview%20of%20Cellular%20Automata.pdf 

2.2.4.  Number of symbolic representations 

How many identive (symbolic) strings are represented by a morphogram, 
respectively by a single MorphoFSM? 

To deal with abstractions needs representations. A tritogram [abb] is written 
in trito-normal form (tnf) and has therefore a number of different 
representation that are equivalent to the tritogram. 

For the case of just 3 elements involved, the tritogram has a representation 
of 6 concrete symbolic realizations, i.e. {(abb), (acc), (baa), (bcc), (caa), 

(cbb)}, all representing the tritogram [abb]. In a more complex 
environment, the 3 place pattern might be occupied by further kenograms, 

say “d", "e”, delivering patterns like [add] or [bee], etc. which are all 
morphogrammatically equivalent to the pattern [abb] in trito-normal form. 

This number is calculated by the formula card[μ]  

 

Hence, a morphogrammatic FSA is representing semiotically different formal 
languages of the same structuration. 

http://memristors.memristics.com/Graphematics/Graphematics%20of%20C

ellular%20Automata.html 
http://www.ballonoffconsulting.com/PDF/1987AppendixII.pdf 

2.2.5.  FSA equivalence, isomorphism and minimization 

An interesting application of the ‘representation theorem’ for MorphoFSM in 
respect to FSMs might be a ‘mediative’ interpretation of the concept 
of equivalence and isomorphism between FSMs. Hence, the classical 



approach of equivalence, isomorphism and minimization gets an  additional 
level in the tectonics of graphematic scriptures, called here, instantiational 

representations (instantiations, representations). 

Equivalence of FSMs 

"Two states si and sj are equivalent if and only if for every input sequence 

the machine will produce the same output sequence regardless of whether 
si or sjis the initial state; i.e., for an arbitrary input sequencex, λ(si, x) = 

λ(sj, x). Otherwise, the two states are inequivalent, and there exists an 
input sequence x such that λ(si, x) != λ(sj, x); in this case, such an input 

sequence is called a separating sequence of the two inequivalent states. 

"For two states in different machines with the same input and output sets, 
equivalence is defined similarly. Two machines M and M’ are equivalent if 

and only for every state in M there is a corresponding equivalent state in M’ 

and vice versa.  
Machine equivalence is an equivalence relation on all the FSM’s with the 

same inputs and outputs.” 
http://www.cse.ohio-state.edu/~lee/english/pdf/ieee-proceeding-survey.pdf 

Isomorphism between FSMs 

"Two machines are called isomorphic if there is an isomorphism from one to 
the other. Obviously, two isomorphic FSM’s are equivalent; the converse is 

not true in general.” (ibd.) 

MorphoFSM is representing the morphogrammatically equivalent machines 

FSA1, ..., FSAn, n = card  as distributed separated machines in the 

constellation ruled by the machine MorphoFSM and the concept of 
morphogrammatic equivalence between the represented FSAs. 

The opposite direction of the representation is abstracting from the 

isomorphic FSA’s the equivalence class of FSAs FSA/  

 

 

Minimization for FSMs 

"Machine equivalence is an equivalence relation on all the FSM’s with the 
same inputs and outputs. In each equivalence class there is a machine with 

the minimal number of states, called a minimized (reduced) machine. A 
machine is minimized if and only if no two states are equivalent. 



"In an equivalence class, any two minimized machines have the same 
number of states; furthermore, there is a one-to-one correspondence 

between equivalent states, which gives an isomorphism between the two 
machines. That is, the minimized machine in an equivalence class is unique 

up to isomorphism." (ibd.) 

Example 
Morphic Automaton M1  

M1 = ({pos1, pos2), {ν1, ν2, ε3}, Δ, pos1, {pos2}) 

Differences: Δ = {νi, εj, i,j∈N} 

Positions: {pos1, pos2} 

Initial: {pos1} 
Acceptance: {pos1} 

Differentiations: 
pos1, ν1 --> pos2 

pos2, ν2 --> pos  
pos1, ε3 --> pos1 

Final: {pos1}. 

M1 is accepting the morphic machine based on the mophogram [abb] in 
trito-normal form. 

M1 is representing the symbolic machines FSA1 - FSA6 based on the 
symbolic representation of the morphogram [abb] in trito-normal form: 

FSA1(abb), with alphabet Σ1= {a,b}, 
FSA2(acc), with alphabet Σ2= {a,c}, 

FSA3(baa), with alphabet Σ3= {b,a}, 
FSA4(bcc), with alphabet Σ4= {b,c}, 

FSA5(caa), with alphabet Σ5= {c,a}, 
FSA6(cbb), with alphabet Σ6= {c,b}. 

The case of further alphabets, say with Σ= {d,e}, wouldn’t be a proper 
morphogrammatic representation but a possible redundant interpretation. 

 

 



Isomorphism 
With the change of the state sets and transition rules of a given FSA, different 
isomorphic FSA of the original FSA might be introduced for each symbolic 
representation FSA1 to FSA6 of the primary MorphoFSM. 

To each symbolic FSAi with aphabets Σi there are a 
number m of isomorphic symbolic machines FSAi.1, ..., FSAi.m. 

Hence, the task of minimization of machine realizations appears. 

3.  Morphogrammatic FSAs 

3.1.  First definitions of morphogrammatic FSA 

3.1.1.  MorphoFSA examples 

Automaton M1  
M1 = ({pos1, pos2), {ν1, ν2, ε3}, Δ, pos1, {pos2}) 
Differences: Δ = {νi, εj, i,j∈N} 
Positions: {pos1, pos2} 
Initial: {pos1} 
Acceptance: {pos1} 
Differentiations: 
pos1, ν1 --> pos2 

pos2, ν2 --> pos  
pos1, ε3 --> pos1 
Final: {pos1}. 
 
M1 is accepting : [abb]. 

The acceptance for the morphogram [abb] is accepting the acceptance conditions as 
they are defined for FSA: 
1. machine is in the acceptance (halt, final) state, 
2. input is exhausted, i.e. all the epsilon/nu-differences of the initial EN-structure of 
the morphogram are read, 
3. string accepted. 

Again, the notation of the morphogram [abb] is just a representation in trito-standard 

normal form, tnf, of the ENstructure (ν1ν2ε3) with ((a-b)1= ν1, (a-b)2 = ν2, (b-b  = ε3)) 
of the morphogram. 

Therefore, the accepted language of MorphoFSA is L(M1) = {μ | μ repeats a ν-
differentation and ends in an ε-differentiation). 

 



 

 

A is accepting :(100), (11000), (01100), ...,  
The accepted language of FSA A is L(A) = {α| α is the empty string ε or ends in a 0}. 
(Sipser, p. 38) 

The MorphoFSA M1 accepts all patterns equivalent to the pattern [abb] in standard-
normal-form. Hence (baa), (bcc), (caa), etc. are accepted by M1. This acceptance 
can be seen as a first run of M1 or as the FSA definition of the morphogram [abb]. 
Therefore, machine M1 accepts the regular trito-languages {[a]1[b]n: n>=1}. That is: 

{v : n,m >=1}. 

In contrast, the FSA A accepts just all symbolic regular languages ending in 0. 

For |Σ |= m, the machine M1 accepts n * l regular symbolic languages {a1bn, a ,..., 

b , ...}. 
Thus, for |Σ |= 3 and Q = 2, there are 6 regular symbolic languages accepted by 
MorphoFSA M1:  

Words of M1: μ ∈ L(M1)= {v1ν2ε3}. 
M1(L(3,2)) = {a1bn, b1an, a1cn, b1cn, c1an,  c1bn: n>=1}. 

An iteration of M1, i.e. a second run, is not changing the pattern of the machine M1 
albeit the “final state” changes from position pos1to position pos2.| 

Automaton M1.0  

Differences: Δ = {νi, εj, i,j∈N} 
Positions: {pos1, pos2} 
Initial: {pos1} 
Acceptance: {pos1} 
Differentiations: 

pos1, ν  --> pos2 

pos2, ν  --> pos  
pos1, ε3 --> pos1 

pos  
Final: {pos1}. 



This machine M1.0 is in conflict with the ENstructure of morphograms. That is, the 
e5-differentiation and the the v6-differentiation are in conflict. The only 
prolongations of [abb] are [abba], [abbb] and [abbc]. The machine M1’ is accepting 
[abba], and the machine M1.1 is accepting [abbb]. 

Diagram of M1.0 

 

                    

3.1.2.  Further examples of MorphoFSA 

Automaton M1’  

Differences: Δ = {νi, εj, i,j∈N} 
Positions: {pos1, pos2} 
Initial: {pos1} 
Acceptance: {pos2} 
Differentiations: 

pos1, ν  --> pos2 

pos2, ν  --> pos  

pos1, ε  --> pos1 
Final: {pos1}. 
 
M1’ is retrograde iteratively accepting: [abba]. 

Diagram of M1' 

 
Diagram for M1" 

 

M1” is a retrograde iteratively accepting: [abbabb]. 
Automaton M1.1  
Differences: Δ = {νi, εj, i,j∈N} 
Positions: {pos1, pos2} 
Initial: {pos1} 



Acceptance: {pos2} 
Differentiations: 

pos1, ν  --> pos2 

pos2, ν2 --> pos  
pos1, ε3 --> pos1 

pos  
Final: {pos2}. 
 
M1.1 as a retrograde iteration of M1 is accepting : [abbb]. 
The word [abbb] is morpogram μ with μ = (ν1ν2ε3 ν4ε5 ε6), short:(ννε νε ε). 

 

 

Automaton M1.1.1  
Differences: Δ = {νi, εj, i,j∈N} 
Positions: {pos1, pos2} 
Initial: {pos1} 
Acceptance: {pos1} 
Differentiations: 

pos1, ν  --> pos2 

pos2, ν  --> pos  

pos1, ε  --> pos1 

pos  
Final: {pos1}. 
 
M1.1.1 as a retrograde iteration of M1.1 is accepting : [abbbb]. 

 



 

 

 
Machine diagrams for basic morphogrammatic constellations  
Basic constellations are [aa], [ab], [aba], [abb], [aab] and [abc]. 

 



 

 

 

Iterations 
 
Automaton M1.1.1.1  
Differences: Δ = {νi, εj, i,j∈N} 



Positions: {pos1, pos2} 
Initial: {pos1} 
Differentiations: 

pos1, ν  --> pos2 

pos2, ν  --> pos  

pos1, ε  --> pos1 

pos  

Final: {pos }. 
 
M1.1.1.1 as a retrograde iteration of M1.1.1 is accepting : [abbbbb]. 

 

Automaton M2  
Differences: Δ = {νi, εj, i,j∈N} 
Positions: {pos1, pos2} 
Initial: {pos1} 
Acceptance: {pos1} 
Differentiations: 
pos1, ν1 --> pos2 

pos2, ν3 --> pos  
pos2, ε2 --> pos2 
Final: {pos1}. 
 
M2 is accepting : [aba]. 
 
Automaton M2  
Differences: Δ = {νi, εj, i,j∈N} 
Positions: {pos1, pos2} 
Initial: {pos1} 
Acceptance: {pos1} 
Differentiations: 

pos1, ν  --> pos2 

pos2, ν3 --> pos  

pos2, ε  --> pos2 
pos1, ε4 --> pos1 
Final: {pos1}. 
 
M2.1 is accepting : [abaa]. 

Automaton M3  

Differentiations: Δ = {νi, εj, i,j∈N} 
Positions: {pos1, pos2, pos3} 
Initial: {pos1} 
Differentiations: 
pos1, ν1 --> pos2 
pos2, ν6 --> pos3 
pos1, ν4 --> pos3 

pos , ν3 --> pos1 



pos3, ν5 --> pos2 

pos2, ν3 --> pos  
pos2, ε2 --> pos2 
Final: {pos2}. 
 
M3 is accepting : [abac]. 

Automaton M3.2  

Differences: Δ = {νi, εj, i,j∈N} 
Positions: {pos1, pos2, pos3} 
Initial: {pos1} 
Differentiations: 

pos1, ν  --> pos2 
pos2, ν2 --> pos3 
pos3, ν3 --> pos2 

pos , ν4 --> pos1 
pos3, ν5 --> pos2 
pos2, ν6 --> pos2: final 
Final: {pos2}. 
 
M3 is accepting : [abcc]. 

Automaton M4  

Differences: Δ = {νi, εj, i,j∈N} 

Positions: {pos1, pos2, pos } 
Initial: {pos1} 
Differentiations: 
pos1, ν1 --> pos2 
pos2, ε2 --> pos2 

pos2, ν  --> pos1: final 
pos1, ν4 --> pos3 

pos3, ν  --> pos2 
pos3, ν7 --> pos4 
pos4, ν8 --> pos3 
Final: {pos1}. 
 
M4 is accepting : [abacd]. 

3.1.3.  Machine tables for MorphoFSA 

Machine table for M1 
 

 
 

 
 

 



 
accepts [aba] M2 

Machine table for M2.2 
 

 
 
accepts [abaa] M2.2 

Machine table for M3 
 

 
 
accepts [abac] M3. 

 

 
 
accepts [abacc] M3. 

Machine table for M4 
 

 
 
accepts [abacd] M4. 

Machine table for M4.1 
 

 
 
accepts [abacdd] M4. 

3.1.4.  Comparisons, abstractions and more machine tables 

A more abstract interpretation of the machine diagram is achieved by separating the 
e/n-distinction from its position number. 
Hence, a self-cycle e might be abstractly accepted as either positioned at pos1 or 
pos2 or both. Therefore, a constellation const = (v1,v2,e3), which is a standard 
constellation, has variations, like const2 = (v1,e3,v2) and const3 = (e3,v1,v2) in the 
common acceptance and start position {pos1}. 



Hence, the machine M1 is realizing at once, first the corresponding FSA sequences of 
the FSA machine A on the alphabet {0, 1} and second, all the combinatorial 
possibilities too. That is the four sequences (101..., 010..., 001..., 110...}. Without 
the separation of position and differentiation of differentiations, there are still two 
FSA sequences accepted at once: (100...) and (010...) by the corresponding 
MorphoFSA. 

Iterations 
(011)     :  (v1, v2, e3)             
(0111)    : (v1,4, v2, e3,5,6)                = iter(v1,v2,e3) 
(01111)  : (v1,4, v2,7, e3,5,6,8,9,10)    = iter2(v1,v2,e3) 

(011111) : (v1,4, v2,7,11, e3,5,6,8-15)  = iter (v1,v2,e3) 

 

                            

Δ = {v1, v2, e3}, 
Positions = {pos1, pos2, pos3} with pos1 = (1,2), pos2 = (1,3), pos3 =(2,3) 
FSA realization alphabet = {0,1}, 
Constellations = Positions x Δ. 
The proper notation for the ENstructure of a morphogram is given by a list of triples. 

Example 
ENstructure[abac] = ((1,2,v), (1,3,e), (2,3,v), (1,4,v), (2,4,v), (3,4,v)).  
Hence, the linearized enumeration of the ENstructure is  
num(ENstructure) = ((1,2,-)1, (1,3,-)2, (2,3,-)3,(1,4, -)4, (2,4, -)5, (3,4,-)6). 

The list for ENstructure[abac] might also be written as a table: 

 

ENstructure table of [abac] =  

ENstructure automaton table of [abac] : 
 

                                         

The direction of the differentiation (arrow) is marked by (posi x posi) and the label 

(value) of the arrow is written by an element from {e, v}j, j∈ s(m). 



Comparison of traces of FSA and MorphoFSA 
FSA(aabc)                                        MorphoFSA[aabc] 

      

     

Again, because morphograms are patterns and not sequences like the symbolic words 
of FSAs, the step-wise procedure might take different paths. For the classical case, 
there is one and only one path, i.e. the linear succession of the steps ruled by the 
linear structure of the sequential word. 

Hence, the presented sequential order (e1,v2,v3,v4,v5,v6) is just one of the possible 
orders. It might serve as a standard order. Alternatively, another order might be:  
[aabc] => [aabc] -> [aabc] -> [aabc] -> [aabc] -> [aabc] -> [aabc] => [aabc], with 
(v2,v4,v5,v3,v6,e1). 



 
Without doubt, things are much more intriguing. The trick shall work nicely for a 
Beginners Guide. 

Formal definition for M3 

M3 = (posi x posi) x {e, v}j, i∈{1,2,3}, j∈{1,2,...,6). 
This goes conform with directed labeled graphs. 

ENstructure automaton table of M3 [abac]  
                                       

                                       

Classical machine table for M3 [abac] 
 

                                        

Diagram for M3 

       

accepts [abac] M3. 

The diagram of machine M3 is representing one and only one morphogrammatic 
structure, i.e. [abac]. 



The ENstructure of the morphogram [abac] is unambigously determined by 
ENstructure([abac]) = (v1e2v3 v4v5 v6). 

ENstructure table of M3.1 [abacc] 

                                          

 
ENstructure automaton table of M3.1 [abacc]  
 

                                       

 
Classical machine table for M3.1 [abacc] 
 

                                       

Diagram for M3.1 [abacc] 

 

The diagram of machine M3.1 is representing one and only one morphogrammatic 
structure, i.e. [abacc]. 
The ENstructure of the morphogram [abacc] is unambigously determined by 
ENstructure([abacc]). 

ENstructure automaton table of M4 [abacd]  
 

                                       

The diagram of machine M4 is representing one and only one morphogrammatic 
structure, i.e. [abacd]. 



The ENstructure of the morphogram [abac] is unambigously determined by 
ENstructure([abacd]) = (v1e2v3v7 v4v5v8 v6v9 v10). 

Diagram for M4 [abacd] 
 

 

ENstructure automaton table of M4.1 [abacdd]  
 

                                       

Diagram for M4.1 [abacdd] 

                       

Thanks to Jean Bovet for his simple and practical “Visual Automata Simulator”. In 
fact, the static aspect of the morphogrammatic automata is just giving 
a visualisation of the pattern aspect of morphograms as a data type. 
http://www.cs.usfca.edu/~jbovet/ 
Further: jForlan, jFLAP and GOAL for Büchi automata. 

3.1.5.  Some applications of MorphoFSMs onto morphogrammatics 

Modeling the decomposition of morphograms into monomorphies 

MorphoFSM for [aabb] 
dec([aabb]) = {[aa], [bb]} = [aa]. 



The machine has two self-cycles at the acceptance pos1. This is indicating the 
monomorphy [aa], realized as the equivalence of the monomorphies [aa] and [bb] 
supported by the differentiations v2,4 and v3,5. 

                              

MorphoFSM[aabbaa] 
dec([aabbaa]) = [aa] 

The machine is repeating iteratively the monomorphy [aa] as [aa], [bb] and [aa] in 
the morphogram [aabbaa]. 
Again, the iteration at the position pos1 is determined by the whole machine and not 
just by the cycles at pos1.  
Therefore, the cycle e1 is producing [aa], the cycle e6 the cycle [bb] and the cycle 
e15 [aa]. The left self-cycles e7,8,11,12 are determining together with the 
differentiations v2,4,9,13 and v3,5,10,14 the positions of the monomorphies as the 
internal different monomorphies [aa] and [bb] of the morphogram [aabbaa]. 

                          

ENstructure automaton table for MorphoFSM [aabbaa]  
 

                                       

MorphoFSM for [aabbc] 
dec([aabbc]) = {[aa], [bb], [c]} = {[aa], [a]}. 

The history of [aabb] is remembered in [aabbc], hence the acceptance state of 
MorphoFSM for [aabb] at pos1 is saved by MorphoFSM [aabbc] with acceptance at pos3 
as [c]. Hence, the machine is reflecting the two monomorphies [aa] and [bb] that are 
morphogrammatically “collapsing” at pos1 with e1,6 for MorphoFSM[aabb] additional 
to the acceptance at pos3 with [c] for the machine MorphoFSM[aabbc]. Therefore, 
the machine can be used to analyse the step-wise decomposition of the morphogram 
[aabbc] into its monomorphies [aa] and [a]. 



                                    

ENstructure automaton table for MorphoFSM [abacc]  
 

                                       

MorphoFSM for [aabbcc] 
dec([aabbcc]) = {[aa], [bb], [cc]} = [aa] 

The same holds for MorphoFSM[aabbcc]. The self-cycles at pos1 of MorphoFSM[aabb] 
are saved and additional the monadic monomorphy [a] is extended to the 
monomorphy [aa] by the realization of the self-cycle at pos3 by [cc]. Hence, 
MorphoFSM[aabbcc] can be read as a realization of the decomposition of the 
morphogram [aabbcc] into its monomorphy [aa]. 

                           

ENstructure automaton table for MorphoFSM [aabbcc]  
 

                                       

MorphFSM[abcd] 
dec([abcd]) = {[a], [b], [c], [d]} = [a]. 

The monomorphy [a] is given by the start action on pos1, [b] is represented by the 
first difference for [ab] by v1, acceptance of MorphoFSM[abc] in pos1 by v3 is defining 
the monomorphy [c], while the acceptance of the machine for [abcd] at pos3 is 
delivering with v6 the monad [d]. All monomorphies in this configuration are monads 



and are therefore morphogrammatically collapsing step-wise into the single monad 
[a]. 

                      

ENstructure automaton tables for MorphoFSM [abc], [abcd], [abcde] 
 

                                       

 

                                       
 

                                       

MorphFSM[abcde] 
dec([abcde]) = {[a], [b], [c], [d], [e]} = [a]. 

MorphoFSM[abcde] is a continuation of MorphoFSM[abcd] and shows, together with 
MorphoFSM[abc], how prolongations are working. 
It doesn’t make sense just to repeat, arbitrarily, say a loop like (v9,v10), as it is 
possible for FSAs. 



 

MorphoFSA[aaaa] 

dec([aaaa]) = [aaaa]. 

Because there is no differentiation involved, the machine accepts the morphogram 
[aaaa] as such, i.e. as a monomorphy [aaaa]. Hence, the morhogram [aaaa] is 
decomposable only into itself. This corresponds ecaxtly the rules of monomorphic 
decomposition of morphograms. 

        

MorphoFSM[abbbb] 

dec([abbbb]) = {[a], [aaaa]}. 

The machine sets a difference with n1 to the start [a] with [b], 'confirms’ the 
difference with n2, creates a first monomorphy [bb], repeats the differentiation and 
produces a second monomorphy at position pos2 with [bbb] and confirms this 
different monomorphy to position pos2 with v7, where the self-loops e8,9,10 are 
establishing the monomorhy [bbbb]. Thus, the machine makes a difference between 
the monad [a] and the monadic pattern [bbbb], hence the decomposition of the 
morphogram [abbbb] delivers [a] and [aaaa] written in trito-normal form, therefore 
dec([abbbb]) = {[a], [aaaa]}. 

The diagram also contains the history of the decompositions for [ab] into {[a]}, [abb] 
into {[a], [aa]} and [abbb] into {[a], [aaa]}. 

 

 



Monomorphic MorphoFSMs 

Monomorphies might also be used as an abstraction over morphic automata. The 
features of retrograde recursivity are still covered by monomorphic interpretations of 
morphograms. In fact, the proposed paper is focused more on 
the kenogrammatic defintion of morphograms then on the 
specific monomorphic understanding of morphograms and its consequences. The 
monomorphic abstraction mon of a morphogram, mon([MG]), is partitioning the 
morphogram into its monomorphies and is therefore delivering a slightly more 
abstract approach to MorphoFSMs. 

Example1 
mon([aabcaa]) = ([aa], [b], [c],[aa]), 
mon([aabcaa]) is in fact dealt in the same way of retrogradeness like the reduced 
morphogram [abca]. 

mon([aabcaa]) = ([mg , mg2=[b], mg3=[c], mg1=[aa]). 

More interesting and specific properties of monomorphic MorphoFSMs are opened up 
with the operations of 
monomorphic concatenation, coalition and cooperations between morphic automata. 
In the context of reductions, the standard techniques of deutero- and proto-
structures are at place. 

http://works.bepress.com/thinkartlab/41/ 
http://memristors.memristics.com/MorphoProgramming/Morphogrammatic%20Progra
mming.pdf 

MorphoFSM(mon([aabcaa])) 
Differences: Δ = {νi, εj, i,j∈N} 
Positions: {pos1, pos2, pos3} 
Initial: {pos1} 
Differentiations: 

pos1, ε --> pos1        : [mg1.1] --> [mg1.4] 

pos1, ν  --> pos2    : [mg1.1] --> [mg2] 

pos2, ν  --> pos3    : [mg1.1] --> [mg3] 
pos3, ν3 --> pos1      : [mg2]    --> [mg3] 
Final: {pos1}. 

 

Reduction 
path-length(MorphoFSM-mon([aabcaa])) = 6 
path-length(MorphoFSM[aabcaa])          = 15 

Example2 
Diagram MorphoFSM[aabbcc]                                             Diagram 
MorphoFSM[mg1, mg2, mg3] 



    ==> 

  
Reduction 
path-length(MorphoFSM-mon([aabbcc])) = 3 
path-length(MorphoFSM[aabbcc])          = 15 

Reduction of ENstructure automaton table for MorphoFSM [aabbcc] to 
MorphoFSM[mg1, mg2, mg3] 
 

    ==>mon    

MorphoFSM(mon([aabbcc])) = MorphoFSM[mg1, mg2, mg3], with mg1 = [aa], mg2 = [bb] 
and mg3 = [cc]. 

3.1.6.  Towards a little Zoo of MorphoFSM diagrams 

 

 



     

 

  

  

Iterations as alterations 

What happens with the kenomic concept of iterability? What we learned elsewhere is: 
repeatability is iter/alteration. 

Sind bei einer linearen Anordnung beziehungsweise einer Sukzession von Zeichen 
immer nur Vorgänger und Nachfolger eines Zeichens als unmittelbare Nachbarn 
bestimmbar, so ist bei einer kenogrammatischen Komplexion jedes Kenogramm mit 
jedem anderen im Verhältnis der unmittelbaren Nachbarschaft. Die 
Nachfolgerrelation eines Zeichens ist unabhängig von der Länge der ihm 
vorangehenden Zeichenreihe.  
Dagegen ist die unmittelbare Nachbarschaft eines Kenogramms in einer Komplexion 
durch deren Komplexität bestimmt. Zeichenreihen können wegen ihrer Abstraktheit 
durch potentielle oder aktuale Unendlichkeit bestimmt sein, kenogrammatische 
Komplexionen sind dagegen immer finit beziehungsweise ultra-finit. Ein Nachfolger 
einer kenogrammatischen Komplexion bestimmt sich retrograd-rekursiv durch die 
Materialität seiner Genesis. Diese definiert den Grad der simultanen Parallelität 
ihrer Nachfolger. Damit löst sich die Sprechweise der Dichotomie von Operator und 



Operand der Nachfolgeroperation und ihrer Linearstruktur auf. Dual zur 
dichotomisierenden kann die Terminologie der Selbsterzeugung, der Autopoiese, von 
kenogrammatischen Komplexionen, etwa von Morphogrammen, eingbracht 
werden.” (Kaehr 1993) 
http://www.vordenker.de/heterarchy/b_heterarchy-
e.pdfhttp://www.vordenker.de/heterarchy/b_heterarchy-e.pdf 

Hence, the role of iterability in differentiation systems (machines) shall be taken into 
the focus for further applications or explications of morphic finite state machines. 

With each iteration of a differentiation, the possibility of an alteration and accretion, 
independently of a pre-given alphabet, is determined retro-grade recursively by the 
path (trace, history) of the previous differentiations of the intrinsic activity of the 
machine. 

With that, the whole machinery of possible disseminations of machines over a 
contextural grid as the system of loci for accretive iterations has to be applied again. 

3.2.  Palindromes and MorphoFSMs 

3.2.1.  Palindromes and iteration 

"It is impossible to build a finite state machine that accepts all palindromes. The 
proof relies on the facts that we can easily build a string that requires an arbitrarily 
large number of nodes, namely the string 
a^x b a^x (eg., aba, aabaa, aaabaaa, aaaabaaaa, ....) 
where a^x is a repeated x times. This requires at least x nodes because, after seeing 
the 'b' we have to count back x times to make sure it is a palindrome." 

SUMMARY 

Cannot recognize all types of patterns.  
- E.g. Cannot build a finite-state machine that unlocks a lock whenever you enter any 
palindrome: 3-2-1-1-2-3  
- Why?  Palindromes can be of any length, and to recognize the 2nd half, you need 
to remember every character in the first half.  
Because there are infinitely many possible first halves, this would require a machine 
with an infinite number of states.  
http://www.cs.mcgill.ca/~jpineau/comp102/Lectures/04FiniteStateMachines.pdf 

Hence, FSMs are not equipped to recognize palindromes of arbitrary length because 
they don’t have a device that works as a memory to store the number of elements 
that have to be repeated after reading the first part of the sequence (string) and that 
has to be added after the recognition of the ‘centre’ of the word. 

The machine MorphoFSM[aabbaa] is accepting the morphic palindrome [aabbaa]. Is 
there any chance to generalize this construction for arbitrary morphic ‘palindromes'? 

Again, No memory on states or transitions so ‘memory’ is simply the location in the 
transition network. Does this hold in the same sense for morphic machines too? 

The answer is no! 

Because morphograms are build retrograde-recursively over their differentiations, 
and not abstractly from a pre-given alphabet and stable rules like regular languages, 
they are inscribing their own history by definition. Hence, each “state” of a 
MorphoFSM is referring retrogradely to its previous “states”, hence keeping an 
account of its history at the location of its last “state”, i.e. differentiation. 

The sequence of traces is called in the FSM literature the “history” of the activity of 
the machine. But this kind of history seems not to have a memory. A history, free of 
any memory, seems to be a quite weak metaphor to describe the behavior of a 



machine. Hence, the possible ‘history’ of the machine has to be mentally represented 
by an external observer. 

Therefore, it is not the case, that the memory capability of morphic machines is 
reduced to the simple “location in the network”. Is this giving a hint how to proceed? 

Mutual iterations 
Some more exercises. 

Diagram for MorphoFSM[aabb] 
                                 

                       

 

The monomorphy [aa] and [bb] are defined by the self-loops e1 and e6 respectively. 
Both monomorphies that are carring the result of the mutual iteration are separated 

by the differentiations of v  and v  respectively. This kind of iteration is faithfull 
to the constellation of the differentiations of the repeated original: [aba] = (e1v2v3) to 

the iteration iter(e1v2v3) = (e v v ) = [aabb]. 
This corresponds to the classical definition of a machine: the machine is not changing 
in the process of its use. Thus, the runs of (e1v2v3) and the runs of iter(e1v2v3) are 
strict iterations. 

The second presentation with the nil-differentiation, e0, marks even more explicitly 
the positioning of the monomorphies [aa] as [aa] and as  [bb]. (cf. § 3.4.2) 

For a slightly more complex situation, the definition is changing, and a kind of super-
additivity appears. A further iteration of  iter(iter(e1v2v3)) is not running 6 plus 3 
traces but 15. 

Diagram for MorphoFSM[aaabbb] 
 

                               



                     

                                      

 
                                                    

3.2.2.  Palindromes, first 

Diagram for MorphoFSM[aba] 

  
                              

                                   

Analysis of MorphoFSM[aba] 
The machine MorphoFSM[aba] might be taken as a simple example of a morphic 
palindrome. With w =[a], wr= [a] and the midpoint c = [b], the machine shows the 
intricate mechanism of a mediation of the three parts of the morphic palindrome. 
For v1= [a1b0] and for the inverse v2 = [b0a2], the midpoint is marked from both sides 
of the palindrome, i.e. [b0] is conceived as an end-point and as a start-point. The 
self-loop e2 marks the exchange elements [a1] and [a2], i.e. [a1-a2], based on the 
separation by [a1b0] and [b0a1]. This double-function of the midpoint is contradicting 
the logical identity of signs. Morphograms are covering this situation by definition. 
The classical interpretation has to move this contradictory situation into the mental 
domain of an external observer. In other words, the element “c” is (semiotically, 
logically and ontologically) the midpoint for semiotic FSM, while for morphic 
machines, “c” plays the double-role(s) as a midpoint. 

Diagram for MorphoFSM[aabaa] 
 

                              



 

 

 

 

Palindromes in classical FSM 
The classical analysis of palindromes in the context of FSM make much simpler 



assumptions: wcwr, with c ∩ w = ⌀ and r(wr) = w. 
In short, the midpoint “c” is in no way involved in the definition of w and wr. It is 
atomistic, and its role as an ending and as a starting point of the midpoint is of no 
relevance. The midpoint is neutral to its environment w and wr. This makes the 
construction simple. The consequences are as simple too: it remains in its simplicity. 

Comparison 
What the difference between the classical and the morphogrammatic understanding 
of palindromes? 
Independent of the fundamental difference of the type of writing between semiotics 
and morphogrammatics, some feature of the difference are easily accessible with the 
example of palindromes. 

For a semiotic understanding as it is leading for finite state machines, the distinction 
between the midpoint and the reversal parts has to be made by an external observer. 
There are no features, properties or guidelines implemented in the definition of the 
FSA to decide this difference or to indicate the midpoint of the palindrome. As a 
consequence of this ‘objectivistic’ definition of the FSM, the inherent limitations of a 
retrograde- and history-free machine, i.e. ‘memory-free’ conception follows 
naturally. 

In contrast, the morphogrammatic definition of the ‘finite differentiation machine’ is 
based on an implementation of the features of the palindrome in itself. Hence, an 
internal observation or analysis makes it clear that the machines is detecting its 
‘midpoint’ without the support of an external interaction. This is supported by the 
immanent retrograde understanding of iterability of the machine and its 
morphograms. 

The complex description of the characteristics and behavior of the morphogrammatic 
machines is the result of the implementation of external description properties into 
the immanent definition of the machine itself. 

Misleading wordings: The new state depends on the old state and the input. 

Quick surface-reading of texts is mostly misleading. One example of such habits, 
following with quick judgments, is invoked by the wording of the history-
dependence of the chain of events of classical FSMs. Most text-books about FSMs refer 
to the this interpretation of the chain of events of FSMs as history-dependence. 

On the other hand I try to make clear with the concept and formalism of “retrograde 
recursivity” that there is no such concept of history-dependence implied on the level 
of formal languages, regular or not, and therefore also not for the behavior of FSMs. 
What happens is strictly history-independent. So called history-dependence is, in the 
best case, introduced as an interpretation of the behavior of FSMs by an external 
observer. And this interpretation has, again, no base in the definitions of the 
formalisms and mathematics of FSMs. 

A nice example for this understanding of machine-history and its typical 
exaggerations is given by the citation of Mike James “Finite State Machines": 

"What this means that the entire history of the machine is summarized in its current 
state. All that matters is the state that it is in and not how it reached this 
state.  Before you write off the finite state machine as so feeble as to be not worth 
considering as a model of computation it is worth pointing out that as you can have 
as many states as you care to invent the machine can record arbitrarily long 
histories. All you need is a state for each of the possible past histories and then the 
state that you find the machine in is an indication of not only its current state but 
how it arrived in that state. 



Because a finite state machine can represent any history and a reaction, by regarding 
the change of state as a response to the history, it has been argued that it is a 
sufficient model of human behavior, i.e. humans are finite state machines." 
http://www.i-programmer.info/babbages-bag/223-finite-state-machines.html 

Diagram for MorphoFSM[aabbaa] 

 

                                  

ENstructure automaton table for MorphoFSM [aabbaa]  
 

                                       

ENstructure automaton table for MorphoFSM [aaabbaaa] 

 

                                    

3.2.3.  Palindromes, again 

ENstructure[aaabbaaa] 

Procedure 
Morphogram (sequence) ==> ENstructure (+ enumeration) ==> MorphoFSM table ==> 
MorphoFSM diagram 

MorphoFSM table = (ENstructure, AG(Morphogram)) 
AG(Morphogram) = set of positions posi of MorphoFSM table 

Example [aaabbaa] 

Morphogram [1,1,1,2,2,1,1,1] =MG [aaabbaaa]. 

- ENstructure [1,1,1,2,2,1,1,1]; 
val it =  
[[], 
[(1,2,E)], 
[(1,3,E),(2,3,E)], 
[(1,4,N),(2,4,N),(3,4,N)], 
[(1,5,N),(2,5,N),(3,5,N),(4,5,E)], 
[(1,6,E),(2,6,E),(3,6,E),(4,6,N),(5,6,N)], 
[(1,7,E),(2,7,E),(3,7,E),(4,7,N),(5,7,N),(6,7,E)], 
[(1,8,E),(2,8,E),(3,8,E),(4,8,N),(5,8,N),(6,8,E),(7,8,E)]]  
: (int * int * EN) list list 

ENstructure table with enumeration subsystems 



Adjusted listing of subsystems   
- subsystems 8; 
val it = 
[(1,[1,2]), 
(3,[1,3]),(2,[2,3]), 
(6,[1,4]), (5,[2,4]),(4,[3,4]),  
(10,[1,5]),(9,[2,5]), (8,[3,5]),(7,[4,5]), 
(15,[1,6]),(14,[2,6]),(13,[3,6]),(12,[4,6]),(11,[5,6]), 
(21,[1,7]),(20,[2,7]),(19,[3,7],(18,[4,7]),(17,[5,7]),(16,[6,7]), 
(28,[1,8]),(27,[2,8]),(26,[3,8]),(25,[4,8]),(24,[5,8]),(23,[6,8]),(22,[7,8])]  
: (int * int list) list 

ENTable = subsystems ∪ ENstructure 
[(1,3,E),(2,3,E)] ∪ (3,[1,3]),(2,[2,3]) = (3,[1,3], E),(2,[2,3], E). 

(int * int * EN) list list ∪ (int * int list) list =  (int * int list * EN ) list list list 

=                                         

ENstructure automaton table for MorphoFSM [aaabbaaa]  
AG([aaabbaaa]) = 2, table contains pos1 and pos2. 

                                     

Diagram for MorphoFSM [aaabbaaa] 
 

                                     

Discussion 

The first monomorphy [aaa] is covert by e . 
To distinguish the monomorphy [bb] from the monomorphy [aaa], two differentiations 
have to be realized. This happens with v4,6,8 and with v5,7,9. On the background of 
this differentiation, the self-loop for [bb] is established with e10. 
With that, the machine recognizes the morphogram [aaabb]. 
The procedure to read the next monomorphy [aaa] happens step-wise. 
First, the morphogram [aaabba] has to be recognized. 

Second, the morphogram [aaabbaa] has to be recognized. 



And finally, the morphogram [aaabbaaa] with its second monomorphy [aaa] has to be 
read by the machine. 

After this procedure, the machine MorphoFSM[aaabbaaa] is able to read the morphic 
palindrom [aaabbaa]. 

The monomorphy [bb] plays the role of the midpoint, c, of the palindrome. 
Obviously, the second monomorphy [aaa], wr, is the reverse of the first monomorphy 
[aaa], w. Hence, the morphogram is defind as a morphic palindrome, in analogy with 
wcwr. 

Generalization  
It should now just be a question of simple combinatorics to give a general definition 
for a morphic machine MorphoFSM that is able to read all palindromes over the 
kenomic ‘alphabet' {a,b}. 

A next attempt would have to generalize this result for arbitrary complex morphic 
palindromes. 

To any morphogrammatic palindrome there is a MorphoFSM that recognizes that 
palindrome. 
Is there a MorphoFSM that accepts any palindromes? 

Obviously, this seems to be in direct contrast to the results for the classical FSM 
definition of palindromes. 

The argumentation for the impossibility of general FSAs for palindromes is based on 
the atomicity and ‘history-free’ concept of the automata, elaborated by a proof of 
contradiction. 

Palindromes and Finite State Machines 

"A regular expression can always be translated into an equivalent finite state 
machine. 

"It is impossible to build a finite state machine that accepts all palindromes. The 
proof relies on the facts that we can easily build a string that requires an arbitrarily 
large number of nodes, namely the string 
a^x b a^x (eg., aba, aabaa, aaabaaa, aaaabaaaa, ....) where a^x is a repeated x 
times. This requires at least x nodes because, after seeing the 'b' we have to count 
back x times to make sure it is a palindrome.” 

http://stackoverflow.com/questions/233243/how-to-check-that-a-string-is-a-
palindrome-using-regular-expressions 

"A palindrome cannot be recognized by any finite state machine because 
(a) a finite state machine cannot remember arbitrary large amount of information 
(b) finite state machine cannot deterministically fix the mid-point 
(c) even if the mid-point is known, a finite state machine cannot find whether the 
second half of the string matches the 
     first half. 
(d) all of the above.” R. Kumar, Theory of Automata. 

"Palindromes with a midpoint indicator are strings of the form wcwr where wr is the 
reverse of substring w and c is the special midpoint marker.”  
http://www.academic.marist.edu/~jzbv/algorithms/TuringMachine.htm 

"A palindrome cannot be recognized by any finite state machine ..." because the 
information about the palindrome is located at the position of an external observer 
and there is no way available to implement it internally into the system. 

In contrast, the morphogrammatic approach is emphasizing the fact that 
an internal observer or agent has to deal with the concrete situation or constellation 



that is encountered. An internal agent has no superior knowledge at hand - at least 
not in the actual situation. The internal agent acts according to the complexity and 
the properties of the concrete situation that is encountered. If the encountered 
constellation is a palindrome, it will be recognized as a palindrome thanks to the 
concrete properties of the encountered constellation. With that, no external 
knowledge has to interfere or to be applied. 

In other words, the knowledge of the external observer is implemented into the 
intrinsic structure of the machine. 

Categories and aspects of reflectional observation theory are not genuinely 
implemented for classical semiotics, string theory and automata theory. 
Morphogrammatics works within the interplay of internal and external observations. 

Kaehr, Vom Selbst in der Selbstorganisation. Reflexionen zu den Problemen der 
Konzeptionalisierung und Formalisierung selbstbezüglicher Strukturbildungen, 1992  
http://www.thinkartlab.com/pkl/media/SelbstB2.frame.pdf 

5ENstructure EXAMPLES 

3.2.4.  Palindromes and Chiasms 

"ABA is a palindrome: you can read it both ways, but it is not a chiasm. AB:BA is a 
chiasm, and so is of course AB:C:BA. Both are palindromes too, because they are 
dreadfully abstract.” 

The chiasm AB:C:BA reads form the viewpoint of difference-theory, i.e. 
kenogrammatics, in its abstractness as the complex morphogram [abcba]. A machine 
interpretation of the palindrome structure of the morphogram [abcba] is given with 
MorphoFSM[abcba]. A further modeling also has to contemplate on its 
specific chiastic structure that separates it from a simple palindrome. 

To characterize palindromes and chiasms as “dreadfully abstract” is not referring to 
the topic itself but to the fundamental inability of understanding palindromes and 
chiasms as retrograde complexions of differentiations, differences and distinctions 
and not as abstract agglomerations of entities, like “A” and “B” or “C”. 

A less abstract thematization of chiasms and palindromes entertaines at:  
http://www.thinkartlab.com/Chinese%20Challenge%20Pool/How_to_Compose.pdf 

Properties of palindromes and chiasms 
"palindromes emerge as multilayered, multidirectional, and polytemporal mappings" 
Christina Ljungberg, ‘Damn mad’: Palindromic figurations in literary narratives. 
"running back again" (palindromos). 

Morphogrammatic prolongations of the chiasm [AB:C:BA] 

 

 



 

 

 

 



 

 

 

Diagram of MorphoFSM[abba] 

 

  

Analysis of MorphoFSM[abba] 



 

 

 

Grammars for palindromes 

Semiotic grammar for palindromes 
The morphic pendant to the regular semiotic language for "non-empty odd length 
palindromic strings of as and/or bs and/or cs" (Parkes, p. 101), reflecting its 
retrograde iterability, is given by the morphogrammatically modified rules for 
palindromes. 

Semiotic palindrome:  
Alphabet =  {a, b, c} 
Rules =       S ==> a | b | c | aSa | bSb | cSc . 
Application: S ==> aSa ==> c(aSa)c ==> b(caSac)b ==> a(bcaSacb)a ==> abca b acba. 
                 S ==> a ==> bab ==> ababa ==> cab a bac ==> acab a baca. 

 

Morphic Grammar for palindromes 
Morphic alphabet = {[a]} 

Morphic rules      = S  ==> [a]|[a]S[a] with Siter∈ AG(MG), Saccr∈ AG(MG)+1. 

The rule for the morphic S is depending on the string, i.e. morphogram “MG”, already 
produced by the rule R for S. The rule [a]S[a] is accepted as a start rule, written in 
trito-normal form, tnf, hence with [a]≡[a], thus [a]S[a]. The aggregation, AG, detects 
the number of different kenograms of the MG, and the accretive iteration of S, Saccr, 
is adding an additional kenogram to the repertoire, while the iterative S, Siteris using 
the detected kenograms of the morphogram MG. The kenograms of the ‘alphabet’ are 
produced retrogradely by the application of the rules, and are therefor not pre-given 
as elements of a sign repertoire, i.e. an alphabet. The rules for S are substitution 



rules hence all the kenogrammatic considerations about different types of iteration, 
accretion and equivalences apply. 

 

 

 

In general, S ==> [a]S |S[a] | [a]S[b] | [S][S] are defined retrogradely over their 
‘history’ of traces or runs. 
S ==> [S][S] is retrogradely defined as the morphic concatenation of [S] and [S]: [S][S] 
==> [SS]. 

The procedure is well known as the morphogrammatic retrograde recursion scheme: 

 

http://memristors.memristics.com/MorphoReflection/Morphogrammatics%20of%20Re
flection.html 

Example 
Full development of the first 5 steps for the morphic palindrome grammar (S ==> a | 
aSa) with exclusive midpoint. 

 



 

Hence, the domain of the morphic grammar for “S ==> a|aSa“ with an exclusive 
midpoint and a 5-step repetition covers palindromes from[aaaa b aaaa] to[abcd e 
dcba]. From the viewpoint of morphogrammatics,this development is complete. 
There are no additional palindromes of the same length covered by this grammar. 

Unfortunately, this approach is not taking into account the full range of the specific 
features of morphogrammatic context-dependence of the  production of palindromes. 

Again, the classical definition is obviously strictly context-independent: “the kth 
leftmost symbol of the input x must be equal to the kth rightmost symbol of x.” 
(Ding-Zoo Du, p. 92) 

The proposed symmetric approach is considering just a partial aspect of 
morphogrammatic context-dependence, i.e., it follows the symbolic definition but 
replaces the ‘equality’ of the symbols by the equivalence of the kenograms of the 
morphogram. This is combined by the iterative and accretive prolongations of the 
application of the production rule “S ==> a|aSa“. It delivers symmetric 
morphogrammatic palindromes. 

A more appropriate approach seems to cover the full mechanism of morphogrammatic 
context-dependence for the production of morphic palindromes. 
A first step was covered by the morphic application of the symmetric production rule, 
combined with iterative and accretive prolongations. 
A second step has to compare the two parts as wholes of the palindrome according to 
the rules of morphogrammatic equivalence. 

Hence, a case like "[1,2,2,3,3,4]" is considering the morphogrmmatic equivalence of 
the first and the reversed second part of the morphogram: [1,2,2] =mg [4,3,3], thus 
"[1,2,2,3,3,4]" is a palindrome. That is, [1,2,2,3,3,4] =mg [4,3,3,2,2,1], with 
tnf[4,3,3,2,2,1] =mg [1,2,2,3,3,4] . 

3.2.5.  Appendix about asymmetric palindromes 



Comparison with the filtered results  
Palindromes are filtered out from the trito-universe TU. The length of the words is 6 
and the range spans from [1,1,1,1,1,1] to the saturated morphogram [1,2,3,4,5,6]. 
The symmetric production rule “S ==> a|aSa“ is not considering 
the asymmetric productions that are morphogrammatically accepted as palindromes, 
like for example the morphogram [1,2,3,4,1,2] with [1,2,3] =mg [2,1,4], [1,2,3,4,1,2] 

= [2,1,4,3,2,1], and tnf[2,1,4,3,2,1] =mg [1,2,3,4,1,2]. Hence, the context-dependence 
of the morphic production rule is restricted to symmetric productions with restricted 
context-dependence. 

The filter-method is not producing constructively the set of palindromes but is 
filtering them out of the produced trito-universe TU of morphograms. 

Morphogrammatic palindrome: 
fun kref ks = tnf(rev ks); 
- fun ispalindrome l = (l = kref l); 
val ispalindrome = fn : int list -> bool 
- ispalindrome [1,1,2,2]; 
val it = true : bool 

Symbolic palindrome  
fun palindrome l = (l = rev l); 
- palindrome [1,1,2,2]; 
val it = false : bool 

Tests for morphogrammatic palindromes 
Examples 
- ispalindrome [1,2,2,2,3,3,3,4]; 
val it = true : bool 
- ispalindrome [1,2,3,1,4,3]; 
val it = true : bool 
- tnf  [1,2,3,1,4,3]; 
val it = [1,2,3,1,4,3] : int list 
- tnf [3,4,1,3,2,1]; 
val it = [1,2,3,1,4,3] : int list 
- kref [1,2,3,1,4,3]; 
val it = [1,2,3,1,4,3] : int list 
- rev [1,2,3,1,4,3]; 
val it = [3,4,1,3,2,1] : int list 
- tnf(rev [1,2,3,1,4,3]); 
val it = [1,2,3,1,4,3] : int list 

Filtered results of length 6 from TU 
nfirstq(5000, TU) 
List.filter ispalindrome “nfirstq(5000, TU)";   6 
- length it; 
val it = 180 : int 
Results for the 31 morphogrammatic palindromes of length 6 from [1,1,1,1,1,1] to [1,2,3,4,5,6]: 
[1,1,1,1,1,1],[1,1,1,2,2,2],[1,1,2,1,2,2],[1,1,2,2,1,1],[1,1,2,2,3,3],[1,1,2,3,1,1],[1,1,2,3,4,4], 
[1,2,1,1,2,1],[1,2,1,1,3,1],[1,2,1,2,1,2],[1,2,1,3,2,3],[1,2,1,3,4,3],[1,2,2,1,1,2],[1,2,2,2,2,1], 
[1,2,2,2,2,3],[1,2,2,3,3,1],[1,2,2,3,3,4],[1,2,3,1,2,3],[1,2,3,1,4,3],[1,2,3,2,3,1],[1,2,3,2,3,4], 
[1,2,3,3,1,2],[1,2,3,3,2,1],[1,2,3,3,2,4],[1,2,3,3,4,1],[1,2,3,3,4,5],[1,2,3,4,1,2],[1,2,3,4,2,1], 
[1,2,3,4,2,5],[1,2,3,4,5,1],  [1,2,3,4,5,6]. 
Palindromes(6,6) = 31 
Symmetric palindromes(6,6) = 5 



Palindromes of length 6 produced by the symmetric production rule “S ==> a|aSa“: 
 

 =num  =tnf  

Symmetric morphogrammatic palindromes of length 6 filtered out of TU: 

val it = 
  [[1,1,1,1,1,1],[1,1,2,2,1,1],[1,2,1,1,2,1],[1,2,2,2,2,1],[1,2,3,3,2,1]] : int list list 
- length it; 
val it = 5 : int 

Symmetric morphogrammatic palindromes of length 7 filtered out of TU: 

val it = 
  [[1,1,1,1,1,1,1],[1,1,1,2,1,1,1],[1,1,2,1,2,1,1],[1,1,2,2,2,1,1], 
   [1,1,2,3,2,1,1],[1,2,1,1,1,2,1],[1,2,1,2,1,2,1],[1,2,1,3,1,2,1], 
   [1,2,2,1,2,2,1],[1,2,2,2,2,2,1],[1,2,2,3,2,2,1],[1,2,3,1,3,2,1], 
   [1,2,3,2,3,2,1],[1,2,3,3,3,2,1],[1,2,3,4,3,2,1]] : int list list 
- length it; 
val it = 15 : int 
Symmetric palindromes(7,7) = 15 
Palindromes(7,7) = 59 

Palindromes of kmul[1,2,3][1,2,3]; 
- ispalindrome [1,2,3]; 
val it = true : bool 

List.filter ispalindrome “kmul[1,2,3][1,2,3]"; 
val it = 
  [[1,2,3,2,3,1,3,1,2],[1,2,3,3,1,2,2,3,1],[1,2,3,2,1,4,3,4,1], 
   [1,2,3,2,1,4,5,4,1],[1,2,3,2,4,1,3,1,2],[1,2,3,2,4,1,5,1,2], 
   [1,2,3,4,1,2,3,4,1],[1,2,3,4,1,2,5,4,1],[1,2,3,3,1,4,4,5,1], 
   [1,2,3,4,3,1,3,5,4],[1,2,3,4,1,5,2,3,1],[1,2,3,4,1,5,3,6,1], 
   [1,2,3,4,1,5,6,7,1],[1,2,3,4,5,1,2,3,4],[1,2,3,4,5,1,3,6,4], 
   [1,2,3,4,5,1,6,7,4],[1,2,3,2,3,4,3,4,1],[1,2,3,2,3,4,3,4,5], 
   [1,2,3,3,4,2,2,3,1],[1,2,3,3,4,2,2,3,5],[1,2,3,4,3,2,3,4,1], 
   [1,2,3,4,3,2,3,4,5],[1,2,3,2,4,5,3,5,1],[1,2,3,2,4,5,6,5,1], 
   [1,2,3,2,4,5,3,5,6],[1,2,3,2,4,5,6,5,7],[1,2,3,4,5,2,3,4,1], 
   [1,2,3,4,5,2,6,4,1],[1,2,3,4,5,2,3,4,6],[1,2,3,4,5,2,6,4,7], 
   [1,2,3,3,4,5,5,1,2],[1,2,3,3,4,5,5,6,1],[1,2,3,3,4,5,5,6,7], 
   [1,2,3,4,3,5,3,1,2],[1,2,3,4,3,5,3,6,1],[1,2,3,4,3,5,3,6,7], 
   [1,2,3,4,5,6,2,3,1],[1,2,3,4,5,6,3,1,2],[1,2,3,4,5,6,7,1,2], 
   [1,2,3,4,5,6,3,7,1],[1,2,3,4,5,6,7,8,1],[1,2,3,4,5,6,2,3,7], 
   [1,2,3,4,5,6,3,7,8],[1,2,3,4,5,6,7,8,9]] : int list list 
- length it; 
val it = 44 : int 
- length(kmul[1,2,3][1,2,3]); 
val it = 588 : int 
- ispalindrome [1,2,3,4,3,5,3,6,7]; 
val it = true : bool 
Symmetric palindrome for “kmul[1,2,3] [1,2,3]" = 0. 
val it = [] : int list list 
- palindrome [1,2,3,4,3,5,3,6,7]; 
val it = false : bool 

- kconcat [1,2,3][1,2,3]; 
- length(kconcat [1,2,3][1,2,3]); 
val it = 34 : int 
Palindromes:  
val it = 



  [[1,2,3,1,2,3],[1,2,3,2,3,1],[1,2,3,3,1,2],[1,2,3,3,2,1],[1,2,3,4,1,2], 
   [1,2,3,4,2,1],[1,2,3,1,4,3],[1,2,3,3,4,1],[1,2,3,4,5,1],[1,2,3,2,3,4], 
   [1,2,3,3,2,4],[1,2,3,4,2,5],[1,2,3,3,4,5],[1,2,3,4,5,6]] : int list list 
- length it; 
val it = 14 : int 
- ispalindrome [1,2,3,4,5,1]; 
val it = true : bool 
Symmetric palindromes: 
val it = [[1,2,3,3,2,1]] : int list list 
- palindrome [1,2,3,4,5,1]; 
val it = false : bool 

Linguistic example for asymmetric palindromes 
"Annabelle" 
"anna" : num(anna) = [1,7,7,1] 
” b”    : num(b)      = [2] 
"elle”   :   num(elle) = [4,5,5,4] 
num(annabelle) = [1,7,7,1,2,4,5,5,4] 
- tnf[1,7,7,1,2,4,5,5,4]; 
val it = [1,2,2,1,3,4,5,5,4] : int list 
ispalindrome[1,2,2,1,3,4,5,5,4]? 
val it = true : bool 
- kref[4,5,5,4,3,1,2,2,1]; 
val it = [1,2,2,1,3,4,5,5,4] : int list 

Asymmetric palindromes in the morphoSphere 
The pheno-structure of palindromes is symmetric. That’s part of the definition. Like 
“anna”, “b”, and “elle” as identitive words of the pheno-structure. 

The geno-structure is overwhelmingly dominated by asymmetric palindromes. 
The genotype word “annabelle” is composed from pheno-type words “anna”, “b” and 
“elle”, which are symmetric. But the composition of the parts to the word 
“annabelle” delivers an asymmetric palindrome. This asymmetric word “annabelle” is 
a palindrome on the genotype level of morphogrammatics but not a palindrome on 
the phenotype level of semiotics. 

The pheno-words “anna”, “b” and “belle” are therefore involved in a double game. 
As pheno-types, and in isolation, they are pheno- and geno-types at once. Both 
aspects are overlapping. In the context of composition to the word “annabelle” they 
are part of an asymmetric genotypic palindrome. 

Results 
In the morphosphere, asymmetric palindromes are structurally and quantitatively 
dominant. 
Enantiomorph, dual and symmetric palindromes belong to the semiophere. Despite 
their dialogical and multi-world conception by Juri Lotman palindromes are based on 
an atomic and linear sign concept. The identity of the forward and backward reading 
is tested step-wise, comparing atomic signs after atomic signs. There are no 
considerations about contexts at all. 

Palindromes in the morphosphere are a/symmetric, complementary and chiastic.  
The morphosphere is a sphere beyond the semiosphere. Like the semiosphere it has 
to be distinguished from the noosphere and the biosphere. 

Applications 
You might lock your door with one key, but you will have to unlock it with another 
key. 

More about asymmetric palindromes at: 
http://memristors.memristics.com/Morphospheres/Asymmetric%20Palindromes.html 
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3.2.6.  Chiasm AB:C:BA 

MorphoGrammar[abcba] 
Alph =        {[a]} 
Rules=        S ==> [a] | [a]S[a]. 

Application: S ==>accr bSb ==>iter a(bSb)a ==>accr ab c ba, with c∉(S ==> [a]S[a])    . 

MorphoFSM[abcba] 
 

                 

 

http://www.thinkartlab.com/Chinese%20Challenge%20Pool/How_to_Compose.pdf 

 



 

 
MorphoFSM[aabcbaa] as an iterative prolongation of [abcba] 

MorphoGrammar[aabcbaa] 
Alph =        {[a]} 
Rules=        S ==> [a] | [a]S[a]. 
Application: S ==>accr bSb ==>iter a(bSb)a ==>iter a(abSba)a ==>accr aab c baa, with c∉(S 
==> [a]S[a])    . 

 

 

The morphogram [aabcbaa] deciphered as the number “1123211” in the decimal system is 
a prime number. A difference-theoretical interpretation of this prime number as a chiasm might shed 
some different light into its mystery. 
http://primes.utm.edu/curios/page.php/1123211.html 

3.3.  Simulation of FSA by MorphoFSA 

3.3.1.  Relations 

Relations to be studied are: 
1. Morphogram [MG] to ENstructure of MG: [MG] and ENstructure[MG], 



2. ENstructure[MG] to the machine-diagram representation of ENstructure[MG]: 
ENstructure[MG] and M-Diagramm[MG], 
3. M-Diagram[MG] and machine defintion and implementation of MorphoFSA: 
Def(MorphoFSA) and Prgr(MorphoFSA), 
4. MorphoFSA and FSA. 

3.3.2.  Comparisons: MorphoFSA and FSA 

To each MorphoFSA there are FSA representations. 

FSA1: FSA(abn) with acceptance state “a” is not recognizing a sequence (baa...). 
FSA2: FSA(ban) with acceptance state “b” is not recognizing a sequence (abb...). 
But an FSA automaton with two acceptance states, “a”  and “b”, is recognizing both 
sequences. 

Hence the two acceptance state machine FSA3 =(FSA1, FSA2)are accepting both 
sequences. 
FSA(abb..., baaa) with acceptance state “a” and “b” is recognizing the sequences 
(abb...) and (baa...). 

On the other hand, the MorphoFSA (ν1ν2ε3) with just one acceptance state “pos1” is 
simulating  FSA3, i.e. FSA1 and FSA2 together. 

 

The accepted sequences of FSA3 are not the results of an equivalence of FSA1 and 
FSA2 but are two different applications of the same but two acceptance state 
machine, one starting with “a”, the other starting with “b”. But the difference of one 
acceptance state to two acceptance states machines is crucial. There are two 
different types of machine. 

In contrast, the MorphoFSA produces the abstraction from both FSA1 and FSA2 with 
just one acceptance state. Hence, to use two acceptance states for MorphoFSA is 
producing just an isomorphism between both definitions, and nothing more. 

That is, MorphoFSA (ν1ν2 ) and MorphoFSA (ν2ν1 )are isomorph. 

Hence, to every MorphoFSM(m,k) there are FSA(m,k). 

Each FSA is representable by a MorphoFSA. 



This might easily be proven over the recursivity of the construction of both kinds of 
automata. 

First step 

MorphoFSA (ε    <==>   FSA((q,x --> q), ∀x∈Alph): start state as a 0-transition. 

MorphoFSA (ν    <==>   FSA((q,x --> r), ∀x∈Alph): start transition as a 1-transition 

Recursion steps 
MorphoFSA (m,k) to MorphoFSA(m+1, k+1) <==>  FSA(m, k)to FSA(m+1, k+1): 
MorphoFSA((morph(m))∪+ morph(monad))  <==>  FSA((m,k) ∪ {∀ atom ∈ Alph}) 

MorphoFSA((morph(m))∪+ morph(monad))  

  MorphoFSA([ab])∪+ morph(monad)) = [aba], [abb], [abc]. 

From the point of view of formal languages, the combinatorial correlation of both 
approaches is given by the observation: 
FSA(Str = Σ*) versus MorphoFSA(Str = Stirling2(Σ, *)) 
Hence, for FSA(|Str| = 23) = 8, MorphoFSA(|Str| = Stirling2(2, 3)) = 4. 

3.3.3.  Why are MorphoFSMs not just relational systems? 

It seems still not easy to grasp the difference 
of relational and differential machines.  
A diagrammatic representation of MorphoFSM[aabb], Example2, has two self-loops, 
automorphism, at position pos1. From a relational point of view, both loops would 
have formally to coincide and to represent the pattern [aa], maybe even as an 
iteration [aa] and [aa], but never as the two patterns [aa] and [bb] of [aabb]. 

The case for FSA(0,1) of Example1 shows exactly this, at position q1, the loop with 
the element “0” produces sequences of “0”s, and the loop with the element “1” at 
position q2 produces sequences of “1"s. 

On the other hand, in a relational (category-theoretic, etc.) setting, loops at 
different positions (objects), pos1 and pos2, would have to represent different 
patterns. The Example3 shows a distribution of the same pattern [bb] at different 
positions, pos1 and pos2. 

Hence, the identity of the elements are defined by the differential system of 
positions of the differences epsilon and nu. 

Again, considering the mathematical definition of FSMs as finite automata makes it 
more than clear that this definition is based on identical objects (elements), ”finite 
non empty set of symbols”, and their relations, defined by transitions. 

Example1: FSA{0,1} 

 



Example2: Diagram for MorphoFSM[aabb] 
 

                                   

 

3.4.  Pumping lemma, first 

3.4.1.  The classical scenario 

There are significant presumptions to run the argumentation of the decision about 
the regularity or nonregularity of formal languages with the help of FSMs. 

An application of those arguments for MorphoFSMs goes hand in hand with a 
deconstruction of the basic presumption based on FSMs. 
From a meta-theoretical point of view it also has to be analyzed if the proof by 
contradiction (reductio ad absurdum) is as safe as it is proclaimed. 

The general principle to proof the existence of non-regular languages is 
using Cantors method of diagonalization. 
"The existence of non-regular languages is guaranteed by the fact that the regular 
languages of any alphabet are countable, and we know that the set of all subsets of 
strings is not countable.” (standard) 

The proof of the existence of the non-regularity of specific languages is using 
the reductio ad absurdum principle and the pumping lemma. 

With the presumptions of monocontextural logic and arithmetic there is nothing to 
add to the established argumentations for a limitation of the power of formal 
languages. 

Treated as monocontextural entities morphogrammatic elaborations get reduced to 
what they are not by definition. 

If we take the graphematic turn to morphogrammatics seriously there are 
fundamental consequences for arithmetic and logic to consider. And the natural 
strategies of argumentations will their naturality and will be unmasked as historically 
limited. 

Correspondence and countability problems 
"Since P(Σ*), the set of all languages, is uncountable, whereas the set of regular 
languages is countable, some language must be non-regular.” 

"A correspondance between words and languages is naturaly established for the 
classical case.  



"Σ*, the set of all finite strings, is countable:  
• We can list all finite strings in order of length, put them in one-to-one 
correspondence with N.  
• E.g., ε, 0, 1, 00, 01, 10, 11, 000,... “ 

This correspondace is, at first, slightly disturbed by the morphogrammatic case: 
Because, 
• There is no atomic alphabet, 
• 0 and 1 are morphogrammatically equal, 
• 00 and 11 are morphogrammatically equal, 
• 01 and 10 are morphogrammatically equal, 
• 000... and 111.. are morphogrammatically equal, 
and so on. 

Hence, the nice correspondance function f for symbolic languages with  
f(ε) = L0, 

f(0) = L  
f(1) = L2, 

and so on, is not holding for morphic languages. At least not in this setting. 

Thus, the well known diagonal construction gets into trouble with the lack of the 
classical one-to-one correspondance: 

D = { w ∈ Σ* | w is not in f(w)}}. 

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-045j-
automata-computability-and-complexity-spring-2011/lecture-
notes/MIT6_045JS11_lec05.pdf 

FSA: finite memory limitation 

"A DFA that recognizes L should first count the number of a's in the beginning of the 
word. The problem is that a DFA has only finitely many states, so it is bound to get 
confused: Some ai and aj take the machine to the same state, and the machine can no 
longer remember whether it saw i or j letters a. Since the machine accepts input 
word aibj, it also accepts input word ajbi, which is not in the language. So the 
machine works incorrectly.”  
"There are n + 1 states q0, q1, ..., qn but the machine has only n different states, so 
two of the states must be identical. 
(Kari, p.29) 

 

"The problem is that we only have finite memory, and so at some point we will 
exhaust the number of a's we can remember. The idea is to make precise the finite 
memory limitation. It is done so by the following classical Pumping Lemma.” 
http://www.cs.wcupa.edu/~rkline/fcs/re-pump.html 

3.4.2.  The morphogrammatic scenario 

Morphic language classification of the morphograms of the trito-universe TU 
• [a]  
• [aa]  
• [ab]  
• [aab...] 
• [aba...] 
• [abb...] 



• [abc...] 
• [abca...] 
and so on. 

The question remains: What is a morphogram that doesn’t belong to a 
morphogrammatic language (script)? 

Nill operator e0 
For some analysis it might be useful to augment the set of operations from e=loop 
and v=differentiation with the operation nil-differentiation = e0. The machines 
represented by DiagrMorphoFSM(e,v) and DiagrMorphoFSM(e,v,e0) are mg-equivalent. 

DiagrMorphoFSM(e,v) and DiagrMorphoFSM(e,v, e0) for [aab] 

     

DiagrMorphoFSM(e,v) and DiagrMorphoFSM(e,v, e0) for [aabb] 

 

Is this supporting the structure if the distinctions v2 to v5 are strong enough to hold 
the memory of the development together?  
In contrast to the FSA concept, there is no such counting process where the result has 
to be remembered and used for the continuation of the process of the construction of 
the word or morphogram. 

For the MorphoFSM the development is not atomic, symbolic and step-wise, one after 
the other: (a, aa, aab, aabb). But retrograde recursive as: (aabb, aabb, aabb, aabb, 
aabb, aabb). The distinction for the ‘head’ “aa” is not complete with the first 
differentiation by “e1”. This would hold only for “aa” alone, as a single and isolated 
morphogram. But the differentiation “e1”, represented as [aa] is embedded into the 



whole morphogram [aabb]. Hence the monomorphy [aa] is determined additionally by 
the distinctions “v2-5” in relation with the ‘tail’ of the morphogram. 

Hence, for [aabb] as [a1a2b3b4], "a is defined by “a2”, “b3” and “b4”. The same for 
“a2”; “a2” is defined retrogradely by “b3” and “b4”. This process goes ‘forwards’ and 
‘backwards’:   
e1;a1-> a2, v2;a1-> b3, v3;b3 -> a2, v4;a1-> b4, v5;b4-> a2, e6;b3->b4. 

Again, this shows the crucial difference of recursive repetition, i.e. recursion, and 
retrograde recursivity, i.e. reflection. 
Therefore, the monomorphy [aa] of the palindrome [aabb] is defined by the whole 
morphogram and there is no need to count and remember the number of elements of 
the ‘head’ of the palindrome to be able to ‘repeat’ it as the ‘tail’. Those 
informations are intrinsically included in the procedure of the definition of the 
morphogram, i.e. the palindrome. 

In other words, the ‘head’ [aa] of the palindrome as such and in isolation has no 
completed and definitely defined existence (cf. § 3.2.2). Again, in the case of FSAs, 
the ‘head' (aa) in (aabb) is recognized and ‘counted’ as complete in itself. 

As a consequence, it has to be seen that “e1” as the first arrow of the diagram 
DiagrMorphoFSM(e,v,e0) is retrogradely determined by the whole diagram, and has a 
different definition if taken in isolation. The same holds for the last arrow, “e6”. This 
might be more obvious because it occurs at the “end” of the morphogram. But again, 
this is misleading. A morphogram is despite its step-wise analysis not a string, chain 
or sequence but an inter-related whole, morphé. This fact is faithfully represented by 
the EN-structure of the morphogram. 

Retrogression and anticipation 
On the other hand, the ‘tail’ gets its characterization by the characterization of the 
‘head’ by the definition of the ‘head’ designed by the ’tail’. 

Again, these retrograde recursivity functions, functioning as the ‘counter’ and as the 
‘memory’ necessary for the construction of the palindrome are defining the crucial 
difference to the classical a-temporal symbolic constructions. 

The retrograde movement to characteize the ‘head’ of a palindrome is involved with 
a progression ‘into’ the ‘tail’ to define by retro-gression the ‘head’ of the 
palindrome. 

Retrograde recursivity is always involved, simultaneously, into anticipation. 

In fact, this retrograde functionality is a general property of morphograms and their 
construction rules. 

An application of this surprising fact to automata shows that morphic automata, 
MorphoFSM, are defined by their immanent temporality based on their retrograde 
recursive characterization. 

Classical finite state automata, and all its further developments, up to Turing 
machines, are by definition a-temporal. They might have access to a storage function 
but they don’t have an intrinsic memory. 

As a result the questions of regularity/nonregularity of languages have to be tackled 
in a very different light. 

3.5.  Formal approximations for MorphoFSA 

3.5.1.  Automata-theoretical approach 

Abstract symbolic automaton 
"An automaton is a triple A = (S, ->, Sin) where S is a set of states, Sin ⊆ S is a set 



of initial states and -> ⊆ S × Σ × S is a transition relation. The automaton is said to be 
deterministic if Sin is a singleton and -> is a function from S × Σ to S. “ (M. Mukund) 
http://www.cmi.ac.in/~madhavan/papers/pdf/tcs-96-2.pdf 

Abstract kenomic automaton MorphA 
In contrast to the symbolic abstract automaton, the morphic abstract automaton is 
defined, at first, over differences and not over states, represented by symbols. 

Hence, a morphic abstract automaton is a triple MorphoA = (Pos, ->, Posin) where Pos 

is a set of differences, marked by positions Pos, Posin ⊆ Pos is a set 
of initial differences, Δ = {εi, νi, i∈N} and -> ⊆ Pos × Δ × Posin is 
a differentiation operation. 

This motivate the table notation for MorphoFSA: 

                                       

Abstract MorphoFSA 
MorphoFSA = (Q, Δ, δ, qs, F)  
   where 
Q is a finite set of positions {qi | i is a non-negative integer} 
Δ is the finite input alphabet of differences, Δ ={εi, νi, i∈N} 
δ is the differentiation operation, δ : D -> Stirling2(2, Q)where D is a finite subset of 
Q × Stirling2(Δ, *) 
qs (is member of Q) is the initial position 
F (is a subset of Q) is the set of final positions. 

MorphoFSA in analogy to FSA 
MorphoFSA = (Q, Σ, δ, qs, F)  
   where 
Q is a finite set of states {qi | i is a non-negative integer} 
Σ is the finite input alphabet 
δ is the transition function, δ : D -> Stirling2(2, Q)where D is a finite subset of Q × 
Stirling2(Σ, *) 
qs (is member of Q) is the initial state 
F (is a subset of Q) is the set of final states . 

3.5.2.  Programming approach 

ML-Programming approach 

Delta = {εi,νj, 1<=i,j>=s(m), m∈N} 
Position: {posi, i∈AG(MG)} 

signature Delta = sig eqtype delta end; 
signature Position = sig eqtype pos end; 

signature Automaton = 
sig 
  eqtype Delta; 
  eqtype Position; 
  type dfa; 
  val next: delta list * pos * dfa -> delta list * pos * dfa; 
  val delta_star: delta list * pos * dfa -> pos; 
  val accept: delta list -> dfa -> bool; 
end;   



(* example Automaton M(2,2) *) 
structure two = struct datatype delta = ε1|ε2|ε3| ν1|ν2|ν3 end; 
structure two = struct datatype position = pos1 | pos2  end; 
structure DFA1 = DFA (structure delta = two; structure position = two); 
open two; 
open two; 
open DFA1; 
val delta = fn pos1 => (fn ν1 => pos2 ) 
                    | pos2 => (fn ν2 => pos1) 
                    | pos1 => (fn ε3 => pos1); 

val M(2,2) = (pos1, delta, [pos2] ); 

     accept [abb] M(2,2); 
             fn pos1 => (fn ν1 => pos2 )      ≡ [ab] = start 
                    | pos2 => (fn ν2 => pos1) ≡ [ab]  
                    | pos1 => (fn ε3 => pos1) ≡ [abb] = final  
               (*  | pos2 => (fn ε0 => pos2) *) 

     accept [abbb] M(2,2) 
            fn pos1 => (fn ν1,4 => pos2 )       ≡ [ab] = start 
                    | pos2 => (fn ν2 => pos1)    ≡ [ab]  
                    | pos1 => (fn ε3 => pos1)    ≡ [abb]  
                    | pos2 => (fn ε5,6 => pos2) ≡ [abbb] = final . 

    accept [abbbb] M(2,2) 
            fn pos1 => (fn ν1,4 => pos2 )                ≡ [ab] = start 
                    | pos2 => (fn ν2,7 => pos1)          ≡ [ab]  
                    | pos1 => (fn ε3,8,9,10 => pos1)   ≡ [abb]  
                    | pos2 => (fn ε5,6 => pos2)          ≡ [abbb] 
                    | pos1 => (fn ε3,8,9,10 => pos1)   ≡ [abbbb] = final. 

3.6.  Observations on morphic automata 

3.6.1.  Iteration and retrogradeness 

What happens if M1 is iterating the transition "pos1, ε3 --> pos1"? 
Hence, a prolongation from the morphogram [abb] to the morphogram [abbb] would 
represent this kind of iteration. 
But a prolongation is changing the whole pattern of the morphogram. Therefore it is 
not covered by an iteration but by a retrograde repetition. 

FSA:  
(abb) --> (abbb): The automaton needs just one run more of the transition rule “q2,b 
--> q2” to recognize the string (abbb). This additional or iterated run is not changing 
retrogradely the definition of the automaton. It is added successively like the 
arithmetic step from n to n+1. 

MorphoFSA:  
[abb] :: (ννε) --> [abbb] :: (ννε νε ε): The additional run “q1,ν4 --> q2” is changing 
retrogradely the labels of the transition ε0 to the labeled transitions “q2, ε5,6  --> 
q2” and the localization of the final state from pos1 to pos2. 



 
MorphoFSA M1.1 

                   

MorphoFSA M1.1.1 

                   

Slogans 
An iteration of a differentiation is not making a difference. But the differentiation of 
a difference is generating a differentiation. (Calculus of differentiation) 

This wording is complementary to the wording of the act of distinction:  
A distinction made again is a distinction. A distinction inside a distinction is no 
distinction (G. Spencer Brown, Calculus of Indication). 

Prolongations 

[aab] ==> {[aaba], [aabb], [aabc]} ==>  
               [aaba] ==> {[aabaa], [aabab], [aabac]}. 

prolongations [aabaa], [aabab], [aabac] 
The diagrams show the iterative and accretive prolongations of the pattern [aaba] to 
the patterns [aabaa], [aabab] and [aabac].  An analysis shows the change of the self-
loop e10 for [aabaa] into a differentiation v10 for the iteration of [b] in [aabab]. An 
accretion happens for [aabac] that augments the aggregation to 3. The sub-

constellation (e remains stable. There are no other direct prolongations for the 
pattern [aaba]. 



 

 

 

 

 

 

3.6.2.  Operations on MorphoFSM 

Several operations on FSM are standard: concatenation, union, difference, star 
operation, insertion. 



Those operations applies directly to the morphic case. The morphogrammatic 
operations of concatenation, insertion, union, are build directly by applying the 
results from morphogrammatics to morphic FSMs. 

An interesting application is the operation of multiplication (cooperation) of 
morphograms and its representation by MorphoFSMs. 

Cooperations of MorphoFSMs 

fsm-kmul(MorphoFSM[abb], MorphoFSM[abb]): kmul[v1v2e3] [v1v2e3]. 

  

 

 

 

e  = (3,12,13,15,16,22,26,27,33,34) 
v  = (1,4,9,13,15,17,19,23,25,28,31,35), 
w = (2,8,11,14,18,21,24,30,32), 
f  = (5,6,7,10,20,21,29,36). 



 

 

 

 



 

 

 



 

 

Limits of representations 
A more systematic study of the mappings between morphograms and MorphoFSM 
diagrams is required to get better insights into the behavior of MorphoFSMs. It seems 
that there is still no unambiguous procedure available to map morphograms onto 
morphic FSM diagrams. The analogy to FSMs might come to an end, and new methods 
shall be applied to continue the study of morphic “ultra-finite differentiation 
machines". 

There is also a quantitative argument: multiplications (cooperations) of morphic 
automata are running quickly into ‘astronomic’ magnitudes. 

length(kmul[MG] [MG]): 



 
 
length(kmul[1,2][1,1]) = 1. 
f (n; 0) : 1, 1, 4, 18, 108, 780, 6600, 63840, 693840, · · · , partial derangements (A144085). 

Some examples for kmul9 

Coalitions of MorphoFSMs: sequential composition 

Coalitions in morphogrammatics are corresponding concatenations of morphograms. 
But concatenation is not additive for morphograms but super-additive. 

"The concatenation of two words is the word obtained by writing the first word 
followed by the second one as a single word. For example, the concatenation 
of data and base is the word database. 
Notation for concatenation is similar to normal multiplication: For example, ab ¢ aab 
= abaab: The multiplication sign does not need to be written if the meaning is clear, 
i.e., uv is the concatenation of words u and v. So, for example, if v = a and w = ab, 
then vw = v ¢ w = aab.” (Kari) 

Examples 
kconcat[a][a]    = {[aa], [ab]} (repetition as iteration and accretion) 
kconcat[aa][ab] = {[aaab], [aaba], [aabc]} 
kconcat[ab][ab] = {[abab], [abba], [abac], [abca], [abbc], [abcb], [abcd]} 

  - kconcat [1,2] [1,2,3]; 
  val it = 
   [[1,2,1,2,3],[1,2,1,3,2],[1,2,2,1,3],[1,2,2,3,1],[1,2,3,1,2],[1,2,3,2,1], 
   [1,2,1,3,4],[1,2,3,1,4],[1,2,3,4,1],[1,2,2,3,4],[1,2,3,2,4],[1,2,3,4,2], 
   [1,2,3,4,5]] : int list list 

Programming in SML/NJ13 
System SML/NJ:        http://www.smlnj.org/ 

Morphogrammatics:     http://www.thinkartlab.com/pkl/SML-sources.NJ/ALL-MG-

nov2012.sml 

Book Morphogrammatik: http://www.thinkartlab.com/pkl/media/mg-book.pdf 
The file, ALL-MG-nov2012.sml, contains, 
              1. smlcus.sml (alley stoughton), 
              2. SML-Basic functions (UEMA), 
              3. ALL.sml (Kenogrammatics, Thomas Mahler). 

Hence, the nice classical example for the concatenation of “data” with “base” 
resulting in “database” is not holding in this restrictive way for morphogrammatic 
concatenations. 

Following the retrograde recursivity of morphic concatenation, the super-additivity 
takes into account the different possible meanings of the terms “data” and “base” 
marked by the different realizations of the patterns. In the case of the formal 
example, with [aa] and [ab], there are 7 possible interpretations, i.e. realizations of 



the pattern [ab] in respect to [aa]. Those different interpretations might be taken 
successively, recurring to different meanings of the operation “concatenation”, or 
they might be conceived as representing the whole range of the complex meaning of 
the concatenation in consideration, and are therefore understood as holding all 
together at once by mediation in a complex semantic context. 

Not just the added morphogram [ab] is changing in the process of concatenation with 
the morphogram [aa] but retrogradely the morphogram [aa] is changing its role in the 
‘context’ of the composition too. This holds for the semantic example too. The term 
“data” gets a different meaning in the composition with the term “base” as it has in 
another context and also as it has in isolation. 

Thus the concatenation “kconcat” of the two morphic machines MorphoFSM [aa] and 
MorphoFSM[ab], i.e. “e1(pos1)" and “v1(pos1, pos2)", is offering 7 different 
sequentially or ‘parallel’ composed automata.14

 

length(kconcat[MG][MG]) 
 

 

length(kmul[1,2][1,2]): Central polygonal numbers: n^2 - n + 1.  
http://oeis.org/A002061 

Comparison 
length(kmul[1,2][1,2])< length(kconcat[1,2][1,2]). 
Some further examples for kconcat15. 

3.6.3.  Dissemination of MorphoFSMs 

Up to this point the possible polycontexturality of the involved languages and 
machines had not yet been explicitly thematized. 

The analogy to finite state machines and regular languages of morphic languages 
(scriptures) and machines with the classical operations on languages and machines 
comes to an end with the introduction of transpositional (transjunctional, 
rejectional, etc.) strategies of combining languages and machines. Transpositional 
operations are exploiting the mechanisms of bifunctoriality of diamond category 
theory for the purpose of disseminating classical and non-classical concepts of 
languages and machines. 
http://www.users.abo.fi/jboling/cdes/op_on_aut.pdf 

Taken this way, the complexion of languages and machines under the operation 
of transposition implemented by bifunctoriality isn’t regular anymore. 

The reason is obvious. The operation of transposition (∐) is not a member of the 
standard operations on regular languages and machines of complement, union, 
intersection, star, etc. (∪, ∩, ^, \, *) and machine compositions parallel || and 
product X, and it isn’t definable by them either. 



Hence, the class of regular languages is not closed under 
the bifunctorial transposition operation. 

But there is an inverse interpretation too: In the framework of polycontexturality, 
i.e. the dissemination operations over the kenomic grid, the domain of regular 
languages is not complete. 

Classical regular languages and their machines are restricted to a linear 
(serial/parallel) non-interactive type of composition. 

Polycontextural compositions of languages are interactional. 

With that, we are finally entering the domain of polycontextural complexions of 
interactional, reflectional and interventional morphic finite differentiation machines. 

 

 

This exercise has to be declinated over all constituents of the combined, i.e. 
disseminated MorphoFSMs. Therefore, ‘alphabets’, ‘states’ and ‘transitions’ 

of  and i=1,...,6 are mutually disjunct (discontextural) but mediated and each 
is defined autonomously at its place and contexture. 

Regular languages are closed under the operation of union, intersection, difference, 
etc. The new topic is mediation: Are regular languages closed under mediation? 
Mediation of operations that are not involved in negations or permutations are 



directly mediated, and are not posing any problems. Hence, a complexion of 

mediated union, intersection and concatenation like “ is “closed” under 
mediation. While a complexion, containing negational operations is not directly 
closed. 

Hence, the complexion with union, intersection and difference is violating the 
conditions of mediation. 

 

 

Also mediation as such is a crucial feature of polycontextural structurations, the more 
interesting constellations are entering the game as transpositional, reflectional and 
interventional operations. 

Short reminder of some schemes 

 

 



Those topics of trans-contextural interactivity had been studied in previous papers 
and the results are directly applicable to polycontextural structurations of mediated 
languages and machines. 
http://memristors.memristics.com/Graphematics%20of%20Multisets/Graphematics%2
0of%20Multisets.html 

Criteria of mediation 
Polycontextural distribution of machines is one aspect of dissemination, the other 
aspect is the mediation of the distributed machines. The most abstract approach is 
achieved by the fact that machines are mathematically defined as algebras and 
coalgebras. Algebras are naturally conceived as hierarchies of operator- and operand-
systems. With the application of the proemial relation, a mediation of algebras is 
achieved as the chiastic mechanism of the deplacement and reversion of the 
algebraic hierarchies. 

A less abstract approach of mediation of finite state machines, i.e. difference 
machines, is accessible by the involvement of the initial start states and the final 
acceptance states of the machines. Hence, 
a chiasm between initial and final  entities or constellation of distributed machines is 
defining their mediation. Mediation determines the range of combination of possible 
constellations of combinations. This range is specially critical to the combination of 
operations and the reversion of those operations. 

Classical example of mediation 

As well known, a crucial part of morphogrammatics as it was developped by Gunther 
in the ‘60s, contains the study of mediating and transforming the morphogrammatic 
patterns, i.e. the 15 basic morphograms of polycontextural logical operations into 
each other. 

 

The question of the composability of the 15 basic morphograms into a 
morphogrammatic compound is answered by the SML-function "exmm" 
(Morphogrammatik, p. 103). 
Example for composition 
Are the morphograms mg1, mg1 and mg2 composable? The answer is no. 

- exmm [mg 1, mg 1, mg 2]; 
val it = false : bool 

Are the morphograms mg15, mg2 and mg11 composable? The answer is yes. 
- exmm [mg 15, mg 2, mg 11]; 
val it = true : bool 

 



A reduction of complexity is naturally achieved with the reduction of the 
morphograms to the 'values' of its mediating points. This enables a classification of 
the sub-diagonals into the same,“C”, or different, “F”, sub-diagonals of the 
components of the whole morphogrammatic complexion. Hence, C = fst = lst and F = 
fst!= lst of a component. 

Examples 
- allFCs 3; 
val it = [[C,C,C],[C,F,F],[F,F,C],[F,C,F],[F,F,F]] : fc list list 

- allFCs 4; 
val it = 
  [[C,C,C,C,C,C],[C,F,F,C,F,F],[F,F,C,F,C,F],[F,C,F,F,F,C],[C,C,C,F,F,F], 
   [C,F,F,F,C,C],[F,F,C,C,F,C],[F,C,F,C,C,F],[C,F,F,F,F,F],[F,F,C,F,F,F], 
   [F,F,F,F,F,C],[F,C,F,F,F,F],[F,F,F,F,C,F],[F,F,F,C,F,F],[F,F,F,F,F,F]] 
  : fc list list 
- length(allFCs 4); 
val it = 15 : int 

Also well studied are the operations of the so called reflector R on morphogrammatic 
complexions. 

 

 

 



 

O M  = O1(M1), O2(M ), O3(M3): 
- subsystems 3; 
val it = [(1,[1,2]),(2,[2,3]),(3,[1,3])] : (int * int list) list 

The operation “subsystems” is based on the concept of morpogrammatic sequences, 
i.e. on the sequential mediation of morphograms to a linear chain of morphograms. 
Hence, the distribution of the type “c” of morphograms over 3 places becomes 
[c,c,c]. Because there are different realizations of a type, a kind of polysemy is at 
work. (polysemy, Morphogrammatik, Chapter 8.4) 

In contrast, and as an extension and further concretization of morphogrammatics, 
a tabular distribution of morphograms is introduced. With that, polysemy is resolved 
as a mode of distribution of a morphogram in the kenomic matrix. 
Thus, the general unspecified example [c,c,c] for the distribution of the morphogram 

for logical implication in the matrix becomes: [c1.1, -, -; -, -, -; -, c  or [c1.1, 
c1.2, -; -, -, -; -, -, c3.3]. 

Tabular matrix 

O M  = [O1(M1, M2, M3); O2(M1, M2, M3); O3(M1, M2, M3)]: 
-submatrices 3; 
[1,((1,[1,2]),(2,[2,3]),(3,[1,3]))],[2,((1,[1,2]),(2,[2,3]),(3,[1,3]))],[3,((1,[1,2]),(2,[2,3
]),(3,[1,3]))]. 

[1, 
((1,[1,2]),  
(2,[2,3]), 
(3,[1,3]))], 

[2, 
((1,[1,2]), 
(2,[2,3]), 
(3,[1,3]))], 

[3, 
((1,[1,2]),  
(2,[2,3]), 
(3,[1,3]))]. 

Mediation 
The topics and techniques of morphogrammatic de/compositions and reflector-
transformations are directly applicable to the de-compositions of MorphoFSMs. 



 

Combinatorics 
The number of FCs for regular quadratic mediations (matrices) is given with the SML 
function length(allFCs m), calculcated by the formula for the Bell numbers. 16

 

. 
http://oeis.org/A000110/list 

How many reflectors exist for regular matrices nxn? 
 

. 

The number series of length(RG n) is part of the Mersenne sequence n -> (2 ). 

Further concretizations of the abstraction procedure are given with the gh- and klor-
analysis (Morphogrammatik, Chapter 7). 

GH-abstraction 
Considering the side-diagonals of the special example of composed matrices with 
second = third element as “G” and second != third element as “H”, a new abstraction 
is introduced. 

Examples 

- allGHs 3; 
val it = [[G,G,G],[G,G,H],[G,H,G],[G,H,H],[H,G,G],[H,G,H],[H,H,G],[H,H,H]] 
  : gh list list 

- allGHs 4; 
val it = 
  [[G,G,G,G,G,G],[G,G,G,G,G,H],[G,G,G,G,H,G],[G,G,G,G,H,H],[G,G,G,H,G,G], 



   [G,G,G,H,G,H],[G,G,G,H,H,G],[G,G,G,H,H,H],[G,G,H,G,G,G],[G,G,H,G,G,H], 
   [G,G,H,G,H,G],[G,G,H,G,H,H],[G,G,H,H,G,G],[G,G,H,H,G,H],[G,G,H,H,H,G], 
   [G,G,H,H,H,H],[G,H,G,G,G,G],[G,H,G,G,G,H],[G,H,G,G,H,G],[G,H,G,G,H,H], 
   [G,H,G,H,G,G],[G,H,G,H,G,H],[G,H,G,H,H,G],[G,H,G,H,H,H],[G,H,H,G,G,G], 
   [G,H,H,G,G,H],[G,H,H,G,H,G],[G,H,H,G,H,H],[G,H,H,H,G,G],[G,H,H,H,G,H], 
   [G,H,H,H,H,G],[G,H,H,H,H,H],[H,G,G,G,G,G],[H,G,G,G,G,H],[H,G,G,G,H,G], 
   [H,G,G,G,H,H],[H,G,G,H,G,G],[H,G,G,H,G,H],[H,G,G,H,H,G],[H,G,G,H,H,H], 
   [H,G,H,G,G,G],[H,G,H,G,G,H],[H,G,H,G,H,G],[H,G,H,G,H,H],[H,G,H,H,G,G], 
   [H,G,H,H,G,H],[H,G,H,H,H,G],[H,G,H,H,H,H],[H,H,G,G,G,G],[H,H,G,G,G,H], 
   [H,H,G,G,H,G],[H,H,G,G,H,H],[H,H,G,H,G,G],[H,H,G,H,G,H],[H,H,G,H,H,G], 
   [H,H,G,H,H,H],[H,H,H,G,G,G],[H,H,H,G,G,H],[H,H,H,G,H,G],[H,H,H,G,H,H], 
   [H,H,H,H,G,G],[H,H,H,H,G,H],[H,H,H,H,H,G],[H,H,H,H,H,H]] : gh list list 
- length(allGHs 4); 
val it = 64 : int 

KLOR-abstraction 
A further concretization of the classsification is achieved with: 

Qk = Qf ∩ Qg 
Ql  = Qf ∩ Qh 
Qo = Qc ∩ Qh 
Qr = Qc ∩ Qg. 

- allKLORs 3; 
val it = 
  [[O,O,O],[O,O,R],[O,R,O],[O,R,R],[R,O,O],[R,O,R],[R,R,O],[R,R,R],[O,L,L], 
   [O,L,K],[O,K,L],[O,K,K],[R,L,L],[R,L,K],[R,K,L],[R,K,K],[L,L,O],[L,L,R], 
   [L,K,O],[L,K,R],[K,L,O],[K,L,R],[K,K,O],[K,K,R],[L,O,L],[L,O,K],[L,R,L], 
   [L,R,K],[K,O,L],[K,O,K],[K,R,L],[K,R,K],[L,L,L],[L,L,K],[L,K,L],[L,K,K], 
   [K,L,L],[K,L,K],[K,K,L],[K,K,K]] : klor list list 
val it = 40 : int 

- allKLORs 4;17 
- length(allKLORs 4); 
val it = 960 : int 

In other words, the reduction techniques of reflector-morphogrammatics that enable 
to handle “astronomic” complexity by structural reductions is easily applied to the 
morphogrammatic complexions of MorphoFSMs. 

Some more information about the dissemination of logical systems at: 
http://memristors.memristics.com/Notes%20on%20Polycontextural%20Logics/Notes%2
0on%20Polycontextural%20Logics.pdf 

Some further general construction of bifunctoriality and dissemination are available 
at: 
http://memristors.memristics.com/Polyverses/Polyverses.pdf 

Parallel compositions of FSAs 
http://syrcose.ispras.ru/2011/files/syrcose11_submission_016.pdf 

3.6.4.  Mono- and polysemy 

A full determination of the new morphogram (machine) has to take into account all 
the differences of the morphogram (machine). Hence, for length(morphogram) = m, 

s(m) =  differences are defining the morphogram of length m. Otherwise, the 
morphogram isn’t fully determined. But morphograms with just two elements might 
be written with less than the full range of differences. 

[aabc]: (ενν)(νν)(ν) 
[aaba]: (ϵνν)(νε)(ε) 

Hence, two-element morphic automata might be treated as abstractions of classical 
automata. The difference of the definition of the strings (words, morphograms) still 



remains. Classical automata are based on identity, morphic automata are based on 
kenogrammatic difference. 

Therefore, the automaton M1 for [abbbb] is reducible to the eqivalent automaton 
M1': 

Automaton M1 
accept [abbbb] M1 
            fn pos1 => (fn ν1,4 => pos2 )                ≡ [ab] = start, with ν1 
                    | pos2 => (fn ν2,7 => pos1)          ≡ [ab]  
                    | pos1 => (fn ε3,8,9,10 => pos1)   ≡ [abb]  
                    | pos2 => (fn ε5,6 => pos2)          ≡ [abbb] 
                    | pos1 => (fn ε3,8,9,10 => pos1)   ≡ [abbbb] = final. 

M1(ν1, ε3) => M1(ν1, ν  ε3) for two elements. 

Automaton M1’  

States: Σ = {νi, εj, i,j∈N} 
Positions: {pos1, pos2} 
Initial: {pos1} 
Transitions: 
pos1, ν1 --> pos2 

pos2, ν2 --> pos  
pos1, ε3 --> pos1 
Final: {pos1}. 
M1 is accepting : [abb]. 

3.6.5.  Determinism and non-determinism 

A FSA is deterministic, DFA, iff its runs are unique, otherwise it is called a non-
deterministic FSA, i.e. NFA. 

The DFA machine (A2) has different runs for the word (abbb): 
q1, a,b --> q1 
q1, b  --> q2 
q2, b --> q2. 

Run one: q1,a --> q1, b -->q1, b --> q2,b --> q2 : (abbb). 
Run two: q1,a --> q1, b -->q1, b --> q1,b --> q1 : (abbb). 

Trivially, all depends on the self-loop "q1,a --> q1, b -->q1, b” which has two entries. 

For morphic FSA the situation is quite different. The semiotic difference of the 
elements “a” and “b” are not relevant in this situation. Both are defining a self-
application at the state q1. Therefore, they are difference-theoretically equivalent. 
As a consequence, the criterion for the distinction of deterministic and non-
deterministic automata vanishes. 

Hence, kenomic automata MorphFSM are neither deterministic nor non-deterministic. 

This observation is not excluding iterated self-loops for morphic automata. 

Morphic automaton for [abbb]: 
[A2] = M1:  
q1, ν1,4 --> q2 
q2, ν2    --> q1 
q1, ε3    --> q1 
q2, ε5,6 --> q2. 

[A2] has just one single run for the recognition of the morphogram [abbb] albeit there 
is a single and a double loop involved. 



Because the enumeration of the differences in the matrix of the morphogram are 
slightly arbitrary, other runs are possible on the base of different enumerations of the 
differences of the runs. 

3.6.6.  Logic, Categories, FSM and MorphoFSM 

FSM have a prominent application in logic and numerous realizations in the design of 
logical circuits. 

Neither logical nor arithmetical circuits in the sense of the term are topics of 
morphogrammatic automata. This is a natural consequence for machines that don’t 
have states and state-based transitions. 

To keep the analogy alive, a fundamentally different kind of ‘arithmetics’ and ‘logic’ 
has to be intoduced. This exactly was the project of Gotthard Gunther at the BCL in 
the ‘60s. 

There is also no chance for micro-electronic realizations of morphic machines. Again, 
simulations don’t become realizations. (Pattee) 

A real chance for a very different kind of realizations seems to become accessible 
with the discovery/invention of memristors and the building of memristive systems. 

It seems that the very crucial ‘feature’ of retrograde recursivity holds for both 
attempts: the kenogrammatic and the memristic concept and realization of 
iterability (Derrida, Gunther, Chua). 

3.6.7.  Diamond characterization 

It is well know that finite state machines are adequately modeled by category-
theoretical methods. The category PATH is mapping the transitions of finite state 
machine. 

"For the technical definitions, again let R ⊂ X × X or (X,R) denote a (general) relation. 
We associate to it the following category denoted by PATH(X,R) or just PATH for 
short, if no confusion can arise.” (Pfalzgraf) 

Despite the nice formal and diagrammatic analogy to the classical concept of finite 
state machines by which the concept of morphogrammatic machines had been 
modeled, there are in fact no path involved, modeling the activity of morphic finite 
differentiation machines. Differences in the sense of diamond theory are ruled by 
jumps, bridges and bridging, and are constituting not categories 
but saltatories (jumpoids). 

Hence a more sophisticated modeling and formalization is required that is able to 
establish the interplay between the category of finite state machines with its “flow 
of information” and the saltatory “enaction” of difference machines. 

Finite state machines are ruled by the category PATH, morphic differentiation 
structurations are involved with the diamond-theoretic journeys JOURN. In a diamond 
framework, PATH and JOURN are complementary. 
http://www.thinkartlab.com/pkl/lola/Diamond%20Relations/Diamond%20Relations.ht
ml 

"What I proposed as diamonds at different places, are structures with very different 
laws compared to the laws of categories. That is, diamonds, which consist of a 
complementary interplay of categories and saltatories, are as categorical systems, 
identitive, commutative and associative in respect to their objects, morphisms and 
composition. Therefore, they are inheriting all the laws and methods from category 
theory. 

In sharp contrast, saltatories as parts of diamonds, are ruled by differences, jumps 
(saltisitions) and jump-associativity, etc. Additionally, diamonds as such, are 



containing bridges and bridging rules between categories and saltatories.” (Kaehr, 
30/01/2009) 
http://www.thinkartlab.com/pkl/lola/Interactivity.pdf 

A definition of finite state automata FSA implies/replays 
the complementary construction/instruction of morphic differentiation machines 

MorphoFSM, Diamond(FSA, MorphoFSM) = || MorphoFSM. 

This approach is focused on the complementarity of the autonomous types of 
machines, FSA and MorphoFSM, and is not involved in any derivations based on 
abstractions. 

Explicit diagram of the diamond interplay of FSAs and MorphoFSM without hetero-
morphic jumps. 

   

Diamond formula with a hetero-morphic jump ||: 

Diamond(FSA, MorphoFSM) = ( )  | MorphoFSM || MorphoFSM. 

 

3.7.  Further comparisons 

3.7.1.   Quotient automata of FSA and MorphoFSA 

Are morphic automata not just quotient automata of classical automata? It could be 
thought that morphic automata are just classical automata over a morphic quotient 
structure of the general alphabet. As mentioned before, morphogrammatically, the 
sequence [abbb] and [baaa] are equivalent. Hence, belonging to the equivalence 
class Σ/morph. 

But things seem to be more intricate. 
Take an automaton and an equivalence relation of its words Σ* then following 
properties hold. 
For ∀ x, y ∈ Σ* and a ∈ Σ: 
(a) ≡A is an equivalence relation over Σ*. 
(b) x ≡A y ==> ∀ a. xa  ≡A ya. 

(c) x ≡A y ==> x∈ L(A) <==> y ∈ L(A).|||| 
(d)  ≡A is of finite index. 
http://www.tcs.tifr.res.in/~pandya/grad/aut06/lect2.pdf 



Example for the morphic situation 

[abbb] ≡trito [baaa] ==> ∀ a. [abbb][a] ≡A [baaa][a]. 
Obviosly, the equivalence relation doesn’t hold. Therefore, the trito-equivalence 
relation is not right congruent for x,y and a. 
[abbba] !≡trito [baaaa]. 

There is a chance to save the relation with tritogrammatic monads: [a] ∈ Σ/ . 
a = [a], b = [a], c = [a], etc.  
[abbb] ≡trito [baaa] ==> ∃ [a]. [abbb][b] ≡A [baaa][a]. 

Definition:   

For ∀ x, y ∈ Σ* and [a] ∈ Σ/ : 
x ≡A y <==> [x] ≡trito [y]   
(b') x ≡trito y ==> ∀x,y ∃ [a]. [x][a] ≡trito [y][a]. 

This construction is also working if [a] is not a monad of Σ/  but a language 
containing words with length n>=2 has properly to be adjusted. Without that, the 
proof of the existence of the equivalence relation, mediated by the third term, is 
disturbed. 

For n=2, w = {[aa], [ab]}. 

If w1= [aa] then w  w3 = [bb] 
x ≡trito y ==> ∀x,y ∃ [aa]. [x][aa] ≡trito [y][bb]. 
 

If w1= [ab] then w  w3 = [ba] 
x ≡trito y ==> ∀x,y ∃ [ab]. [x][ab] ≡trito [y][ba]. 

x=[abbb] ≡trito y=[baaa] ==> ∀x,y ∃ [ab]. [abbb][ab] ≡trito [baaa][ba]. 

n=3: 

If w1= [abc] then w  w3 = [bac] 
x ≡trito y ==> ∀x,y ∃ [abc]. [x][abc] ≡trito [y][bac]. 
x=[abbb] ≡trito y=[baaa] ==> ∀x,y ∃ [abc]. [abbb][abc] ≡trito [baaa][bac] 
 

If w1= [abc], then w  w3 = [bca] 

x ≡trito y ==> ∀x,y ∃ [abc]. [x][abc] ≡trito [y][bca]. 
x=[abbb] ≡trito y=[baaa] ==> ∀x,y ∃ [abc]. [abbb][abc] !≡trito [baaa][bca]. 

On the other hand it has to be recalled that the concatenation operation in trito-
languages is not unique. There are AG(kseq)+1 different concatenation operations of 
a word with a monad. 
Hence [abbb][a] = {[abbba], [abbbb], [abbbc]}, and 
         [baaa][b] = {[baaaa], [baaab], [baaac]}. 

Equivalence:  
         [abbba] ≡trito [baaab], 
         [abbbb] ≡trito [baaaa], 
         [abbbc] ≡trito [baaac].         
But,   [abbba] !≡trito [baaac], etc. 

As a consequence, MorphoFSA are not quotients of FSA:  MorphoFSA != FSA/ . 

3.7.2.  General comparison of automata 

Those observations are leading naturally to an interesting comparison between the 
basic concepts of DFA, QuotDFA and MorphoDFA. 



          

DFA = A = (Q, Σ, δ, q0, F). 

QuotDFA = A/~~ := (Q’, Σ, δ’, [q0], F') 
               with 
               Q' = {[p] | p ∈ Q} 
               δ' ([p], a) = [δ(p,a)] 
               F' = {[f] | f∈ F}. 
        Congruence 
        p ~~ q => ∀a ∈ Σ. δ(p,a) ~~ δ(q,a). 
        L(A/~~) = L(A). 

MorphoDFA = [A] = (Qtrito, Σtrito, δtrito, q , Ftrito) 
                     with 
                     Qtrito =  {Q | AG(sign(morphogram))},  

                     Σtrito  = {sign | sign ∈ Stirling2(*, Σ),  
                     δtrito  = {ε, ν | EN(morphogram), N},  

                     q = q  Σtrito, 
                     Ftrito  = F ⊆ Σtrito. 

3.7.3.  Cellular automata based on differences 

A further step towards a purely difference-theoretic approach to kenomic cellular 
automata has to consider both, the head and the result of the transition, 
as differences. This proper approach to a morphogrammatic notation is technically 
complicating the applications of the rules of kenoCA. But it is preserving the ‘history-
dependence’ of its transition rules. 

ENtoKS(R7) = 
[aab;b] 

 



 

Differentiation mode of presentation of the basic cellular automata rules for 
morphic CA. 
ENstructure(rule) = differenitation-rule Rdiff; 

 

 

 

The property of ‘history-dependence’ becomes more obvious with the case of rules 
with more than two kenomic “states": 

 



 

http://memristors.memristics.com/CA-
Overview/Short%20Overview%20of%20Cellular%20Automata.pdf 

3.8.  Classical machines with input and output 

3.8.1.  Mealy Machine 

"JFLAP defines a Mealy machine M as the sextuple M = (Q, Σ, Γ, δ, ω, qs) where 
Q is a finite set of states {qi | i is a nonnegative integer}  
Σ is the finite input alphabet  
Γ is the finite output alphabet  
δ is the transition function, δ : Q × Σ -> Q  
ω denotes the output function, ω : Q × Σ -> Γ  
qs (is a member of Q) is the initial state 

Mealy machines are different than Moore machines in the output function, ω. In a 
Mealy machine, output is produced by its transitions, while in a Moore machine, 
output is produced by its states." 

 

"Instead of accepting or rejecting input, a Mealy machine produces output from an 
input string.” 
http://www.jflap.org/tutorial/ 

3.8.2.  Moore Machine 

"JFLAP defines a Moore machine M as the sextuple M = (Q, Σ, Γ, δ, ω, qs) where 
Q is a finite set of states {qi | i is a nonnegative integer}  
Σ is the finite input alphabet  
Γ is the finite output alphabet  
δ is the transition function, δ : Q × Σ -> Q  
ω denotes the output function, ω : Q -> Γ  
qs (is a member of Q) is the initial state." 

"Moore machines are different than Mealy machines in the output function, ω. In a 
Moore machine, output is produced by its states, while in a Mealy machine, output is 
produced by its transitions." 

3.8.3.  Turing Machines 

"JFLAP defines a Turing Machine M as the septuple M = (Q, Σ, Γ, δ, qs, O, F) where 
Q is the set of internal states {qi | i is a nonnegative integer}  



Σ is the input alphabet  
Γ is the finite set of symbols in the tape alphabet 
δ is the transition function  
S is Q * Γn -> subset of Q * Γn * {L, S, R} 
O is the blank symbol. 
qs (is member of Q) is the initial state  
F (is a subset of Q) is the set of final states.” 

"If the head is under an “a” and the machine is in state “q0”, then replace the “a” 
with an “x” and move the head to the right. When done adding input, the area 
between q0 and q1 should resemble the example below.” 

 

New symbol 
(* The status of the Turing machine is a 4-ple 
*         (state, left_part, curr_char, right_part) 
* A Turing_program (transition-function) is a list of transition_rules, each having the 
form 
*    (curr_state,curr_symbol,new_state,new_symbol) 
* where 'new_symbol' may be any symbol of the alphabet plus Move_left and 
Move_right 
*) 

http://www.youtube.com/watch?v=IkYhfk4X47c 

For a classical machine, the new symbol is an arbitrary element of the alphabet of 
signs. The alphabet is stable, it might be finite or infinite. But it is not changing 
during the operation. 

Morphic machines are not alphabet-based machines but depend on the actions of the 
machine. Therefore, the new symbol is new only in respect of the produced symbols 
by the actions and not in respect of a pre-given alphabet. 

Limitation of the modeling 
As mentioned before, the introduction of the differentiation machines is just a first 
step of a deconstruction of symbolic machines. The presented applications of 
morphogrammatics onto symbolic machines is not yet considering the necessity of a 
deconstruction of further features of the symbolic machines, like the structure 
of stacks and tapes. 

As much as morphograms are not properly understood as sequences, the read write 
actions on morphograms have to be adjusted to the more tabular and holistic 
situations of morphic machines. 

3.8.4.  Examples 



morphoTM-A(even) 

 

read “A”: write “A”; goto R 
run= AAAA => AAAA => AAAA => AAAA  =>  ^: accepted 

Transition rules 

 

morphoTM-AAAA2BBBB 

 

Explanation 
read “A”: write “B”; goto R. 

read “ write “  goto R = acceptance state “q0”. 

Transition rules 

 

Linearized notation, plus EN-structure. 
run: [AAAA] to [BBBB] 

run= [AAAA]    =>     [BAAA]       =>   [BABA]      =>   [BBBA]      =>   [BBBB] => ^: 
accepted. 

EN:  

Hence, the morphoTM transforms [AAAA} into [BBBB] with  

EN[AAAA] = EN[BBBB], therefore  [AAAA] = [BBBB]. 

It might be said that the morphoTM is transforming the morphogram [AAAA] into itself 
by changing its semiotic appearance from [AAAA] to [BBBB].  
The chain "[AAAA] => [BAAA] => [BBAA] => [BBBA] => [BBBB] =MG [AAAA]" is self-
applicative:  
morphoTM([AAAA]) =MG [AAAA]. 



On more turn: 
run= [AAAA]  =>  [BAAA]  =>  [BABA]  => [BBBA]  =>  [BBBB] =>  
       [BBBB]  =>   [ABBB]  =>  [ABAB]  => [AAAB]  =>  [AAAA] => ^: accepted. 

morphoTM-e-v 

 

EN-

run: => => =>

 
run=       [AAAA]          =>     [BAAA]        =>      [BACA]     =>      [BACD]      =>   [ABCD
] =>  ^: accepted 

Explanation 
read “e”: write “v”; goto R. 
read “v”: write “v”; goto R. 
EN-notation, plus linearized morphogram in trito-normal form (tnf) with [AAAA] to 
[ABCD]. 
run: [AAAA] to [ABCD]. 

Elementary morphoTMs for iteration and accretion 

 

morphoTM-iteration   

 

LIN-run:  [AA]   =>   [AAA]     =>      [AAAA]     =>      [AAAAA]  =>   ^: accepted 

morphoTM-accretion 



 

run=       [AB]  =>  [ABC]     =>     [ABCD]     =>      [ACDE]  => ^: accepted 

morphTM-(v,e) 

 

Accretion 
[e,e,e] => [v,v,v]: [AAA]/[e,e,e] => [ABA]/[v,e,v] => [ABC]/[v,v,v]. 
Alternatively: 
[e,e,e] => [v,v,v]: [AAA]/[e,e,e] => [BAA]/[v,v,e] => [BAC]/[v,v,v]. 

Inversion 
[e,v,v] => [v,v,e]: [AAB]/[e,v,v] => [ABA]/[v,e,v] => [ABB]/[v,v,e]. 

- kref[1,1,2]; 
val it = [1,2,2] : int list 

Mixed iterative and accretive repetitions 

Transition rules 

 

run iteratively on {A, B}:             AA  AAB  AABB AABBA AABBAA  AABBAAB ... 
run accretively on {A, B, C, ...}:  AA AAB  AABB AABBC AABBCC  AABBCCD  AABBCCDD 
... 

Even productions are, trivially, morphic palindromes. 

- ispalindrome [1,1,2,2,3,3,4,4,5,5]; 
val it = true : bool 

 

3.8.5.  Representations and combinations 

 



 

 

Different types of symbolic machines (FSM, Mealy, Moore, Turing, Gurevitch, etc.) 
might be composed on the base of compounds of morphogrammatic machines. This 
may be called morphogrammatically based parallelism of semiotic machines. For the 
case of mediation, the conditions of mediation have to be accepted additionally to 
get the polycontextural types of negations. With that, some nice categorical braids of 
machines with Hamilton choreographies and mediated by interchanchability, enter 
the game. 

Not in the alphabet 
This message “Not in the alphabet”, doesn’t apply for morphic automata. Simply 
because morphic automata are not alphabet-based. On the other hand it means for 
morphic atomata that any identifiable sign (event) is recognized by its kind of 
differentiation. In other words, any differentiation is recognized as a “sign" (event) 
for calculation. 

Hence, a classical automaton, defined by the alphabet {a,b} will not work for another 

alphabet, say {
defined on (aaa...). What counts for morphic automata, again, are the 
differentiations, differences, distinctions and not the atomic symbols (data) 
perceived. Hence, again, morphic automata are information-independent; they are 
not processing information as their data. 

http://www.cs.duke.edu/~rodger/jflappapers/ChakrabortyX2011.pdf 
http://krex.k-
state.edu/dspace/bitstream/handle/2097/1401/SrinivasaAdityaUppu2009.pdf 

3.9.  Presentations of automata: transition tables and de Brujin 
graphs 
3.9.1.  Transition tables 
"If the set of states Q is finite, then the transition functions are commonly 
represented as state transition tables. The construction of all possible transitions 
driven by strings in the free group has a graphical depiction as de Bruijn 
graphs.” (WiKi, Semiautomata) 

3.9.2.  de Brujin graphs for FSM 



 

 

4.  Critical questions 

4.1.  Are morphic FSAs Finite State Automata at all? 

This proposal tried to sketch the idea of a morphogrammatic analogon to the semiotic 
or symbolic concept of FSAs and others. At the end of the journey of analogization it 
might turn out that non of the definitorial constituents of those machines where the 
journey started could be covered by the morphogrammatic approach to abstract 
machines. 

In fact, morphoSFA have neither an initial nor a final state. In fact, they don’t have 
states neither. They are not really feed by words of a regular language. They don’t 
begin and also don't stop. Their transitions are independent of the vocabulary, hence 
they are also not transitions in the sense of the definition. 

They are differentiations, paradoxically differing and defering the positions of the 
structuration that are defining the differences as constellations or “states” of the 
machine. 

The opposite characterization to the classical concept might give a better insight into 
the definition and behavior of morphogrammatic machines. 

Instead of a defined start, like for FSA, morphic machines don’t have a start. What 
we know about the behavior of the machine is depending on the point of view of an 
observer. An observation might take place and a beginning might be postulated.  
Any description of the behavior of the machine has to distinguish at least two 
possibilities of description: An internal and an external position of an observation. 

An external observation might be closer connected with the point of view of classical 
automata theory and their concepts and apparatus. From there, the analogy and 
deconstruction might take place. 
An internal description has to be aware of the non-conventual feature of the morphic 
automaton. 
This approach might be supported by the well known ‘experimental’ intervention 
with automata and the co-algebraic structures involved. 



Some lessons could be learned from the construction and application of other 
morphogrammatic systems and ‘machines’. It seems, that the morphic approach 
to cellular automata is still a novelty and worth to be studied. 

4.2.  Is there any use for morphic automata? 

The usefulness of classical machine models like FSA, DFA, Mealy and Moore and Turing 
Machines, and many others, for computation, linguistics, modal logics and AI is well 
known, established, proven and documented. A further elaboration shall consider 
omega-languages and Büchi-automata in comparison to MorphoAutomata. 

It is also well known that such automata concepts had been crucial for the 
development of modern theoretical linguistics. Noam Chomsky’s hierarchies are still 
governing the field. 

On the other hand, it is not well known and only vaguely understood that the 
difference-theoretical approach to semiotics and linguistics of Ferdinand de Saussure 
might uncover structures and processes, i.e. structurations, that are closer to the 
functioning of language than the Leibniz-Chomsky paradigm, founded by the concept 
of abstract calculi, based on atomic signs, concatenation/substitution and linearity, 
could be. Obviously, de Saussure's approach doesn’t fit into the Leibniz-Chomsky 
paradigm of computation. 

Dealing with differences, and differences only, in a system of differences, where the 
loci of the differences in a complexion are themselves distinguished by differences in 
the system of differences, hence, self-referentially and classically paradoxical, 
determines the ‘value’ of the difference, might get a fundamentally new and 
interesting conceptualization, ‘formalization’ and programming towards a 
determination of the “values” of differences by morphogrammatics and morphic 
machines. 

De Saussure wasn’t well recognized by the academic linguists, especially by the 
German school, and was then later successfully denied by the international Chomsky 
movement of generative linguistics. 

"In language there are only differences. Even more important: a difference generally 
implies positive terms between which the difference is set up; but in language there 
are only differences without positive terms.” F. de Saussure 

Jaques Derrida discovered the deep difference-theoretical endeavour of de Saussure's 
semiotics (sémiologie), not just for a theory of language but for an understanding of 
thinking at all. This post-philosophical approach got some recognition and determined 
the international movements of deconstructionism and deconstructivism. 

Unfortunately, despite the radical insight into a pre-logical structure of de Saussure’s 
understanding of differences and system, différance, any attempts to connect this 
movement with more formal and operative achievements had not only been denied 
but harshly criticized, and institutionally killed. 

Today, it could be a chance to begin to study this promising approach again. Might be 
with the help of morphogrammatics and morphogrammatic automata as formal and 
inspirational models. 
At least, this could be one answer to the question: What are difference-based 
automata for? 

Morphic automata, desinged and understood as closed automata without input nor 
output in the strict sense are also giving some operational help to understand 
Humberto Maturana’s concept of autopoiesis. Despite the fact that morphic automata 
are just in their very beginning, morphic automata should nevertheless be contrasted 



with the classical, first- and second order cybernetic approaches, to a theory of living 
systems. 

Additional approaches: Peirce versus de Saussure 

"Final summary: The Saussurean dyadic sign model can be mapped on 48 dyadic sign 
models as 3×3 sub-matrices in 4 contextures, based on the 3-adic Peircean sign 
model.” (A. Toth) 
Alfred Toth, The Saussurean sign model and its formal representation  
http://www.mathematical-semiotics.com/pdf/Saussure.pdf 

Object theory  
Freud’s difference of “Wortvorstellung” and “Sachvorstellung". 
The rationality of the “Wortvorstellung” in its logical form is covered by the 
‘propositions' (apophansis) of two-valued logic. The rationality of the Sachvorstellung 
is not logical at all but is covered by transformation laws (Umformungsgesetze) of 
morphogrammatics. (Kaehr, Mitterauer) 
"Die Sache selbst”, the object as such, is ruled by differentiations, the handling of 
the notions of the object is ruled by the laws of representation. 

"Was wir die unbewußte Objektvorstellung heißen, zerlegt sich uns in die 
'Wortvorstellung' und in die 'Sachvorstellung', die in der Besetzung, wenn nicht der 
direkten Sacherinnerungsbilder, doch entfernterer und von innen abgeleiteter 
Erinnerungsspuren besteht. Mit einem Male glauben wir nun zu wissen, wodurch sich 
eine bewußte Vorstellung von einer unbewußten unterscheidet. Die beiden sind 
nicht, wie wir gemeint haben, verschiedene Niederschriften desselben Inhaltes an 
verschiedenen psychischen Orten, auch nicht verschiedene funktionelle 
Besetzungszustände an demselben Orte, sondern die bewußte Vorstellung umfaßt die 
'Sachvorstellung' plus der zugehörigen 'Wortvorstellung', die unbewußte ist die 
Sachvorstellung allein.” (S. Freud) 
http://www.gleichsatz.de/b-u-t/spdk/freud.html 

Abstractions versus differences 
Abstractions to define quotient automata, or general quotient structures, are build 
over “positive terms” of an algebraic structure, i.e. a system. Such an abstraction 
applies over a relational system (algebra), and relations are holding between 
“positive terms”. Mathematically, a relation is introduced as a set of a Cartesian 

product, Rel ⊆ Set x Set, for binary relations, with positive elements, Pos∈Set. 
Hence, quotient automata are derived as abstractions over their relational structure 
(algebra) and are not defined by differences building differentiations of different 
actions, behaviors or events. 

Differentiations, differences and distinctions in the sense of morphogrammatics and 
their interactional play are defining elements of relations, sets and operations as 
special, frozen, activities of differentiations. 

De Saussure 

But the paradox is that: In the language, there are only differences, without positive 
terms. That is the paradoxical truth. At least, there are only differences if you are 
speaking either of meanings, or of signified or signifying elements. 

"Strictly speaking there are no signs but differences between signs. 

"There are only differences; no positive terms at all. 

Here I am speaking of a difference in the signifying element. 
The mechanism of signifying elements is based on differences.” 

 



"At first sight, no relation between the a) and the b) arrows. The value of a word 
will be the result only of the coexistence of the different terms. The value is the 
counterpart of the coexisting terms. How does that come to be confused with the 
counterpart of the auditory image?” 
 
"In a language, as in every other semiological system, what distinguishes a sign is 
what constitutes it”. 
 
Ferdinand de Saussure (1910), Third Course of Lectures on General Linguistics 
http://www.marxists.org/reference/subject/philosophy/works/fr/saussure.htm 

In the language itself, there are only differences. Even more important than that is 
the fact that although in general a difference presupposes positive terms between 
which the difference holds, in language there are only differences, and no positive 
terms. Whether we take the signification or the signal, the language includes neither 
ideas nor sounds existing prior to the linguistic system, but only conceptual and 
phonetic differences arising out of that system. In a sign, what matters more than 
any idea or sound associated with it is what other sounds surround it (Course in 
General Linguistics 166). 
http://semioticsoflaw.com/site/derrida.php 
 
" Dans la langue, comme dans tout système sémiologique, ce qui distingue un signe, 
voilà tout ce qui le constitue. C'est la différence qui fait le caractère, comme elle 
fait la valeur et l'unité. " (p.168.) 
" la langue est pour ainsi dire une algèbre qui n'aurait que des termes complexes " 
(p.168). 

Manuel Gustavo Isaac, Les paradoxes de l’arbitraire. Le négatif, la différence, 
l’opposition dans le signe saussurien.  
"Le paradoxe est double : premièrement, la sémiologie saussurienne est en 
contradiction avec le bon sens extensionnel de la théorie des ensembles définissant 
une relation comme un sous-ensemble d’un produit cartésien (R ⊆ a×a), donc par ses 
éléments ; deuxièmement, parce qu’elle est non-extensionnelle et dérive les unités 
sémiotiques d’une relation d’inégalité (négativité, différence, oppositivité), la 
sémiologie exige une caractérisation intensionnelle de la négation. Comme l’abolition 
d’un paradoxe exige un changement de perspective sur les principes, on modifie le 
système des ‘axiomes’ sémiologiques en inversant ses règles de dérivation : 
l’arbitraire n’est plus principe, il a une raison. Passer de l’arbitraire comme principe 
au principe de l’arbitraire, autrement dit le renverser par le biais de l’analyse de ses 
trois notions cardinales, implique de le motiver. C’est là le paradoxe.”  
"L’objet linguistique est complexe. 
http://www.rifl.unical.it/articoli/rifl032010/010isaac.pdf 

Derrida/Searle 

"Every concept is necessarily and essential inscribed in a chain or a system, within 
which it refers to another and to other concepts by the systematic play of 
differences. Such a play, then--difference is no longer simply a concept, but the 
possibility of conceptuality.” (Derrida) 

Thinking just the ‘obvious’ surface structure of thinking and writing and escaping 
prominently tedious “deep-structure” analysis is still a dominant strategy in 
established contemporary philosophy. Searle’s surface argument, could easily be 
radicalized by a surface-understanding of computer programming languages, and 
obviously with a reasonable reference to Chomsky too. It seems not easy to grasp that 
formal languages are faithfully realizing the atomistic and linear structure of 



phonological language with its proper hierarchy of the dominant dichotomy of 
operator and operand. 

"On Derrida's account, however, it is essential not only to Husserl, but to philosophy, 
and indeed to "the history of the world during an entire epoch," including the 
present, that speech should be mistakenly privileged over writing. If Derrida's claim 
were to be taken at its face value, I believe that a contrary argument could be given 
equal or even greater plausibility. 

"From the medieval development of Aristotle's logic through Leibniz's Characteristica 
Universalis through Frege and Russell and up to the present development of symbolic 
logic, it could be argued that exactly the reverse is the case; that by emphasizing 
logic and rationality, philosophers have tended to emphasize written language as the 
more perspicuous vehicle of logical relations. 

"Indeed, as far as the present era in philosophy is concerned, it wasn't until the 
1950s that serious claims were made on behalf of the ordinary spoken vernacular 
languages, against the written ideal symbolic languages of mathematical logic. [..] 

"When Derrida makes sweeping claims about "the history of the world during an 
entire epoch,"the effect is not so much apocalyptic as simply misinformed.”  
John Searle, “Reiterating the Differences: A Reply to Derrida”, Glyph 1:198-208 

Différance, differentiation 

"Les différences sont donc <<produites>> -- différées -- par la différance. Mais 
qu’est-ce qui diffère ou qui diffère ? Autrement dit, qu’est-ce que la différance? 
Avec cette question nous atteignons un autre lieu et une autre ressource de la 
problématique. Qu’est-ce qui diffère? Qui diffère? Qu’est-ce que la différance? 

"Les deux valeurs apparemment différentes de la différance se nouent dans la 
théorie freudienne: le différer comme discernabilité, distinction, écart, diastème, 
espacement, et le différer comme détour, délai, réserve, temporisation.” 

http://www.jacquesderrida.com.ar/frances/differance.htm 

Derrida, Cybernetics, Graphematics 
"If the theory of cybernetics is by itself to oust all metaphysical concepts -- including 
the concepts of soul, of life, of value, of choice, of memory -- which until recently 
served to separate the machine from man, it must conserve the notion of writing, 
trace, written mark, or grapheme, until its own historico-metaphysical character is 
also exposed. 

[...[E]ven before being determined as human... or nonhuman, the gramme -- or the 
grapheme -- would thus name the element. An element without simplicity. An 
element, whether it is understood as the medium or irreducible atom, of the arche-
synthesis in general, of what one must forbid oneself to define within the system of 
oppositions in metaphysics, of what consequently one should not even call 
experience in general, that is to say the origin of meaning in general.] 
(Jacques Derrida, Of Grammatology 9) 
http://fractalontology.wordpress.com/2008/01/16/systems-of-control-derrida-and-
machines/ 

Further differences 

Rodolpe Gasché, “The Eclipse of Difference”  
http://www.dif-ferance.org/The%20Eclipse%20of%20Difference.pdf 

Maturana, Varela and Heinz von Foerster 

Von Foerster’s “Memory without records”  
 
Maturana’s Autopoiesis 



 
Varela’s Closure Thesis 

The focus of Varela’s Extended Calculus of Indication was on the closure of a formal 
system, hence self-referentiality and re-entry as attempts to conceptualize it 
’beyond’ logical paradoxes, and not on structuration. Structuration is the ‘process’ of 
building new structures as ‘answers’ to the interactions of the structured system, 
morphé, to the ‘perturbations’ by its environment. 

http://memristors.memristics.com/MorphoProgramming/Morphogrammatic%20Progra
mming.html 

Some stuff has to be repeated millions of times until our brain gets hold of it. 

4.2.1.  Semiotics of palindromes and anagrammatics 

"The idea of the palindrome is closely associated with the material and corporeal 
aspect of verbal signification. Animal images are used for symbolizing the palindromic 
processes of regression and circularity: the crab or cancer, and the snake biting its 
own tail (the gnostic image of Ouroboros). 

"Likewise, the mirror metaphor has been applied to palindrome structures. Largely a 
visual phenomenon, the palindrome epitomizes the spatiality of language and 
scripture, something indicated already on the metaphorological plane of classical 
terminology: "running back again" (palindromos), "stepping back" (versus retrogradus) 
-- a temporal motion in space. 

"Allowing for reversibility of the linear discourse, the palindrome represents the very 
idea of transformation and metamorphosis. 

"Palindromic reversion is a device for breaking up the linearity of speech and, by 
implication, the irreversibility of time. Irreversibility "thematizes itself in the 
palindrome form by eating itself up" (a quotation from Oskar Pastior, the outstanding 
contemporary German palindrome poet). 

"Sequentiality and causality of time and space are annihilated in the palindromic 
motion. Thus, the palindrome can be conceived of as a chronotope of revolution. 
('chrono-topos': time-space)." 
Erika Greber, PALINDROMON - ANAGRAMMATISMOS - REVOLUTIO: The Palindrome from 
the Perspective of Cultural Semiotics 
http://realchange.org/pal/semiotic.htm 

Christina Ljungberg, ‘Damn mad’: Palindromic figurations in literary narratives 
"Palindromes are chiastic figurations that arrest the habitual tempo-linear sequence 
of language and, in so doing, focus attention on the very act of signification. In 
narrative, they often prove pivotal for the overall structure of the text, going far 
beyond mere wordplay or verbal virtuosity. Because they can be read both backwards 
and forwards, palindromes emerge as multilayered, multidirectional, 
and polytemporal mappings reflecting the notorious instability of human lives, where 
the ever shifting present oscillates between the past and the future. In contemporary 
fiction, such palindromic vacillation becomes an iconic representation of temporal 
shifting, allowing us to discern the texture of temporality, not as abstractly 
conceived but as concretely lived and hence as innovatively performing an unstable 
present.” 
http://benjamins.com/#catalog/books/ill.5.21lju 

All the emphasis made about the temporality of palindromes and chiasms is the result 
of interpretations, some hermeneutics and wild semiotic and culture-theoretical 
speculations. They might find some legitimation in the context of the whole corpus, 
texts, paintings, graphics, musical compositions, etc. but not at all in the figure of 
the chiasm and its derivation, the semiotic palindrome as such. 



It seems that the difference-theoretical thematization, formalization and 
implementation of chiasms and palindromes by MorphoFSMs gives a much more 
comprehensive and convincing understanding of its ‘deviant’ logical structure. 

Base Infinity 
"Computer poetry is warfare carried out by other means, a warfare against 
conventionality and language that has become automatized. Strange as it seems, 
our finite state automata have become the poet’s allies in this struggle, the long 
historical battle by which mankind pries into the surface of language to reveal its 
latent mysteries...”, R.W. Bailey, Computer Poems (1973) 

Sunday, December 11, 2011 

 

Generated from this Source: 
www.thinkartlab.com/pkl/media/DERRIDA/DERRIDA.htm 
Posted by Rollie Bollocks at 3:51 PM    
Labels: codework, n-grams 
http://baseinfinity.blogspot.co.uk/2011/12/derridas-machines-machine.html 

Notes 
1
  Deconstructing beginnings 

"Einerseits lassen sich Kenogrammsequenzen rekursiv konstruieren, wenn auch nur in Analogie zu semiotischen 

Systemen, fehlt ihnen doch ein echtes initiales Objekt. Sie haben somit eine Objekt-Struktur. Andererseits sind 

komplementär zur rekursiven Konstruktion, Kenogrammkomplexionen nicht als vorfindliche Objekte zu 

verstehen. Sie sind verdeckt und lassen sich nicht direkt beschreiben, bzw. charakterisieren. 

Es gibt, genau betrachtet, kein Anfangskenogramm für einen induktiven bzw. rekursiven Aufbau der 

Kenogramm-Komplexionen. Die Kenogrammsequenzen sind somit als solche nicht in einer Wortalgebra 

beschreibbar.  

Bisdahin wurde in der Literatur zur Kenogrammatik das Problem des fehlenden Anfangskenogramms zum 

rekursiven Aufbau der Kenogrammsequenzen bewusst mehr oder weniger trickreich zu Gunsten einer 

Konstruktion ausgeklammert. 

Eine positive Lösung des Anfangsproblems könnte darin liegen, einen behavioral viewpoint einzunehmen und 



mit dem Konzept der Co-Induktion zu arbeiten. Eine Methode für die Formalisierung könnte sein, ausgewogen 

zwischen Konstruktion und Dekonstruktion, zwischen streng finaler und streng terminaler Ausrichtung 

einzusetzen. 

Ein weiterer Schritt müsste dann allerdings darin bestehen, diesen Gegensatz als solchen zu verwerfen und ihn 

als monokontextural zu identifizieren, zu dekonstruieren und entsprechend neue Formalismen zu entwickeln.” 

(SKIZZE-0.9.5, 2003) 

Aufbau : Konstruktoren 

Abbau : Selektoren 

Observatoren 

Algebra: Induktion 

Co-Algebra: Coinduktion 

Dualität 

Systemwechsel 

Weder Text noch Formel noch Programm 

"Die Kenogrammatik ist weder durch Zeichenreihen konstruktiver Art, noch durch Zeichenströme koinduktiver 

Art zu bestimmen. Im Gegensatz zu mathematischen und programmiersprachlichen Verschriftungen erzeugen 

kenomische Ereignisse keinen Text, weder einen rein linearen noch einen vernetzt-tabularen. Sowohl 

Zeichenreihen wie auch Zeichenströme sind über einem Alphabet definiert, sei es durch Induktion oder durch 

Koinduktion und sind in einer fundierten oder unfundierten Tektonik hierarchischer oder zirkulärer Strukturen 

versammelt.” 

1
  Deconstructing beginnings 

"Einerseits lassen sich Kenogrammsequenzen rekursiv konstruieren, wenn auch nur in Analogie zu semiotischen 

Systemen, fehlt ihnen doch ein echtes initiales Objekt. Sie haben somit eine Objekt-Struktur. Andererseits sind 
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(SKIZZE-0.9.5, 2003) 
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Co-Algebra: Coinduktion 
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"Die Kenogrammatik ist weder durch Zeichenreihen konstruktiver Art, noch durch Zeichenströme koinduktiver 

Art zu bestimmen. Im Gegensatz zu mathematischen und programmiersprachlichen Verschriftungen erzeugen 

kenomische Ereignisse keinen Text, weder einen rein linearen noch einen vernetzt-tabularen. Sowohl 

Zeichenreihen wie auch Zeichenströme sind über einem Alphabet definiert, sei es durch Induktion oder durch 

Koinduktion und sind in einer fundierten oder unfundierten Tektonik hierarchischer oder zirkulärer Strukturen 

versammelt.” 

3
  http://www.tcs.tifr.res.in/~pandya/grad/aut06/lect4.pdf 

http://coalg.org/cmcs12/slides/ciancia.pdf 

http://www.math.uni-hamburg.de/home/loewe/2006-07-I/Venema.pdf 

http://coalg.org/cmcs12/slides/ciancia.pdf 

4
  - nfirstq (55, TU); 

val it = 

  [[1],[1,1],[1,2],[1,1,1],[1,1,2],[1,2,1],[1,2,2],[1,2,3],[1,1,1,1], 

   [1,1,1,2],[1,1,2,1],[1,1,2,2],[1,1,2,3],[1,2,1,1],[1,2,1,2],[1,2,1,3], 

   [1,2,2,1],[1,2,2,2],[1,2,2,3],[1,2,3,1],[1,2,3,2],[1,2,3,3],[1,2,3,4], 

   [1,1,1,1,1],[1,1,1,1,2],[1,1,1,2,1],[1,1,1,2,2],[1,1,1,2,3],[1,1,2,1,1], 

   [1,1,2,1,2],[1,1,2,1,3],[1,1,2,2,1],[1,1,2,2,2],[1,1,2,2,3],[1,1,2,3,1], 



   [1,1,2,3,2],[1,1,2,3,3],[1,1,2,3,4],[1,2,1,1,1],[1,2,1,1,2],[1,2,1,1,3], 

   [1,2,1,2,1],[1,2,1,2,2],[1,2,1,2,3],[1,2,1,3,1],[1,2,1,3,2],[1,2,1,3,3], 

   [1,2,1,3,4],[1,2,2,1,1],[1,2,2,1,2],[1,2,2,1,3],[1,2,2,2,1],[1,2,2,2,2], 

   [1,2,2,2,3],[1,2,2,3,1]] : int list list 

5
  - ENstructure [1,1,1,2,2,1,1,1]; 

val it =  

[[], 

[(1,2,E)], 

[(1,3,E),(2,3,E)], 

[(1,4,N),(2,4,N),(3,4,N)], 

[(1,5,N),(2,5,N),(3,5,N),(4,5,E)], 

[(1,6,E),(2,6,E),(3,6,E),(4,6,N),(5,6,N)], 

[(1,7,E),(2,7,E),(3,7,E),(4,7,N),(5,7,N),(6,7,E)], 

[(1,8,E),(2,8,E),(3,8,E),(4,8,N),(5,8,N),(6,8,E),(7,8,E)]]  

: (int * int * EN) list list 

- ENstructure[1,1,1,1,2,2,1,1,1,1]; 

val it =  

[[], 

[(1,2,E)], 

[(1,3,E),(2,3,E)], 

[(1,4,E),(2,4,E),(3,4,E)], 

[(1,5,N),(2,5,N),(3,5,N),(4,5,N)], 

[(1,6,N),(2,6,N),(3,6,N),(4,6,N),(5,6,E)], 

[(1,7,E),(2,7,E),(3,7,E),(4,7,E),(5,7,N),(6,7,N)], 

[(1,8,E),(2,8,E),(3,8,E),(4,8,E),(5,8,N),(6,8,N),(7,8,E)], 

[(1,9,E),(2,9,E),(3,9,E),(4,9,E),(5,9,N),(6,9,N),(7,9,E),(8,9,E)], 

[(1,10,E),(2,10,E),(3,10,E),(4,10,E),(5,10,N),(6,10,N),(7,10,E),(8,10,E),(9,10,E)]]  

: (int * int * EN) list list 

 

- ENstructure[1,1,1,1,2,2,2,1,1,1,1]; 

val it =  

[[], 

[(1,2,E)], 

[(1,3,E),(2,3,E)], 

[(1,4,E),(2,4,E),(3,4,E)], 

[(1,5,N),(2,5,N),(3,5,N),(4,5,N)], 

[(1,6,N),(2,6,N),(3,6,N),(4,6,N),(5,6,E)], 

[(1,7,N),(2,7,N),(3,7,N),(4,7,N),(5,7,E),(6,7,E)], 

[(1,8,E),(2,8,E),(3,8,E),(4,8,E),(5,8,N),(6,8,N),(7,8,N)], 

[(1,9,E),(2,9,E),(3,9,E),(4,9,E),(5,9,N),(6,9,N),(7,9,N),(8,9,E)], 

[(1,10,E),(2,10,E),(3,10,E),(4,10,E),(5,10,N),(6,10,N),(7,10,N),(8,10,E),(9,10,E)], 

[(1,11,E),(2,11,E),(3,11,E),(4,11,E),(5,11,N),(6,11,N),(7,11,N),(8,11,E),(9,11,E),(10,11,E)]]   

: (int * int * EN) list list 

6
  nfirstq(5000, TU) 

List.filter palindrome “nfirstq(5000, TU)"; 

- length it; 

val it = 180 : int 

val it = 

[[1],[1,1],[1,2], 

[1,1,1],[1,2,1],[1,2,3], 

[1,1,1,1],[1,1,2,2],[1,2,1,2], [1,2,2,1],[1,2,2,3],[1,2,3,1],[1,2,3,4], 

[1,1,1,1,1],[1,1,2,1,1], [1,1,2,3,3],[1,2,1,2,1],[1,2,1,3,1],[1,2,2,2,1], 

[1,2,2,2,3],[1,2,3,1,2], [1,2,3,2,1],[1,2,3,2,4],[1,2,3,4,1],[1,2,3,4,5], 

 

[1,1,1,1,1,1],[1,1,1,2,2,2],[1,1,2,1,2,2],[1,1,2,2,1,1],[1,1,2,2,3,3],[1,1,2,3,1,1], 

   [1,1,2,3,4,4],[1,2,1,1,2,1],[1,2,1,1,3,1],[1,2,1,2,1,2],[1,2,1,3,2,3], 

   [1,2,1,3,4,3],[1,2,2,1,1,2],[1,2,2,2,2,1],[1,2,2,2,2,3],[1,2,2,3,3,1], 

   [1,2,2,3,3,4],[1,2,3,1,2,3],[1,2,3,1,4,3],[1,2,3,2,3,1],[1,2,3,2,3,4], 

   [1,2,3,3,1,2],[1,2,3,3,2,1],[1,2,3,3,2,4],[1,2,3,3,4,1],[1,2,3,3,4,5], 

   [1,2,3,4,1,2],[1,2,3,4,2,1],[1,2,3,4,2,5],[1,2,3,4,5,1], [1,2,3,4,5,6], 

 

[1,1,1,1,1,1,1],[1,1,1,2,1,1,1],[1,1,1,2,3,3,3],[1,1,2,1,2,1,1], 

   [1,1,2,1,3,1,1],[1,1,2,2,2,1,1],[1,1,2,2,2,3,3],[1,1,2,3,1,2,2], 

   [1,1,2,3,2,1,1],[1,1,2,3,2,4,4],[1,1,2,3,4,1,1],[1,1,2,3,4,5,5], 



   [1,2,1,1,1,2,1],[1,2,1,1,1,3,1],[1,2,1,2,1,2,1],[1,2,1,2,3,2,3], 

   [1,2,1,3,1,2,1],[1,2,1,3,1,4,1],[1,2,1,3,2,1,2],[1,2,1,3,4,2,4], 

   [1,2,1,3,4,5,4],[1,2,2,1,2,2,1],[1,2,2,1,3,3,1],[1,2,2,2,2,2,1], 

   [1,2,2,2,2,2,3],[1,2,2,3,1,1,2],[1,2,2,3,2,2,1],[1,2,2,3,2,2,4], 

   [1,2,2,3,4,4,1],[1,2,2,3,4,4,5],[1,2,3,1,2,3,1],[1,2,3,1,3,2,1], 

   [1,2,3,1,3,4,1],[1,2,3,1,4,2,1],[1,2,3,1,4,5,1],[1,2,3,2,1,2,3], 

   [1,2,3,2,3,2,1],[1,2,3,2,3,2,4],[1,2,3,2,4,2,1],[1,2,3,2,4,2,5], 

   [1,2,3,3,3,1,2],[1,2,3,3,3,2,1],[1,2,3,3,3,2,4],[1,2,3,3,3,4,1], 

   [1,2,3,3,3,4,5],[1,2,3,4,1,2,3],[1,2,3,4,1,5,3],[1,2,3,4,2,3,1], 

   [1,2,3,4,2,3,5],[1,2,3,4,3,1,2],[1,2,3,4,3,2,1],[1,2,3,4,3,2,5], 

   [1,2,3,4,3,5,1],[1,2,3,4,3,5,6],[1,2,3,4,5,1,2],[1,2,3,4,5,2,1], 

   [1,2,3,4,5,2,6],[1,2,3,4,5,6,1], [1,2,3,4,5,6,7], 

 

[1,1,1,1,1,1,1,1], [1,1,1,1,2,2,2,2],[1,1,1,2,1,2,2,2],[1,1,1,2,2,1,1,1],[1,1,1,2,2,3,3,3], 

   [1,1,1,2,3,1,1,1],[1,1,1,2,3,4,4,4],[1,1,2,1,1,2,1,1],[1,1,2,1,1,3,1,1], 

   [1,1,2,1,2,1,2,2],[1,1,2,1,3,2,3,3],[1,1,2,1,3,4,3,3],[1,1,2,2,1,1,2,2], 

   [1,1,2,2,2,2,1,1],[1,1,2,2,2,2,3,3],[1,1,2,2,3,3,1,1],[1,1,2,2,3,3,4,4], 

   [1,1,2,3,1,2,3,3],[1,1,2,3,1,4,3,3],[1,1,2,3,2,3,1,1],[1,1,2,3,2,3,4,4], 

   [1,1,2,3,3,1,2,2],[1,1,2,3,3,2,1,1],[1,1,2,3,3,2,4,4],[1,1,2,3,3,4,1,1], 

   [1,1,2,3,3,4,5,5],[1,1,2,3,4,1,2,2],[1,1,2,3,4,2,1,1],[1,1,2,3,4,2,5,5], 

   [1,1,2,3,4,5,1,1],[1,1,2,3,4,5,6,6],[1,2,1,1,1,1,2,1],[1,2,1,1,1,1,3,1], 

   [1,2,1,1,2,2,1,2],[1,2,1,1,3,3,2,3],[1,2,1,1,3,3,4,3],[1,2,1,2,1,2,1,2], 

   [1,2,1,2,2,1,2,1],[1,2,1,2,2,3,2,3],[1,2,1,2,3,1,3,1],[1,2,1,2,3,4,3,4], 

   [1,2,1,3,1,3,2,3],[1,2,1,3,1,3,4,3],[1,2,1,3,2,1,3,1],[1,2,1,3,2,4,3,4], 

   [1,2,1,3,3,1,2,1],[1,2,1,3,3,1,4,1],[1,2,1,3,3,2,1,2],[1,2,1,3,3,4,2,4], 

   [1,2,1,3,3,4,5,4],[1,2,1,3,4,1,2,1],[1,2,1,3,4,1,5,1],[1,2,1,3,4,2,1,2], 

   [1,2,1,3,4,5,2,5],[1,2,1,3,4,5,6,5],[1,2,2,1,1,2,2,1],[1,2,2,1,1,3,3,1], 

   [1,2,2,1,2,1,1,2],[1,2,2,1,3,2,2,3],[1,2,2,1,3,4,4,3],[1,2,2,2,1,1,1,2], 

   [1,2,2,2,2,2,2,1],[1,2,2,2,2,2,2,3],[1,2,2,2,3,3,3,1],[1,2,2,2,3,3,3,4], ...] 

  : int list list 

9
  - kmul [1,2,3][1,2,3]; 

val it = 

  [[1,2,3,2,3,1,3,1,2],[1,2,3,2,3,1,4,1,2],[1,2,3,2,3,1,3,1,4], 

   [1,2,3,2,3,1,4,1,5],[1,2,3,2,3,1,3,4,2],[1,2,3,2,3,1,4,5,2], 

   [1,2,3,2,3,1,3,4,5],[1,2,3,2,3,1,4,5,6],[1,2,3,3,1,2,2,3,1], 

   [1,2,3,3,1,2,2,4,1],[1,2,3,3,1,2,4,3,1],[1,2,3,3,1,2,4,5,1], 

   [1,2,3,3,1,2,2,3,4],[1,2,3,3,1,2,2,4,5],[1,2,3,3,1,2,4,3,5], 

   [1,2,3,3,1,2,4,5,6],[1,2,3,2,1,4,3,4,1],[1,2,3,2,1,4,4,3,1], 

   [1,2,3,2,1,4,3,5,1],[1,2,3,2,1,4,5,3,1],[1,2,3,2,1,4,4,5,1], 

   [1,2,3,2,1,4,5,4,1],[1,2,3,2,1,4,5,6,1],[1,2,3,2,1,4,3,4,2], 

   [1,2,3,2,1,4,4,3,2],[1,2,3,2,1,4,3,5,2],[1,2,3,2,1,4,5,3,2], 

   [1,2,3,2,1,4,4,5,2],[1,2,3,2,1,4,5,4,2],[1,2,3,2,1,4,5,6,2], 

   [1,2,3,2,1,4,3,4,5],[1,2,3,2,1,4,4,3,5],[1,2,3,2,1,4,3,5,6], 

   [1,2,3,2,1,4,5,3,6],[1,2,3,2,1,4,4,5,6],[1,2,3,2,1,4,5,4,6], 

   [1,2,3,2,1,4,5,6,7],[1,2,3,2,4,1,3,1,2],[1,2,3,2,4,1,4,1,2], 

   [1,2,3,2,4,1,5,1,2],[1,2,3,2,4,1,3,1,4],[1,2,3,2,4,1,3,1,5], 

   [1,2,3,2,4,1,4,1,5],[1,2,3,2,4,1,5,1,4],[1,2,3,2,4,1,5,1,6], 

   [1,2,3,2,4,1,4,3,2],[1,2,3,2,4,1,3,5,2],[1,2,3,2,4,1,5,3,2], 

   [1,2,3,2,4,1,4,5,2],[1,2,3,2,4,1,5,6,2],[1,2,3,2,4,1,3,5,4], 

   [1,2,3,2,4,1,4,3,5],[1,2,3,2,4,1,5,3,4],[1,2,3,2,4,1,3,5,6], 

   [1,2,3,2,4,1,5,3,6],[1,2,3,2,4,1,4,5,6],[1,2,3,2,4,1,5,6,4], 

   [1,2,3,2,4,1,5,6,7],[1,2,3,4,1,2,2,3,1],[1,2,3,4,1,2,2,4,1], 

   [1,2,3,4,1,2,2,5,1],[1,2,3,4,1,2,3,4,1],[1,2,3,4,1,2,3,5,1], 

   [1,2,3,4,1,2,5,3,1],[1,2,3,4,1,2,5,4,1],[1,2,3,4,1,2,5,6,1], 

   [1,2,3,4,1,2,2,3,4],[1,2,3,4,1,2,2,3,5],[1,2,3,4,1,2,2,4,5], 

   [1,2,3,4,1,2,2,5,4],[1,2,3,4,1,2,2,5,6],[1,2,3,4,1,2,3,4,5], 

   [1,2,3,4,1,2,3,5,4],[1,2,3,4,1,2,5,3,4],[1,2,3,4,1,2,3,5,6], 

   [1,2,3,4,1,2,5,3,6],[1,2,3,4,1,2,5,4,6],[1,2,3,4,1,2,5,6,4], 

   [1,2,3,4,1,2,5,6,7],[1,2,3,3,1,4,2,3,1],[1,2,3,3,1,4,2,4,1], 

   [1,2,3,3,1,4,2,5,1],[1,2,3,3,1,4,4,3,1],[1,2,3,3,1,4,5,3,1], 

   [1,2,3,3,1,4,4,5,1],[1,2,3,3,1,4,5,4,1],[1,2,3,3,1,4,5,6,1], 

   [1,2,3,3,1,4,4,3,2],[1,2,3,3,1,4,2,3,5],[1,2,3,3,1,4,5,3,2], 

   [1,2,3,3,1,4,2,4,5],[1,2,3,3,1,4,4,5,2],[1,2,3,3,1,4,5,4,2], 

   [1,2,3,3,1,4,2,5,6],[1,2,3,3,1,4,5,6,2],[1,2,3,3,1,4,4,3,5], 



   [1,2,3,3,1,4,5,3,6],[1,2,3,3,1,4,4,5,6],[1,2,3,3,1,4,5,4,6], 

   [1,2,3,3,1,4,5,6,7],[1,2,3,3,4,1,2,1,4],[1,2,3,3,4,1,4,1,2], 

   [1,2,3,3,4,1,2,1,5],[1,2,3,3,4,1,5,1,2],[1,2,3,3,4,1,4,1,5], 

   [1,2,3,3,4,1,5,1,4],[1,2,3,3,4,1,5,1,6],[1,2,3,3,4,1,2,3,4], 

   [1,2,3,3,4,1,4,3,2],[1,2,3,3,4,1,2,3,5],[1,2,3,3,4,1,5,3,2], 

   [1,2,3,3,4,1,2,5,4],[1,2,3,3,4,1,4,5,2],[1,2,3,3,4,1,2,5,6], 

   [1,2,3,3,4,1,5,6,2],[1,2,3,3,4,1,4,3,5],[1,2,3,3,4,1,5,3,4], 

   [1,2,3,3,4,1,5,3,6],[1,2,3,3,4,1,4,5,6],[1,2,3,3,4,1,5,6,4], 

   [1,2,3,3,4,1,5,6,7],[1,2,3,4,3,1,3,1,2],[1,2,3,4,3,1,2,1,4], 

   [1,2,3,4,3,1,2,1,5],[1,2,3,4,3,1,5,1,2],[1,2,3,4,3,1,3,1,4], 

   [1,2,3,4,3,1,3,1,5],[1,2,3,4,3,1,5,1,4],[1,2,3,4,3,1,5,1,6], 

   [1,2,3,4,3,1,3,4,2],[1,2,3,4,3,1,3,5,2],[1,2,3,4,3,1,2,4,5], 

   [1,2,3,4,3,1,2,5,4],[1,2,3,4,3,1,5,4,2],[1,2,3,4,3,1,2,5,6], 

   [1,2,3,4,3,1,5,6,2],[1,2,3,4,3,1,3,4,5],[1,2,3,4,3,1,3,5,4], 

   [1,2,3,4,3,1,3,5,6],[1,2,3,4,3,1,5,4,6],[1,2,3,4,3,1,5,6,4], 

   [1,2,3,4,3,1,5,6,7],[1,2,3,4,1,5,2,3,1],[1,2,3,4,1,5,2,4,1], 

   [1,2,3,4,1,5,2,5,1],[1,2,3,4,1,5,2,6,1],[1,2,3,4,1,5,3,4,1], 

   [1,2,3,4,1,5,3,5,1],[1,2,3,4,1,5,5,3,1],[1,2,3,4,1,5,3,6,1], 

   [1,2,3,4,1,5,6,3,1],[1,2,3,4,1,5,5,4,1],[1,2,3,4,1,5,6,4,1], 

   [1,2,3,4,1,5,5,6,1],[1,2,3,4,1,5,6,5,1],[1,2,3,4,1,5,6,7,1], 

   [1,2,3,4,1,5,2,3,4],[1,2,3,4,1,5,3,4,2],[1,2,3,4,1,5,3,5,2], 

   [1,2,3,4,1,5,5,3,2],[1,2,3,4,1,5,2,3,6],[1,2,3,4,1,5,3,6,2], 

   [1,2,3,4,1,5,6,3,2],[1,2,3,4,1,5,2,5,4],[1,2,3,4,1,5,5,4,2], 

   [1,2,3,4,1,5,2,4,6],[1,2,3,4,1,5,2,6,4],[1,2,3,4,1,5,6,4,2], 

   [1,2,3,4,1,5,2,5,6],[1,2,3,4,1,5,5,6,2],[1,2,3,4,1,5,6,5,2], 

   [1,2,3,4,1,5,2,6,7],[1,2,3,4,1,5,6,7,2],[1,2,3,4,1,5,3,5,4], 

   [1,2,3,4,1,5,5,3,4],[1,2,3,4,1,5,3,4,6],[1,2,3,4,1,5,3,6,4], 

   [1,2,3,4,1,5,6,3,4],[1,2,3,4,1,5,3,5,6],[1,2,3,4,1,5,5,3,6], 

   [1,2,3,4,1,5,3,6,7],[1,2,3,4,1,5,6,3,7],[1,2,3,4,1,5,5,4,6], 

   [1,2,3,4,1,5,5,6,4],[1,2,3,4,1,5,6,5,4],[1,2,3,4,1,5,6,4,7], 

   [1,2,3,4,1,5,6,7,4],[1,2,3,4,1,5,5,6,7],[1,2,3,4,1,5,6,5,7], 

   [1,2,3,4,1,5,6,7,8],[1,2,3,4,5,1,3,1,2],[1,2,3,4,5,1,2,1,4], 

   [1,2,3,4,5,1,2,1,5],[1,2,3,4,5,1,5,1,2],[1,2,3,4,5,1,2,1,6], 

   [1,2,3,4,5,1,6,1,2],[1,2,3,4,5,1,3,1,4],[1,2,3,4,5,1,3,1,5], 

   [1,2,3,4,5,1,3,1,6],[1,2,3,4,5,1,5,1,4],[1,2,3,4,5,1,6,1,4], 

   [1,2,3,4,5,1,5,1,6],[1,2,3,4,5,1,6,1,5],[1,2,3,4,5,1,6,1,7], 

   [1,2,3,4,5,1,2,3,4],[1,2,3,4,5,1,3,4,2],[1,2,3,4,5,1,2,3,5], 

   [1,2,3,4,5,1,5,3,2],[1,2,3,4,5,1,2,3,6],[1,2,3,4,5,1,3,6,2], 

   [1,2,3,4,5,1,6,3,2],[1,2,3,4,5,1,2,4,5],[1,2,3,4,5,1,5,4,2], 

   [1,2,3,4,5,1,2,4,6],[1,2,3,4,5,1,2,6,4],[1,2,3,4,5,1,6,4,2], 

   [1,2,3,4,5,1,2,6,5],[1,2,3,4,5,1,5,6,2],[1,2,3,4,5,1,2,6,7], 

   [1,2,3,4,5,1,6,7,2],[1,2,3,4,5,1,3,4,5],[1,2,3,4,5,1,5,3,4], 

   [1,2,3,4,5,1,3,4,6],[1,2,3,4,5,1,3,6,4],[1,2,3,4,5,1,6,3,4], 

   [1,2,3,4,5,1,3,6,5],[1,2,3,4,5,1,5,3,6],[1,2,3,4,5,1,6,3,5], 

   [1,2,3,4,5,1,3,6,7],[1,2,3,4,5,1,6,3,7],[1,2,3,4,5,1,5,4,6], 

   [1,2,3,4,5,1,5,6,4],[1,2,3,4,5,1,6,4,5],[1,2,3,4,5,1,6,4,7], 

   [1,2,3,4,5,1,6,7,4],[1,2,3,4,5,1,5,6,7],[1,2,3,4,5,1,6,7,5], 

   [1,2,3,4,5,1,6,7,8],[1,2,3,2,3,4,3,1,2],[1,2,3,2,3,4,4,1,2], 

   [1,2,3,2,3,4,5,1,2],[1,2,3,2,3,4,3,4,1],[1,2,3,2,3,4,3,1,5], 

   [1,2,3,2,3,4,3,5,1],[1,2,3,2,3,4,4,1,5],[1,2,3,2,3,4,4,5,1], 

   [1,2,3,2,3,4,5,4,1],[1,2,3,2,3,4,5,1,6],[1,2,3,2,3,4,5,6,1], 

   [1,2,3,2,3,4,3,4,2],[1,2,3,2,3,4,3,5,2],[1,2,3,2,3,4,4,5,2], 

   [1,2,3,2,3,4,5,4,2],[1,2,3,2,3,4,5,6,2],[1,2,3,2,3,4,3,4,5], 

   [1,2,3,2,3,4,3,5,6],[1,2,3,2,3,4,4,5,6],[1,2,3,2,3,4,5,4,6], 

   [1,2,3,2,3,4,5,6,7],[1,2,3,3,4,2,2,3,1],[1,2,3,3,4,2,2,1,4], 

   [1,2,3,3,4,2,2,1,5],[1,2,3,3,4,2,2,5,1],[1,2,3,3,4,2,4,3,1], 

   [1,2,3,3,4,2,5,3,1],[1,2,3,3,4,2,4,1,5],[1,2,3,3,4,2,4,5,1], 

   [1,2,3,3,4,2,5,1,4],[1,2,3,3,4,2,5,1,6],[1,2,3,3,4,2,5,6,1], 

   [1,2,3,3,4,2,2,3,4],[1,2,3,3,4,2,2,3,5],[1,2,3,3,4,2,2,5,4], 

   [1,2,3,3,4,2,2,5,6],[1,2,3,3,4,2,4,3,5],[1,2,3,3,4,2,5,3,4], 

   [1,2,3,3,4,2,5,3,6],[1,2,3,3,4,2,4,5,6],[1,2,3,3,4,2,5,6,4], 

   [1,2,3,3,4,2,5,6,7],[1,2,3,4,3,2,2,1,4],[1,2,3,4,3,2,2,4,1], 

   [1,2,3,4,3,2,2,1,5],[1,2,3,4,3,2,2,5,1],[1,2,3,4,3,2,3,1,4], 

   [1,2,3,4,3,2,3,4,1],[1,2,3,4,3,2,3,1,5],[1,2,3,4,3,2,3,5,1], 

   [1,2,3,4,3,2,5,1,4],[1,2,3,4,3,2,5,4,1],[1,2,3,4,3,2,5,1,6], 



   [1,2,3,4,3,2,5,6,1],[1,2,3,4,3,2,2,4,5],[1,2,3,4,3,2,2,5,4], 

   [1,2,3,4,3,2,2,5,6],[1,2,3,4,3,2,3,4,5],[1,2,3,4,3,2,3,5,4], 

   [1,2,3,4,3,2,3,5,6],[1,2,3,4,3,2,5,4,6],[1,2,3,4,3,2,5,6,4], 

   [1,2,3,4,3,2,5,6,7],[1,2,3,2,4,5,3,1,2],[1,2,3,2,4,5,4,1,2], 

   [1,2,3,2,4,5,5,1,2],[1,2,3,2,4,5,6,1,2],[1,2,3,2,4,5,3,1,4], 

   [1,2,3,2,4,5,4,3,1],[1,2,3,2,4,5,3,5,1],[1,2,3,2,4,5,5,3,1], 

   [1,2,3,2,4,5,3,1,6],[1,2,3,2,4,5,3,6,1],[1,2,3,2,4,5,6,3,1], 

   [1,2,3,2,4,5,4,5,1],[1,2,3,2,4,5,5,1,4],[1,2,3,2,4,5,4,1,6], 

   [1,2,3,2,4,5,4,6,1],[1,2,3,2,4,5,6,1,4],[1,2,3,2,4,5,5,1,6], 

   [1,2,3,2,4,5,5,6,1],[1,2,3,2,4,5,6,5,1],[1,2,3,2,4,5,6,1,7], 

   [1,2,3,2,4,5,6,7,1],[1,2,3,2,4,5,4,3,2],[1,2,3,2,4,5,3,5,2], 

   [1,2,3,2,4,5,5,3,2],[1,2,3,2,4,5,3,6,2],[1,2,3,2,4,5,6,3,2], 

   [1,2,3,2,4,5,4,5,2],[1,2,3,2,4,5,4,6,2],[1,2,3,2,4,5,5,6,2], 

   [1,2,3,2,4,5,6,5,2],[1,2,3,2,4,5,6,7,2],[1,2,3,2,4,5,3,5,4], 

   [1,2,3,2,4,5,5,3,4],[1,2,3,2,4,5,3,6,4],[1,2,3,2,4,5,4,3,6], 

   [1,2,3,2,4,5,6,3,4],[1,2,3,2,4,5,3,5,6],[1,2,3,2,4,5,5,3,6], 

   [1,2,3,2,4,5,3,6,7],[1,2,3,2,4,5,6,3,7],[1,2,3,2,4,5,4,5,6], 

   [1,2,3,2,4,5,5,6,4],[1,2,3,2,4,5,6,5,4],[1,2,3,2,4,5,4,6,7], 

   [1,2,3,2,4,5,6,7,4],[1,2,3,2,4,5,5,6,7],[1,2,3,2,4,5,6,5,7], 

   [1,2,3,2,4,5,6,7,8],[1,2,3,4,5,2,2,3,1],[1,2,3,4,5,2,2,1,4], 

   [1,2,3,4,5,2,2,4,1],[1,2,3,4,5,2,2,1,5],[1,2,3,4,5,2,2,1,6], 

   [1,2,3,4,5,2,2,6,1],[1,2,3,4,5,2,3,1,4],[1,2,3,4,5,2,3,4,1], 

   [1,2,3,4,5,2,3,1,5],[1,2,3,4,5,2,5,3,1],[1,2,3,4,5,2,3,1,6], 

   [1,2,3,4,5,2,3,6,1],[1,2,3,4,5,2,6,3,1],[1,2,3,4,5,2,5,1,4], 

   [1,2,3,4,5,2,5,4,1],[1,2,3,4,5,2,6,1,4],[1,2,3,4,5,2,6,4,1], 

   [1,2,3,4,5,2,5,1,6],[1,2,3,4,5,2,5,6,1],[1,2,3,4,5,2,6,1,5], 

   [1,2,3,4,5,2,6,1,7],[1,2,3,4,5,2,6,7,1],[1,2,3,4,5,2,2,3,4], 

   [1,2,3,4,5,2,2,3,5],[1,2,3,4,5,2,2,3,6],[1,2,3,4,5,2,2,4,5], 

   [1,2,3,4,5,2,2,4,6],[1,2,3,4,5,2,2,6,4],[1,2,3,4,5,2,2,6,5], 

   [1,2,3,4,5,2,2,6,7],[1,2,3,4,5,2,3,4,5],[1,2,3,4,5,2,5,3,4], 

   [1,2,3,4,5,2,3,4,6],[1,2,3,4,5,2,3,6,4],[1,2,3,4,5,2,6,3,4], 

   [1,2,3,4,5,2,3,6,5],[1,2,3,4,5,2,5,3,6],[1,2,3,4,5,2,6,3,5], 

   [1,2,3,4,5,2,3,6,7],[1,2,3,4,5,2,6,3,7],[1,2,3,4,5,2,5,4,6], 

   [1,2,3,4,5,2,5,6,4],[1,2,3,4,5,2,6,4,5],[1,2,3,4,5,2,6,4,7], 

   [1,2,3,4,5,2,6,7,4],[1,2,3,4,5,2,5,6,7],[1,2,3,4,5,2,6,7,5], 

   [1,2,3,4,5,2,6,7,8],[1,2,3,3,4,5,2,3,1],[1,2,3,3,4,5,2,1,4], 

   [1,2,3,3,4,5,4,1,2],[1,2,3,3,4,5,2,5,1],[1,2,3,3,4,5,5,1,2], 

   [1,2,3,3,4,5,2,1,6],[1,2,3,3,4,5,2,6,1],[1,2,3,3,4,5,6,1,2], 

   [1,2,3,3,4,5,4,3,1],[1,2,3,3,4,5,5,3,1],[1,2,3,3,4,5,6,3,1], 

   [1,2,3,3,4,5,4,5,1],[1,2,3,3,4,5,5,1,4],[1,2,3,3,4,5,4,1,6], 

   [1,2,3,3,4,5,4,6,1],[1,2,3,3,4,5,6,1,4],[1,2,3,3,4,5,5,1,6], 

   [1,2,3,3,4,5,5,6,1],[1,2,3,3,4,5,6,5,1],[1,2,3,3,4,5,6,1,7], 

   [1,2,3,3,4,5,6,7,1],[1,2,3,3,4,5,2,3,4],[1,2,3,3,4,5,4,3,2], 

   [1,2,3,3,4,5,5,3,2],[1,2,3,3,4,5,2,3,6],[1,2,3,3,4,5,6,3,2], 

   [1,2,3,3,4,5,2,5,4],[1,2,3,3,4,5,4,5,2],[1,2,3,3,4,5,2,6,4], 

   [1,2,3,3,4,5,4,6,2],[1,2,3,3,4,5,2,5,6],[1,2,3,3,4,5,5,6,2], 

   [1,2,3,3,4,5,6,5,2],[1,2,3,3,4,5,2,6,7],[1,2,3,3,4,5,6,7,2], 

   [1,2,3,3,4,5,5,3,4],[1,2,3,3,4,5,4,3,6],[1,2,3,3,4,5,6,3,4], 

   [1,2,3,3,4,5,5,3,6],[1,2,3,3,4,5,6,3,7],[1,2,3,3,4,5,4,5,6], 

   [1,2,3,3,4,5,5,6,4],[1,2,3,3,4,5,6,5,4],[1,2,3,3,4,5,4,6,7], 

   [1,2,3,3,4,5,6,7,4],[1,2,3,3,4,5,5,6,7],[1,2,3,3,4,5,6,5,7], 

   [1,2,3,3,4,5,6,7,8],[1,2,3,4,3,5,3,1,2],[1,2,3,4,3,5,2,1,4], 

   [1,2,3,4,3,5,2,4,1],[1,2,3,4,3,5,2,5,1],[1,2,3,4,3,5,5,1,2], 

   [1,2,3,4,3,5,2,1,6],[1,2,3,4,3,5,2,6,1],[1,2,3,4,3,5,6,1,2], 

   [1,2,3,4,3,5,3,1,4],[1,2,3,4,3,5,3,4,1],[1,2,3,4,3,5,3,5,1], 

   [1,2,3,4,3,5,3,1,6],[1,2,3,4,3,5,3,6,1],[1,2,3,4,3,5,5,1,4], 

   [1,2,3,4,3,5,5,4,1],[1,2,3,4,3,5,6,1,4],[1,2,3,4,3,5,6,4,1], 

   [1,2,3,4,3,5,5,1,6],[1,2,3,4,3,5,5,6,1],[1,2,3,4,3,5,6,5,1], 

   [1,2,3,4,3,5,6,1,7],[1,2,3,4,3,5,6,7,1],[1,2,3,4,3,5,3,4,2], 

   [1,2,3,4,3,5,3,5,2],[1,2,3,4,3,5,3,6,2],[1,2,3,4,3,5,2,5,4], 

   [1,2,3,4,3,5,5,4,2],[1,2,3,4,3,5,2,4,6],[1,2,3,4,3,5,2,6,4], 

   [1,2,3,4,3,5,6,4,2],[1,2,3,4,3,5,2,5,6],[1,2,3,4,3,5,5,6,2], 

   [1,2,3,4,3,5,6,5,2],[1,2,3,4,3,5,2,6,7],[1,2,3,4,3,5,6,7,2], 

   [1,2,3,4,3,5,3,5,4],[1,2,3,4,3,5,3,4,6],[1,2,3,4,3,5,3,6,4], 

   [1,2,3,4,3,5,3,5,6],[1,2,3,4,3,5,3,6,7],[1,2,3,4,3,5,5,4,6], 



   [1,2,3,4,3,5,5,6,4],[1,2,3,4,3,5,6,5,4],[1,2,3,4,3,5,6,4,7], 

   [1,2,3,4,3,5,6,7,4],[1,2,3,4,3,5,5,6,7],[1,2,3,4,3,5,6,5,7], 

   [1,2,3,4,3,5,6,7,8],[1,2,3,4,5,6,2,3,1],[1,2,3,4,5,6,3,1,2], 

   [1,2,3,4,5,6,2,1,4],[1,2,3,4,5,6,2,4,1],[1,2,3,4,5,6,2,1,5], 

   [1,2,3,4,5,6,5,1,2],[1,2,3,4,5,6,2,6,1],[1,2,3,4,5,6,6,1,2], 

   [1,2,3,4,5,6,2,1,7],[1,2,3,4,5,6,2,7,1],[1,2,3,4,5,6,7,1,2], 

   [1,2,3,4,5,6,3,1,4],[1,2,3,4,5,6,3,4,1],[1,2,3,4,5,6,3,1,5], 

   [1,2,3,4,5,6,5,3,1],[1,2,3,4,5,6,3,6,1],[1,2,3,4,5,6,6,3,1], 

   [1,2,3,4,5,6,3,1,7],[1,2,3,4,5,6,3,7,1],[1,2,3,4,5,6,7,3,1], 

   [1,2,3,4,5,6,5,1,4],[1,2,3,4,5,6,5,4,1],[1,2,3,4,5,6,6,1,4], 

   [1,2,3,4,5,6,6,4,1],[1,2,3,4,5,6,7,1,4],[1,2,3,4,5,6,7,4,1], 

   [1,2,3,4,5,6,5,6,1],[1,2,3,4,5,6,6,1,5],[1,2,3,4,5,6,5,1,7], 

   [1,2,3,4,5,6,5,7,1],[1,2,3,4,5,6,7,1,5],[1,2,3,4,5,6,6,1,7], 

   [1,2,3,4,5,6,6,7,1],[1,2,3,4,5,6,7,6,1],[1,2,3,4,5,6,7,1,8], 

   [1,2,3,4,5,6,7,8,1],[1,2,3,4,5,6,2,3,4],[1,2,3,4,5,6,3,4,2], 

   [1,2,3,4,5,6,2,3,5],[1,2,3,4,5,6,5,3,2],[1,2,3,4,5,6,3,6,2], 

   [1,2,3,4,5,6,6,3,2],[1,2,3,4,5,6,2,3,7],[1,2,3,4,5,6,3,7,2], 

   [1,2,3,4,5,6,7,3,2],[1,2,3,4,5,6,2,4,5],[1,2,3,4,5,6,5,4,2], 

   [1,2,3,4,5,6,2,6,4],[1,2,3,4,5,6,6,4,2],[1,2,3,4,5,6,2,4,7], 

   [1,2,3,4,5,6,2,7,4],[1,2,3,4,5,6,7,4,2],[1,2,3,4,5,6,2,6,5], 

   [1,2,3,4,5,6,5,6,2],[1,2,3,4,5,6,2,7,5],[1,2,3,4,5,6,5,7,2], 

   [1,2,3,4,5,6,2,6,7],[1,2,3,4,5,6,6,7,2],[1,2,3,4,5,6,7,6,2], 

   [1,2,3,4,5,6,2,7,8],[1,2,3,4,5,6,7,8,2],[1,2,3,4,5,6,3,4,5], 

   [1,2,3,4,5,6,5,3,4],[1,2,3,4,5,6,3,6,4],[1,2,3,4,5,6,6,3,4], 

   [1,2,3,4,5,6,3,4,7],[1,2,3,4,5,6,3,7,4],[1,2,3,4,5,6,7,3,4], 

   [1,2,3,4,5,6,3,6,5],[1,2,3,4,5,6,6,3,5],[1,2,3,4,5,6,3,7,5], 

   [1,2,3,4,5,6,5,3,7],[1,2,3,4,5,6,7,3,5],[1,2,3,4,5,6,3,6,7], 

   [1,2,3,4,5,6,6,3,7],[1,2,3,4,5,6,3,7,8],[1,2,3,4,5,6,7,3,8], 

   [1,2,3,4,5,6,5,6,4],[1,2,3,4,5,6,6,4,5],[1,2,3,4,5,6,5,4,7], 

   [1,2,3,4,5,6,5,7,4],[1,2,3,4,5,6,7,4,5],[1,2,3,4,5,6,6,4,7], 

   [1,2,3,4,5,6,6,7,4],[1,2,3,4,5,6,7,6,4],[1,2,3,4,5,6,7,4,8], 

   [1,2,3,4,5,6,7,8,4],[1,2,3,4,5,6,5,6,7],[1,2,3,4,5,6,6,7,5], 

   [1,2,3,4,5,6,7,6,5],[1,2,3,4,5,6,5,7,8],[1,2,3,4,5,6,7,8,5], 

   [1,2,3,4,5,6,6,7,8],[1,2,3,4,5,6,7,6,8],[1,2,3,4,5,6,7,8,9]] 

  : int list list     

- kmul [1,2,2][1,2,3,1]; 

val it = 

  [[1,2,2,2,1,1,3,4,4,1,2,2],[1,2,2,3,1,1,2,3,3,1,2,2], 

   [1,2,2,3,1,1,2,4,4,1,2,2],[1,2,2,3,1,1,4,3,3,1,2,2], 

   [1,2,2,3,1,1,4,5,5,1,2,2],[1,2,2,2,3,3,3,1,1,1,2,2], 

   [1,2,2,2,3,3,4,1,1,1,2,2],[1,2,2,2,3,3,3,4,4,1,2,2], 

   [1,2,2,2,3,3,4,5,5,1,2,2],[1,2,2,3,4,4,2,1,1,1,2,2], 

   [1,2,2,3,4,4,4,1,1,1,2,2],[1,2,2,3,4,4,5,1,1,1,2,2], 

   [1,2,2,3,4,4,2,3,3,1,2,2],[1,2,2,3,4,4,2,5,5,1,2,2], 

   [1,2,2,3,4,4,4,3,3,1,2,2],[1,2,2,3,4,4,5,3,3,1,2,2], 

   [1,2,2,3,4,4,4,5,5,1,2,2],[1,2,2,3,4,4,5,6,6,1,2,2]] : int list list 

- kmul [1,2,2,1][1,2,3,3,1,4]; 

val it = 

  [[1,2,2,1,2,1,1,2,3,4,4,3,3,4,4,3,1,2,2,1,4,3,3,4], 

   [1,2,2,1,2,1,1,2,3,4,4,3,3,4,4,3,1,2,2,1,5,3,3,5], 

   [1,2,2,1,2,1,1,2,3,4,4,3,3,4,4,3,1,2,2,1,4,5,5,4], 

   [1,2,2,1,2,1,1,2,3,4,4,3,3,4,4,3,1,2,2,1,5,6,6,5], 

   [1,2,2,1,3,1,1,3,2,3,3,2,2,3,3,2,1,2,2,1,4,5,5,4], 

   [1,2,2,1,3,1,1,3,2,4,4,2,2,4,4,2,1,2,2,1,4,3,3,4], 

   [1,2,2,1,3,1,1,3,2,4,4,2,2,4,4,2,1,2,2,1,5,3,3,5], 

   [1,2,2,1,3,1,1,3,2,4,4,2,2,4,4,2,1,2,2,1,4,5,5,4], 



   [1,2,2,1,3,1,1,3,2,4,4,2,2,4,4,2,1,2,2,1,5,6,6,5], 

   [1,2,2,1,3,1,1,3,4,3,3,4,4,3,3,4,1,2,2,1,2,4,4,2], 

   [1,2,2,1,3,1,1,3,4,3,3,4,4,3,3,4,1,2,2,1,2,5,5,2], 

   [1,2,2,1,3,1,1,3,4,3,3,4,4,3,3,4,1,2,2,1,5,4,4,5], 

   [1,2,2,1,3,1,1,3,4,3,3,4,4,3,3,4,1,2,2,1,5,6,6,5], 

   [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,2,3,3,2], 

   [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,2,4,4,2], 

   [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,2,6,6,2], 

   [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,5,3,3,5], 

   [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,6,3,3,6], 

   [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,5,4,4,5], 

   [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,6,4,4,6], 

   [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,5,6,6,5], 

   [1,2,2,1,3,1,1,3,4,5,5,4,4,5,5,4,1,2,2,1,6,7,7,6], 

   [1,2,2,1,2,3,3,2,3,1,1,3,3,1,1,3,1,2,2,1,4,5,5,4], 

   [1,2,2,1,2,3,3,2,4,1,1,4,4,1,1,4,1,2,2,1,3,4,4,3], 

   [1,2,2,1,2,3,3,2,4,1,1,4,4,1,1,4,1,2,2,1,3,5,5,3], 

   [1,2,2,1,2,3,3,2,4,1,1,4,4,1,1,4,1,2,2,1,5,4,4,5], 

   [1,2,2,1,2,3,3,2,4,1,1,4,4,1,1,4,1,2,2,1,5,6,6,5], 

   [1,2,2,1,2,3,3,2,3,4,4,3,3,4,4,3,1,2,2,1,4,1,1,4], 

   [1,2,2,1,2,3,3,2,3,4,4,3,3,4,4,3,1,2,2,1,5,1,1,5], 

   [1,2,2,1,2,3,3,2,3,4,4,3,3,4,4,3,1,2,2,1,4,5,5,4], 

   [1,2,2,1,2,3,3,2,3,4,4,3,3,4,4,3,1,2,2,1,5,6,6,5], 

   [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,3,1,1,3], 

   [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,5,1,1,5], 

   [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,6,1,1,6], 

   [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,3,4,4,3], 

   [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,3,6,6,3], 

   [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,5,4,4,5], 

   [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,6,4,4,6], 

   [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,5,6,6,5], 

   [1,2,2,1,2,3,3,2,4,5,5,4,4,5,5,4,1,2,2,1,6,7,7,6], 

   [1,2,2,1,3,4,4,3,2,1,1,2,2,1,1,2,1,2,2,1,4,3,3,4], 

   [1,2,2,1,3,4,4,3,2,1,1,2,2,1,1,2,1,2,2,1,5,3,3,5], 

   [1,2,2,1,3,4,4,3,2,1,1,2,2,1,1,2,1,2,2,1,4,5,5,4], 

   [1,2,2,1,3,4,4,3,2,1,1,2,2,1,1,2,1,2,2,1,5,6,6,5], 

   [1,2,2,1,3,4,4,3,4,1,1,4,4,1,1,4,1,2,2,1,2,3,3,2], 

   [1,2,2,1,3,4,4,3,4,1,1,4,4,1,1,4,1,2,2,1,2,5,5,2], 

   [1,2,2,1,3,4,4,3,4,1,1,4,4,1,1,4,1,2,2,1,5,3,3,5], 

   [1,2,2,1,3,4,4,3,4,1,1,4,4,1,1,4,1,2,2,1,5,6,6,5], 

   [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,2,3,3,2], 

   [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,2,5,5,2], 

   [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,2,6,6,2], 

   [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,4,3,3,4], 

   [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,6,3,3,6], 

   [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,4,5,5,4], 

   [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,4,6,6,4], 

   [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,6,5,5,6], 



   [1,2,2,1,3,4,4,3,5,1,1,5,5,1,1,5,1,2,2,1,6,7,7,6], 

   [1,2,2,1,3,4,4,3,2,3,3,2,2,3,3,2,1,2,2,1,4,1,1,4], 

   [1,2,2,1,3,4,4,3,2,3,3,2,2,3,3,2,1,2,2,1,5,1,1,5], 

   [1,2,2,1,3,4,4,3,2,3,3,2,2,3,3,2,1,2,2,1,4,5,5,4], 

   [1,2,2,1,3,4,4,3,2,3,3,2,2,3,3,2,1,2,2,1,5,6,6,5], 

   [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,4,1,1,4], 

   [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,5,1,1,5], 

   [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,6,1,1,6], 

   [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,4,3,3,4], 

   [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,5,3,3,5], 

   [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,6,3,3,6], 

   [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,4,6,6,4], 

   [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,5,6,6,5], 

   [1,2,2,1,3,4,4,3,2,5,5,2,2,5,5,2,1,2,2,1,6,7,7,6], 

   [1,2,2,1,3,4,4,3,4,3,3,4,4,3,3,4,1,2,2,1,2,1,1,2], 

   [1,2,2,1,3,4,4,3,4,3,3,4,4,3,3,4,1,2,2,1,5,1,1,5], 

   [1,2,2,1,3,4,4,3,4,3,3,4,4,3,3,4,1,2,2,1,2,5,5,2], 

   [1,2,2,1,3,4,4,3,4,3,3,4,4,3,3,4,1,2,2,1,5,6,6,5], 

   [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,2,1,1,2], 

   [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,4,1,1,4], 

   [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,6,1,1,6], 

   [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,2,5,5,2], 

   [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,2,6,6,2], 

   [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,4,5,5,4], 

   [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,4,6,6,4], 

   [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,6,5,5,6], 

   [1,2,2,1,3,4,4,3,5,3,3,5,5,3,3,5,1,2,2,1,6,7,7,6], 

   [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,2,1,1,2], 

   [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,5,1,1,5], 

   [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,6,1,1,6], 

   [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,2,3,3,2], 

   [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,2,6,6,2], 

   [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,5,3,3,5], 

   [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,6,3,3,6], 

   [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,5,6,6,5], 

   [1,2,2,1,3,4,4,3,4,5,5,4,4,5,5,4,1,2,2,1,6,7,7,6], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,2,1,1,2], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,4,1,1,4], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,6,1,1,6], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,7,1,1,7], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,2,3,3,2], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,2,5,5,2], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,2,7,7,2], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,4,3,3,4], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,6,3,3,6], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,7,3,3,7], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,4,5,5,4], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,4,7,7,4], 



   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,6,5,5,6], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,7,5,5,7], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,6,7,7,6], 

   [1,2,2,1,3,4,4,3,5,6,6,5,5,6,6,5,1,2,2,1,7,8,8,7]] : int list list 

length it; 

val it = 108 : int 
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  Programming 

The calculation of the examples for nfirstq, kconcat, kmul, etc. are based on the SML/NJ-program All.sml. 

For programmers it will be easy to run the SML/NJ- program All.sml and others.  

For non-programmers it might be a challenge to try to install the stuff on an actual machine.  

The package runs well on a NeXT machine with SML/NJ v.0.9.8, Feb 11, 1993 

Sources are at: 

http://www.thinkartlab.com/pkl/SML-sources.NJ/All.sml 

http://www.thinkartlab.com/pkl/pcl-lab.htm 

http://www.thinkartlab.com/pkl/tm/mg-buch.htm 

         Finally, the file: ALL-MG-nov2012.sml, will run on all SML/NJ versions higher 110.40. 

http://www.thinkartlab.com/pkl/SML-sources.NJ/ALL-MG-nov2012.sml 

Downloads 

System SML/NJ:     http://www.smlnj.org/ 

Morphogrammatics:        http://www.thinkartlab.com/pkl/SML-sources.NJ/ALL-MG-nov2012.sml 

Book Morphogrammatik: http://www.thinkartlab.com/pkl/media/mg-book.pdf 
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  http://www.cs.bham.ac.uk/~sjv/teaching/models/handout1.pdf 

http://www.cs.jhu.edu/~jason/465/PDFSlides/lect17-fsmbuild.pdf 

http://www.cs.brown.edu/~jes/book/pdfs/ModelsOfComputation_Chapter4.pdf 

www.mgt.ncu.edu.tw/~ylchen/dismath/chap06.ppt 

http://www.eecs.berkeley.edu/~bh/v3ch1/fsm.html 

http://www.mmnt.net/db/0/0/ftp5.gwdg.de/pub/languages/funet.fi/ml/sml/75 

ftp://ftp.cis.upenn.edu/pub/sml%23/smlnj.readme 
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  - kconcat [1,2][1,2,3,1]; 

val it = 

  [[1,2,1,2,3,1],[1,2,1,3,2,1],[1,2,2,1,3,2],[1,2,2,3,1,2],[1,2,3,1,2,3], 

   [1,2,3,2,1,3],[1,2,1,3,4,1],[1,2,3,1,4,3],[1,2,3,4,1,3],[1,2,2,3,4,2], 

   [1,2,3,2,4,3],[1,2,3,4,2,3],[1,2,3,4,5,3]] : int list list 

- kconcat [1,2,3][1,2,3]; 

val it = 

  [[1,2,3,1,2,3],[1,2,3,1,3,2],[1,2,3,2,1,3],[1,2,3,2,3,1],[1,2,3,3,1,2], 

   [1,2,3,3,2,1],[1,2,3,1,2,4],[1,2,3,1,4,2],[1,2,3,2,1,4],[1,2,3,2,4,1], 

   [1,2,3,4,1,2],[1,2,3,4,2,1],[1,2,3,1,3,4],[1,2,3,1,4,3],[1,2,3,3,1,4], 

   [1,2,3,3,4,1],[1,2,3,4,1,3],[1,2,3,4,3,1],[1,2,3,1,4,5],[1,2,3,4,1,5], 

   [1,2,3,4,5,1],[1,2,3,2,3,4],[1,2,3,2,4,3],[1,2,3,3,2,4],[1,2,3,3,4,2], 

   [1,2,3,4,2,3],[1,2,3,4,3,2],[1,2,3,2,4,5],[1,2,3,4,2,5],[1,2,3,4,5,2], 

   [1,2,3,3,4,5],[1,2,3,4,3,5],[1,2,3,4,5,3],[1,2,3,4,5,6]] : int list list 

- kconcat[1,2,3] [1,2,3,4]; 

val it = 

  [[1,2,3,1,2,3,4],[1,2,3,1,2,4,3],[1,2,3,1,3,2,4],[1,2,3,1,3,4,2], 

   [1,2,3,1,4,2,3],[1,2,3,1,4,3,2],[1,2,3,2,1,3,4],[1,2,3,2,1,4,3], 

   [1,2,3,2,3,1,4],[1,2,3,2,3,4,1],[1,2,3,2,4,1,3],[1,2,3,2,4,3,1], 

   [1,2,3,3,1,2,4],[1,2,3,3,1,4,2],[1,2,3,3,2,1,4],[1,2,3,3,2,4,1], 

   [1,2,3,3,4,1,2],[1,2,3,3,4,2,1],[1,2,3,4,1,2,3],[1,2,3,4,1,3,2], 

   [1,2,3,4,2,1,3],[1,2,3,4,2,3,1],[1,2,3,4,3,1,2],[1,2,3,4,3,2,1], 

   [1,2,3,1,2,4,5],[1,2,3,1,4,2,5],[1,2,3,1,4,5,2],[1,2,3,2,1,4,5], 

   [1,2,3,2,4,1,5],[1,2,3,2,4,5,1],[1,2,3,4,1,2,5],[1,2,3,4,1,5,2], 

   [1,2,3,4,2,1,5],[1,2,3,4,2,5,1],[1,2,3,4,5,1,2],[1,2,3,4,5,2,1], 

   [1,2,3,1,3,4,5],[1,2,3,1,4,3,5],[1,2,3,1,4,5,3],[1,2,3,3,1,4,5], 

   [1,2,3,3,4,1,5],[1,2,3,3,4,5,1],[1,2,3,4,1,3,5],[1,2,3,4,1,5,3], 

   [1,2,3,4,3,1,5],[1,2,3,4,3,5,1],[1,2,3,4,5,1,3],[1,2,3,4,5,3,1], 

   [1,2,3,1,4,5,6],[1,2,3,4,1,5,6],[1,2,3,4,5,1,6],[1,2,3,4,5,6,1], 

   [1,2,3,2,3,4,5],[1,2,3,2,4,3,5],[1,2,3,2,4,5,3],[1,2,3,3,2,4,5], 

   [1,2,3,3,4,2,5],[1,2,3,3,4,5,2],[1,2,3,4,2,3,5],[1,2,3,4,2,5,3], 

   [1,2,3,4,3,2,5],[1,2,3,4,3,5,2],[1,2,3,4,5,2,3],[1,2,3,4,5,3,2], 

   [1,2,3,2,4,5,6],[1,2,3,4,2,5,6],[1,2,3,4,5,2,6],[1,2,3,4,5,6,2], 



   [1,2,3,3,4,5,6],[1,2,3,4,3,5,6],[1,2,3,4,5,3,6],[1,2,3,4,5,6,3], 

   [1,2,3,4,5,6,7]] : int list list 
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  - allFCs 4; 

val it = 

  [[C,C,C,C,C,C],[C,F,F,C,F,F],[F,F,C,F,C,F],[F,C,F,F,F,C],[C,C,C,F,F,F], 

   [C,F,F,F,C,C],[F,F,C,C,F,C],[F,C,F,C,C,F],[C,F,F,F,F,F],[F,F,C,F,F,F], 

   [F,F,F,F,F,C],[F,C,F,F,F,F],[F,F,F,F,C,F],[F,F,F,C,F,F],[F,F,F,F,F,F]] 

  : fc list list 

- allFCs 5; 

val it = 

  [[C,C,C,C,C,C,C,C,C,C],[C,C,C,F,F,F,C,F,F,F],[C,F,F,F,C,C,F,C,F,F], 

   [C,F,F,C,F,F,F,F,C,C],[F,F,C,C,F,C,F,F,C,F],[F,F,C,F,C,F,F,C,F,C], 

   [F,C,F,F,F,C,C,F,F,C],[F,C,F,C,C,F,F,F,F,C],[F,C,F,F,F,C,F,C,C,F], 

   [F,F,C,F,C,F,C,F,C,F],[C,F,F,C,F,F,C,C,F,F],[C,C,C,C,C,C,F,F,F,F], 

   [C,C,C,F,F,F,F,C,C,C],[C,F,F,F,C,C,C,F,C,C],[F,F,C,C,F,C,C,C,F,C], 

   [F,C,F,C,C,F,C,C,C,F],[C,F,F,C,F,F,F,F,F,F],[C,F,F,F,F,F,F,C,F,F], 

   [C,F,F,F,F,F,C,F,F,F],[F,F,C,F,C,F,F,F,F,F],[F,F,C,F,F,F,F,F,C,F], 

   [F,C,F,F,F,C,F,F,F,F],[F,C,F,F,F,F,F,F,F,C],[F,F,F,F,F,C,F,F,C,F], 

   [F,F,F,F,C,F,F,F,F,C],[F,F,C,F,F,F,C,F,F,F],[F,F,F,F,F,C,F,C,F,F], 

   [F,F,F,C,F,F,F,F,F,C],[F,C,F,F,F,F,C,F,F,F],[F,F,F,F,C,F,F,C,F,F], 

   [F,F,F,C,F,F,F,F,C,F],[C,C,C,F,F,F,F,F,F,F],[C,F,F,F,C,C,F,F,F,F], 

   [C,F,F,F,F,F,F,F,C,C],[F,F,C,C,F,C,F,F,F,F],[F,F,C,F,F,F,F,C,F,C], 

   [F,F,F,F,F,C,C,F,F,C],[F,C,F,C,C,F,F,F,F,F],[F,C,F,F,F,F,F,C,C,F], 

   [F,F,F,F,C,F,C,F,C,F],[F,F,F,C,F,F,C,C,F,F],[C,F,F,F,F,F,F,F,F,F], 

   [F,F,C,F,F,F,F,F,F,F],[F,F,F,F,F,C,F,F,F,F],[F,F,F,F,F,F,F,F,F,C], 

   [F,C,F,F,F,F,F,F,F,F],[F,F,F,F,C,F,F,F,F,F],[F,F,F,F,F,F,F,F,C,F], 

   [F,F,F,C,F,F,F,F,F,F],[F,F,F,F,F,F,F,C,F,F],[F,F,F,F,F,F,C,F,F,F], 

   [F,F,F,F,F,F,F,F,F,F]] : fc list list 

- allFCs 6; 

val it = 

  [[C,C,C,C,C,C,C,C,C,C,C,C,C,C,C],[C,C,C,F,F,F,C,F,F,F,C,C,F,F,F], 

   [C,F,F,F,C,C,F,C,F,F,C,F,C,F,F],[C,F,F,C,F,F,F,F,C,C,F,C,C,F,F], 

   [C,F,F,C,F,F,C,C,F,F,F,F,F,C,C],[F,F,C,C,F,C,F,F,C,F,C,F,F,C,F], 

   [F,F,C,F,C,F,F,C,F,C,F,C,F,C,F],[F,F,C,F,C,F,C,F,C,F,F,F,C,F,C], 

   [F,C,F,F,F,C,C,F,F,C,F,F,C,C,F],[F,C,F,F,F,C,F,C,C,F,F,C,F,F,C], 

   [F,C,F,C,C,F,F,F,F,C,C,F,F,F,C],[C,C,C,C,C,C,F,F,F,F,C,F,F,F,F], 

   [C,C,C,F,F,F,F,C,C,C,F,C,F,F,F],[C,C,C,F,F,F,C,F,F,F,F,F,C,C,C], 

   [C,F,F,F,C,C,C,F,C,C,F,F,C,F,F],[C,F,F,F,C,C,F,C,F,F,F,C,F,C,C], 

   [C,F,F,C,F,F,F,F,C,C,C,F,F,C,C],[F,F,C,C,F,C,C,C,F,C,F,F,F,C,F], 

   [F,F,C,C,F,C,F,F,C,F,F,C,C,F,C],[F,F,C,F,C,F,F,C,F,C,C,F,C,F,C], 

   [F,C,F,F,F,C,C,F,F,C,C,C,F,F,C],[F,C,F,C,C,F,C,C,C,F,F,F,F,F,C], 

   [F,C,F,C,C,F,F,F,F,C,F,C,C,C,F],[F,C,F,F,F,C,F,C,C,F,C,F,C,C,F], 

   [F,F,C,F,C,F,C,F,C,F,C,C,F,C,F],[C,F,F,C,F,F,C,C,F,F,C,C,C,F,F], 

   [C,C,C,C,C,C,C,C,C,C,F,F,F,F,F],[C,C,C,C,C,C,F,F,F,F,F,C,C,C,C], 

   [C,C,C,F,F,F,F,C,C,C,C,F,C,C,C],[C,F,F,F,C,C,C,F,C,C,C,C,F,C,C], 

   [F,F,C,C,F,C,C,C,F,C,C,C,C,F,C],[F,C,F,C,C,F,C,C,C,F,C,C,C,C,F], 

   [C,F,F,C,F,F,F,F,F,F,C,F,F,F,F],[C,F,F,F,F,F,F,C,F,F,F,C,F,F,F], 

   [C,F,F,F,F,F,C,F,F,F,F,F,C,F,F],[F,F,C,F,C,F,F,F,F,F,C,F,F,F,F], 

   [F,F,C,F,F,F,F,F,C,F,F,C,F,F,F],[F,F,C,F,F,F,C,F,F,F,F,F,F,C,F], 

   [F,C,F,F,F,C,F,F,F,F,C,F,F,F,F],[F,C,F,F,F,F,F,F,F,C,F,C,F,F,F], 

   [F,C,F,F,F,F,C,F,F,F,F,F,F,F,C],[F,F,F,F,F,C,F,F,C,F,F,F,C,F,F], 

   [F,F,F,F,F,C,F,C,F,F,F,F,F,C,F],[F,F,F,F,C,F,F,F,F,C,F,F,C,F,F], 

   [F,F,F,F,C,F,F,C,F,F,F,F,F,F,C],[F,F,F,C,F,F,F,F,F,C,F,F,F,C,F], 

   [F,F,F,C,F,F,F,F,C,F,F,F,F,F,C],[C,C,C,F,F,F,C,F,F,F,F,F,F,F,F], 

   [C,C,C,F,F,F,F,F,F,F,F,C,F,F,F],[C,C,C,F,F,F,F,F,F,F,C,F,F,F,F], 

   [C,F,F,F,C,C,F,C,F,F,F,F,F,F,F],[C,F,F,F,C,C,F,F,F,F,F,F,C,F,F], 

   [C,F,F,C,F,F,F,F,C,C,F,F,F,F,F],[C,F,F,C,F,F,F,F,F,F,F,F,F,C,C], 

   [C,F,F,F,F,F,F,F,C,C,F,F,C,F,F],[C,F,F,F,F,F,F,C,F,F,F,F,F,C,C], 

   [C,F,F,F,C,C,F,F,F,F,C,F,F,F,F],[C,F,F,F,F,F,F,F,C,C,F,C,F,F,F], 

   [C,F,F,F,F,F,C,F,F,F,F,F,F,C,C],[F,F,C,C,F,C,F,F,C,F,F,F,F,F,F], 

   [F,F,C,C,F,C,F,F,F,F,F,F,F,C,F],[F,F,C,F,C,F,F,C,F,C,F,F,F,F,F], 

   [F,F,C,F,C,F,F,F,F,F,F,F,C,F,C],[F,F,C,F,F,F,F,C,F,C,F,F,F,C,F], 

   [F,F,C,F,F,F,F,F,C,F,F,F,C,F,C],[F,C,F,F,F,C,C,F,F,C,F,F,F,F,F], 

   [F,C,F,F,F,C,F,F,F,F,F,C,F,F,C],[F,C,F,F,F,F,F,F,F,C,C,F,F,F,C], 



   [F,F,F,F,F,C,C,F,F,C,F,F,F,C,F],[F,F,F,F,F,C,F,F,C,F,F,C,F,F,C], 

   [F,F,F,F,C,F,F,F,F,C,C,F,F,F,C],[F,F,C,C,F,C,F,F,F,F,C,F,F,F,F], 

   [F,F,C,F,F,F,F,C,F,C,F,C,F,F,F],[F,F,C,F,F,F,C,F,F,F,F,F,C,F,C], 

   [F,F,F,F,F,C,C,F,F,C,F,F,C,F,F],[F,F,F,F,F,C,F,C,F,F,F,C,F,F,C], 

   [F,F,F,C,F,F,F,F,F,C,C,F,F,F,C],[F,C,F,C,C,F,F,F,F,C,F,F,F,F,F], 

   [F,C,F,C,C,F,F,F,F,F,F,F,F,F,C],[F,C,F,F,F,C,F,C,C,F,F,F,F,F,F], 

   [F,C,F,F,F,C,F,F,F,F,F,F,C,C,F],[F,C,F,F,F,F,F,C,C,F,F,F,F,F,C], 

   [F,C,F,F,F,F,F,F,F,C,F,F,C,C,F],[F,F,C,F,C,F,C,F,C,F,F,F,F,F,F], 

   [F,F,C,F,C,F,F,F,F,F,F,C,F,C,F],[F,F,C,F,F,F,F,F,C,F,C,F,F,C,F], 

   [F,F,F,F,C,F,C,F,C,F,F,F,F,F,C],[F,F,F,F,C,F,F,F,F,C,F,C,F,C,F], 

   [F,F,F,F,F,C,F,F,C,F,C,F,F,C,F],[C,F,F,C,F,F,C,C,F,F,F,F,F,F,F], 

   [C,F,F,C,F,F,F,F,F,F,F,C,C,F,F],[C,F,F,F,F,F,F,C,F,F,C,F,C,F,F], 

   [C,F,F,F,F,F,C,F,F,F,C,C,F,F,F],[F,F,F,C,F,F,C,C,F,F,F,F,F,F,C], 

   [F,F,F,C,F,F,F,F,F,C,F,C,C,F,F],[F,F,F,F,F,C,F,C,F,F,C,F,C,F,F], 

   [F,F,C,F,F,F,C,F,F,F,C,C,F,F,F],[F,C,F,C,C,F,F,F,F,F,C,F,F,F,F], 

   [F,C,F,F,F,F,F,C,C,F,F,C,F,F,F],[F,C,F,F,F,F,C,F,F,F,F,F,C,C,F], 

   [F,F,F,F,C,F,C,F,C,F,F,F,C,F,F],[F,F,F,F,C,F,F,C,F,F,F,C,F,C,F], 

   [F,F,F,C,F,F,F,F,C,F,C,F,F,C,F],[F,F,F,C,F,F,C,C,F,F,F,F,F,C,F], 

   [F,F,F,C,F,F,F,F,C,F,F,C,C,F,F],[F,F,F,F,C,F,F,C,F,F,C,F,C,F,F], 

   [F,C,F,F,F,F,C,F,F,F,C,C,F,F,F],[C,C,C,C,C,C,F,F,F,F,F,F,F,F,F], 

   [C,C,C,F,F,F,F,C,C,C,F,F,F,F,F],[C,C,C,F,F,F,F,F,F,F,F,F,C,C,C], 

   [C,F,F,F,C,C,C,F,C,C,F,F,F,F,F],[C,F,F,F,C,C,F,F,F,F,F,C,F,C,C], 

   [C,F,F,F,F,F,F,F,C,C,C,F,F,C,C],[F,F,C,C,F,C,C,C,F,C,F,F,F,F,F], 

   [F,F,C,C,F,C,F,F,F,F,F,C,C,F,C],[F,F,C,F,F,F,F,C,F,C,C,F,C,F,C], 

   [F,F,F,F,F,C,C,F,F,C,C,C,F,F,C],[F,C,F,C,C,F,C,C,C,F,F,F,F,F,F], 

   [F,C,F,C,C,F,F,F,F,F,F,C,C,C,F],[F,C,F,F,F,F,F,C,C,F,C,F,C,C,F], 

   [F,F,F,F,C,F,C,F,C,F,C,C,F,C,F],[F,F,F,C,F,F,C,C,F,F,C,C,C,F,F], 

   [C,F,F,C,F,F,F,F,F,F,F,F,F,F,F],[C,F,F,F,F,F,F,C,F,F,F,F,F,F,F], 

   [C,F,F,F,F,F,F,F,F,F,F,F,C,F,F],[C,F,F,F,F,F,C,F,F,F,F,F,F,F,F], 

   [C,F,F,F,F,F,F,F,F,F,F,C,F,F,F],[C,F,F,F,F,F,F,F,F,F,C,F,F,F,F], 

   [F,F,C,F,C,F,F,F,F,F,F,F,F,F,F],[F,F,C,F,F,F,F,F,C,F,F,F,F,F,F], 

   [F,F,C,F,F,F,F,F,F,F,F,F,F,C,F],[F,C,F,F,F,C,F,F,F,F,F,F,F,F,F], 

   [F,C,F,F,F,F,F,F,F,C,F,F,F,F,F],[F,C,F,F,F,F,F,F,F,F,F,F,F,F,C], 

   [F,F,F,F,F,C,F,F,C,F,F,F,F,F,F],[F,F,F,F,F,C,F,F,F,F,F,F,F,C,F], 

   [F,F,F,F,C,F,F,F,F,C,F,F,F,F,F],[F,F,F,F,C,F,F,F,F,F,F,F,F,F,C], 

   [F,F,F,F,F,F,F,F,F,C,F,F,F,C,F],[F,F,F,F,F,F,F,F,C,F,F,F,F,F,C], 

   [F,F,C,F,F,F,C,F,F,F,F,F,F,F,F],[F,F,C,F,F,F,F,F,F,F,F,C,F,F,F], 

   [F,F,C,F,F,F,F,F,F,F,C,F,F,F,F],[F,F,F,F,F,C,F,C,F,F,F,F,F,F,F], 

   [F,F,F,F,F,C,F,F,F,F,F,F,C,F,F],[F,F,F,C,F,F,F,F,F,C,F,F,F,F,F], 

   [F,F,F,C,F,F,F,F,F,F,F,F,F,F,C],[F,F,F,F,F,F,F,F,F,C,F,F,C,F,F], 

   [F,F,F,F,F,F,F,C,F,F,F,F,F,F,C],[F,F,F,F,F,C,F,F,F,F,C,F,F,F,F], 

   [F,F,F,F,F,F,F,F,F,C,F,C,F,F,F],[F,F,F,F,F,F,C,F,F,F,F,F,F,F,C], 

   [F,C,F,F,F,F,C,F,F,F,F,F,F,F,F],[F,C,F,F,F,F,F,F,F,F,F,C,F,F,F], 

   [F,C,F,F,F,F,F,F,F,F,C,F,F,F,F],[F,F,F,F,C,F,F,C,F,F,F,F,F,F,F], 

   [F,F,F,F,C,F,F,F,F,F,F,F,C,F,F],[F,F,F,C,F,F,F,F,C,F,F,F,F,F,F], 

   [F,F,F,C,F,F,F,F,F,F,F,F,F,C,F],[F,F,F,F,F,F,F,F,C,F,F,F,C,F,F], 

   [F,F,F,F,F,F,F,C,F,F,F,F,F,C,F],[F,F,F,F,C,F,F,F,F,F,C,F,F,F,F], 

   [F,F,F,F,F,F,F,F,C,F,F,C,F,F,F],[F,F,F,F,F,F,C,F,F,F,F,F,F,C,F], 

   [F,F,F,C,F,F,F,F,F,F,C,F,F,F,F],[F,F,F,F,F,F,F,C,F,F,F,C,F,F,F], 

   [F,F,F,F,F,F,C,F,F,F,F,F,C,F,F],[C,C,C,F,F,F,F,F,F,F,F,F,F,F,F], 

   [C,F,F,F,C,C,F,F,F,F,F,F,F,F,F],[C,F,F,F,F,F,F,F,C,C,F,F,F,F,F], 

   [C,F,F,F,F,F,F,F,F,F,F,F,F,C,C],[F,F,C,C,F,C,F,F,F,F,F,F,F,F,F], 

   [F,F,C,F,F,F,F,C,F,C,F,F,F,F,F],[F,F,C,F,F,F,F,F,F,F,F,F,C,F,C], 

   [F,F,F,F,F,C,C,F,F,C,F,F,F,F,F],[F,F,F,F,F,C,F,F,F,F,F,C,F,F,C], 

   [F,F,F,F,F,F,F,F,F,C,C,F,F,F,C],[F,C,F,C,C,F,F,F,F,F,F,F,F,F,F], 

   [F,C,F,F,F,F,F,C,C,F,F,F,F,F,F],[F,C,F,F,F,F,F,F,F,F,F,F,C,C,F], 

   [F,F,F,F,C,F,C,F,C,F,F,F,F,F,F],[F,F,F,F,C,F,F,F,F,F,F,C,F,C,F], 

   [F,F,F,F,F,F,F,F,C,F,C,F,F,C,F],[F,F,F,C,F,F,C,C,F,F,F,F,F,F,F], 

   [F,F,F,C,F,F,F,F,F,F,F,C,C,F,F],[F,F,F,F,F,F,F,C,F,F,C,F,C,F,F], 

   [F,F,F,F,F,F,C,F,F,F,C,C,F,F,F],[C,F,F,F,F,F,F,F,F,F,F,F,F,F,F], 

   [F,F,C,F,F,F,F,F,F,F,F,F,F,F,F],[F,F,F,F,F,C,F,F,F,F,F,F,F,F,F], 

   [F,F,F,F,F,F,F,F,F,C,F,F,F,F,F],[F,F,F,F,F,F,F,F,F,F,F,F,F,F,C], 

   [F,C,F,F,F,F,F,F,F,F,F,F,F,F,F],[F,F,F,F,C,F,F,F,F,F,F,F,F,F,F], 

   [F,F,F,F,F,F,F,F,C,F,F,F,F,F,F],[F,F,F,F,F,F,F,F,F,F,F,F,F,C,F], 

   [F,F,F,C,F,F,F,F,F,F,F,F,F,F,F],[F,F,F,F,F,F,F,C,F,F,F,F,F,F,F], 



   [F,F,F,F,F,F,F,F,F,F,F,F,C,F,F],[F,F,F,F,F,F,C,F,F,F,F,F,F,F,F], 

   [F,F,F,F,F,F,F,F,F,F,F,C,F,F,F],[F,F,F,F,F,F,F,F,F,F,C,F,F,F,F], 

   [F,F,F,F,F,F,F,F,F,F,F,F,F,F,F]] : fc list list 

length it; 

val it = 203 : int 

- 

17
  - allKLORs 4; 

val it = 

  [[O,O,O,O,O,O],[O,O,O,O,O,R],[O,O,O,O,R,O],[O,O,O,O,R,R],[O,O,O,R,O,O], 

   [O,O,O,R,O,R],[O,O,O,R,R,O],[O,O,O,R,R,R],[O,O,R,O,O,O],[O,O,R,O,O,R], 

   [O,O,R,O,R,O],[O,O,R,O,R,R],[O,O,R,R,O,O],[O,O,R,R,O,R],[O,O,R,R,R,O], 

   [O,O,R,R,R,R],[O,R,O,O,O,O],[O,R,O,O,O,R],[O,R,O,O,R,O],[O,R,O,O,R,R], 

   [O,R,O,R,O,O],[O,R,O,R,O,R],[O,R,O,R,R,O],[O,R,O,R,R,R],[O,R,R,O,O,O], 

   [O,R,R,O,O,R],[O,R,R,O,R,O],[O,R,R,O,R,R],[O,R,R,R,O,O],[O,R,R,R,O,R], 

   [O,R,R,R,R,O],[O,R,R,R,R,R],[R,O,O,O,O,O],[R,O,O,O,O,R],[R,O,O,O,R,O], 

   [R,O,O,O,R,R],[R,O,O,R,O,O],[R,O,O,R,O,R],[R,O,O,R,R,O],[R,O,O,R,R,R], 

   [R,O,R,O,O,O],[R,O,R,O,O,R],[R,O,R,O,R,O],[R,O,R,O,R,R],[R,O,R,R,O,O], 

   [R,O,R,R,O,R],[R,O,R,R,R,O],[R,O,R,R,R,R],[R,R,O,O,O,O],[R,R,O,O,O,R], 

   [R,R,O,O,R,O],[R,R,O,O,R,R],[R,R,O,R,O,O],[R,R,O,R,O,R],[R,R,O,R,R,O], 

   [R,R,O,R,R,R],[R,R,R,O,O,O],[R,R,R,O,O,R],[R,R,R,O,R,O],[R,R,R,O,R,R], 

   [R,R,R,R,O,O],[R,R,R,R,O,R],[R,R,R,R,R,O],[R,R,R,R,R,R],[O,L,L,O,L,L], 

   [O,L,L,O,L,K],[O,L,L,O,K,L],[O,L,L,O,K,K],[O,L,L,R,L,L],[O,L,L,R,L,K], 

   [O,L,L,R,K,L],[O,L,L,R,K,K],[O,L,K,O,L,L],[O,L,K,O,L,K],[O,L,K,O,K,L], 

   [O,L,K,O,K,K],[O,L,K,R,L,L],[O,L,K,R,L,K],[O,L,K,R,K,L],[O,L,K,R,K,K], 

   [O,K,L,O,L,L],[O,K,L,O,L,K],[O,K,L,O,K,L],[O,K,L,O,K,K],[O,K,L,R,L,L], 

   [O,K,L,R,L,K],[O,K,L,R,K,L],[O,K,L,R,K,K],[O,K,K,O,L,L],[O,K,K,O,L,K], 

   [O,K,K,O,K,L],[O,K,K,O,K,K],[O,K,K,R,L,L],[O,K,K,R,L,K],[O,K,K,R,K,L], 

   [O,K,K,R,K,K],[R,L,L,O,L,L],[R,L,L,O,L,K],[R,L,L,O,K,L],[R,L,L,O,K,K], 

   [R,L,L,R,L,L],[R,L,L,R,L,K],[R,L,L,R,K,L],[R,L,L,R,K,K],[R,L,K,O,L,L], 

   [R,L,K,O,L,K],[R,L,K,O,K,L],[R,L,K,O,K,K],[R,L,K,R,L,L],[R,L,K,R,L,K], 

   [R,L,K,R,K,L],[R,L,K,R,K,K],[R,K,L,O,L,L],[R,K,L,O,L,K],[R,K,L,O,K,L], 

   [R,K,L,O,K,K],[R,K,L,R,L,L],[R,K,L,R,L,K],[R,K,L,R,K,L],[R,K,L,R,K,K], 

   [R,K,K,O,L,L],[R,K,K,O,L,K],[R,K,K,O,K,L],[R,K,K,O,K,K],[R,K,K,R,L,L], 

   [R,K,K,R,L,K],[R,K,K,R,K,L],[R,K,K,R,K,K],[L,L,O,L,O,L],[L,L,O,L,O,K], 

   [L,L,O,L,R,L],[L,L,O,L,R,K],[L,L,O,K,O,L],[L,L,O,K,O,K],[L,L,O,K,R,L], 

   [L,L,O,K,R,K],[L,L,R,L,O,L],[L,L,R,L,O,K],[L,L,R,L,R,L],[L,L,R,L,R,K], 

   [L,L,R,K,O,L],[L,L,R,K,O,K],[L,L,R,K,R,L],[L,L,R,K,R,K],[L,K,O,L,O,L], 

   [L,K,O,L,O,K],[L,K,O,L,R,L],[L,K,O,L,R,K],[L,K,O,K,O,L],[L,K,O,K,O,K], 

   [L,K,O,K,R,L],[L,K,O,K,R,K],[L,K,R,L,O,L],[L,K,R,L,O,K],[L,K,R,L,R,L], 

   [L,K,R,L,R,K],[L,K,R,K,O,L],[L,K,R,K,O,K],[L,K,R,K,R,L],[L,K,R,K,R,K], 

   [K,L,O,L,O,L],[K,L,O,L,O,K],[K,L,O,L,R,L],[K,L,O,L,R,K],[K,L,O,K,O,L], 

   [K,L,O,K,O,K],[K,L,O,K,R,L],[K,L,O,K,R,K],[K,L,R,L,O,L],[K,L,R,L,O,K], 

   [K,L,R,L,R,L],[K,L,R,L,R,K],[K,L,R,K,O,L],[K,L,R,K,O,K],[K,L,R,K,R,L], 

   [K,L,R,K,R,K],[K,K,O,L,O,L],[K,K,O,L,O,K],[K,K,O,L,R,L],[K,K,O,L,R,K], 

   [K,K,O,K,O,L],[K,K,O,K,O,K],[K,K,O,K,R,L],[K,K,O,K,R,K],[K,K,R,L,O,L], 

   [K,K,R,L,O,K],[K,K,R,L,R,L],[K,K,R,L,R,K],[K,K,R,K,O,L],[K,K,R,K,O,K], 

   [K,K,R,K,R,L],[K,K,R,K,R,K],[L,O,L,L,L,O],[L,O,L,L,L,R],[L,O,L,L,K,O], 

   [L,O,L,L,K,R],[L,O,L,K,L,O],[L,O,L,K,L,R],[L,O,L,K,K,O],[L,O,L,K,K,R], 

   [L,O,K,L,L,O],[L,O,K,L,L,R],[L,O,K,L,K,O],[L,O,K,L,K,R],[L,O,K,K,L,O], 

   [L,O,K,K,L,R],[L,O,K,K,K,O],[L,O,K,K,K,R],[L,R,L,L,L,O],[L,R,L,L,L,R], 

   [L,R,L,L,K,O],[L,R,L,L,K,R],[L,R,L,K,L,O],[L,R,L,K,L,R],[L,R,L,K,K,O], 

   [L,R,L,K,K,R],[L,R,K,L,L,O],[L,R,K,L,L,R],[L,R,K,L,K,O],[L,R,K,L,K,R], 

   [L,R,K,K,L,O],[L,R,K,K,L,R],[L,R,K,K,K,O],[L,R,K,K,K,R],[K,O,L,L,L,O], 

   [K,O,L,L,L,R],[K,O,L,L,K,O],[K,O,L,L,K,R],[K,O,L,K,L,O],[K,O,L,K,L,R], 

   [K,O,L,K,K,O],[K,O,L,K,K,R],[K,O,K,L,L,O],[K,O,K,L,L,R],[K,O,K,L,K,O], 

   [K,O,K,L,K,R],[K,O,K,K,L,O],[K,O,K,K,L,R],[K,O,K,K,K,O],[K,O,K,K,K,R], 

   [K,R,L,L,L,O],[K,R,L,L,L,R],[K,R,L,L,K,O],[K,R,L,L,K,R],[K,R,L,K,L,O], 

   [K,R,L,K,L,R],[K,R,L,K,K,O],[K,R,L,K,K,R],[K,R,K,L,L,O],[K,R,K,L,L,R], 

   [K,R,K,L,K,O],[K,R,K,L,K,R],[K,R,K,K,L,O],[K,R,K,K,L,R],[K,R,K,K,K,O], 

   [K,R,K,K,K,R],[O,O,O,L,L,L],[O,O,O,L,L,K],[O,O,O,L,K,L],[O,O,O,L,K,K], 

   [O,O,O,K,L,L],[O,O,O,K,L,K],[O,O,O,K,K,L],[O,O,O,K,K,K],[O,O,R,L,L,L], 

   [O,O,R,L,L,K],[O,O,R,L,K,L],[O,O,R,L,K,K],[O,O,R,K,L,L],[O,O,R,K,L,K], 

   [O,O,R,K,K,L],[O,O,R,K,K,K],[O,R,O,L,L,L],[O,R,O,L,L,K],[O,R,O,L,K,L], 

   [O,R,O,L,K,K],[O,R,O,K,L,L],[O,R,O,K,L,K],[O,R,O,K,K,L],[O,R,O,K,K,K], 



   [O,R,R,L,L,L],[O,R,R,L,L,K],[O,R,R,L,K,L],[O,R,R,L,K,K],[O,R,R,K,L,L], 

   [O,R,R,K,L,K],[O,R,R,K,K,L],[O,R,R,K,K,K],[R,O,O,L,L,L],[R,O,O,L,L,K], 

   [R,O,O,L,K,L],[R,O,O,L,K,K],[R,O,O,K,L,L],[R,O,O,K,L,K],[R,O,O,K,K,L], 

   [R,O,O,K,K,K],[R,O,R,L,L,L],[R,O,R,L,L,K],[R,O,R,L,K,L],[R,O,R,L,K,K], 

   [R,O,R,K,L,L],[R,O,R,K,L,K],[R,O,R,K,K,L],[R,O,R,K,K,K],[R,R,O,L,L,L], 

   [R,R,O,L,L,K],[R,R,O,L,K,L],[R,R,O,L,K,K],[R,R,O,K,L,L],[R,R,O,K,L,K], 

   [R,R,O,K,K,L],[R,R,O,K,K,K],[R,R,R,L,L,L],[R,R,R,L,L,K],[R,R,R,L,K,L], 

   [R,R,R,L,K,K],[R,R,R,K,L,L],[R,R,R,K,L,K],[R,R,R,K,K,L],[R,R,R,K,K,K], 

   [O,L,L,L,O,O],[O,L,L,L,O,R],[O,L,L,L,R,O],[O,L,L,L,R,R],[O,L,L,K,O,O], 

   [O,L,L,K,O,R],[O,L,L,K,R,O],[O,L,L,K,R,R],[O,L,K,L,O,O],[O,L,K,L,O,R], 

   [O,L,K,L,R,O],[O,L,K,L,R,R],[O,L,K,K,O,O],[O,L,K,K,O,R],[O,L,K,K,R,O], 

   [O,L,K,K,R,R],[O,K,L,L,O,O],[O,K,L,L,O,R],[O,K,L,L,R,O],[O,K,L,L,R,R], 

   [O,K,L,K,O,O],[O,K,L,K,O,R],[O,K,L,K,R,O],[O,K,L,K,R,R],[O,K,K,L,O,O], 

   [O,K,K,L,O,R],[O,K,K,L,R,O],[O,K,K,L,R,R],[O,K,K,K,O,O],[O,K,K,K,O,R], 

   [O,K,K,K,R,O],[O,K,K,K,R,R],[R,L,L,L,O,O],[R,L,L,L,O,R],[R,L,L,L,R,O], 

   [R,L,L,L,R,R],[R,L,L,K,O,O],[R,L,L,K,O,R],[R,L,L,K,R,O],[R,L,L,K,R,R], 

   [R,L,K,L,O,O],[R,L,K,L,O,R],[R,L,K,L,R,O],[R,L,K,L,R,R],[R,L,K,K,O,O], 

   [R,L,K,K,O,R],[R,L,K,K,R,O],[R,L,K,K,R,R],[R,K,L,L,O,O],[R,K,L,L,O,R], 

   [R,K,L,L,R,O],[R,K,L,L,R,R],[R,K,L,K,O,O],[R,K,L,K,O,R],[R,K,L,K,R,O], 

   [R,K,L,K,R,R],[R,K,K,L,O,O],[R,K,K,L,O,R],[R,K,K,L,R,O],[R,K,K,L,R,R], 

   [R,K,K,K,O,O],[R,K,K,K,O,R],[R,K,K,K,R,O],[R,K,K,K,R,R],[L,L,O,O,L,O], 

   [L,L,O,O,L,R],[L,L,O,O,K,O],[L,L,O,O,K,R],[L,L,O,R,L,O],[L,L,O,R,L,R], 

   [L,L,O,R,K,O],[L,L,O,R,K,R],[L,L,R,O,L,O],[L,L,R,O,L,R],[L,L,R,O,K,O], 

   [L,L,R,O,K,R],[L,L,R,R,L,O],[L,L,R,R,L,R],[L,L,R,R,K,O],[L,L,R,R,K,R], 

   [L,K,O,O,L,O],[L,K,O,O,L,R],[L,K,O,O,K,O],[L,K,O,O,K,R],[L,K,O,R,L,O], 

   [L,K,O,R,L,R],[L,K,O,R,K,O],[L,K,O,R,K,R],[L,K,R,O,L,O],[L,K,R,O,L,R], 

   [L,K,R,O,K,O],[L,K,R,O,K,R],[L,K,R,R,L,O],[L,K,R,R,L,R],[L,K,R,R,K,O], 

   [L,K,R,R,K,R],[K,L,O,O,L,O],[K,L,O,O,L,R],[K,L,O,O,K,O],[K,L,O,O,K,R], 

   [K,L,O,R,L,O],[K,L,O,R,L,R],[K,L,O,R,K,O],[K,L,O,R,K,R],[K,L,R,O,L,O], 

   [K,L,R,O,L,R],[K,L,R,O,K,O],[K,L,R,O,K,R],[K,L,R,R,L,O],[K,L,R,R,L,R], 

   [K,L,R,R,K,O],[K,L,R,R,K,R],[K,K,O,O,L,O],[K,K,O,O,L,R],[K,K,O,O,K,O], 

   [K,K,O,O,K,R],[K,K,O,R,L,O],[K,K,O,R,L,R],[K,K,O,R,K,O],[K,K,O,R,K,R], 

   [K,K,R,O,L,O],[K,K,R,O,L,R],[K,K,R,O,K,O],[K,K,R,O,K,R],[K,K,R,R,L,O], 

   [K,K,R,R,L,R],[K,K,R,R,K,O],[K,K,R,R,K,R],[L,O,L,O,O,L],[L,O,L,O,O,K], 

   [L,O,L,O,R,L],[L,O,L,O,R,K],[L,O,L,R,O,L],[L,O,L,R,O,K],[L,O,L,R,R,L], 

   [L,O,L,R,R,K],[L,O,K,O,O,L],[L,O,K,O,O,K],[L,O,K,O,R,L],[L,O,K,O,R,K], 

   [L,O,K,R,O,L],[L,O,K,R,O,K],[L,O,K,R,R,L],[L,O,K,R,R,K],[L,R,L,O,O,L], 

   [L,R,L,O,O,K],[L,R,L,O,R,L],[L,R,L,O,R,K],[L,R,L,R,O,L],[L,R,L,R,O,K], 

   [L,R,L,R,R,L],[L,R,L,R,R,K],[L,R,K,O,O,L],[L,R,K,O,O,K],[L,R,K,O,R,L], 

   [L,R,K,O,R,K],[L,R,K,R,O,L],[L,R,K,R,O,K],[L,R,K,R,R,L],[L,R,K,R,R,K], 

   [K,O,L,O,O,L],[K,O,L,O,O,K],[K,O,L,O,R,L],[K,O,L,O,R,K],[K,O,L,R,O,L], 

   [K,O,L,R,O,K],[K,O,L,R,R,L],[K,O,L,R,R,K],[K,O,K,O,O,L],[K,O,K,O,O,K], 

   [K,O,K,O,R,L],[K,O,K,O,R,K],[K,O,K,R,O,L],[K,O,K,R,O,K],[K,O,K,R,R,L], 

   [K,O,K,R,R,K],[K,R,L,O,O,L],[K,R,L,O,O,K],[K,R,L,O,R,L],[K,R,L,O,R,K], 

   [K,R,L,R,O,L],[K,R,L,R,O,K],[K,R,L,R,R,L],[K,R,L,R,R,K],[K,R,K,O,O,L], 

   [K,R,K,O,O,K],[K,R,K,O,R,L],[K,R,K,O,R,K],[K,R,K,R,O,L],[K,R,K,R,O,K], 

   [K,R,K,R,R,L],[K,R,K,R,R,K],[O,L,L,L,L,L],[O,L,L,L,L,K],[O,L,L,L,K,L], 

   [O,L,L,L,K,K],[O,L,L,K,L,L],[O,L,L,K,L,K],[O,L,L,K,K,L],[O,L,L,K,K,K], 

   [O,L,K,L,L,L],[O,L,K,L,L,K],[O,L,K,L,K,L],[O,L,K,L,K,K],[O,L,K,K,L,L], 

   [O,L,K,K,L,K],[O,L,K,K,K,L],[O,L,K,K,K,K],[O,K,L,L,L,L],[O,K,L,L,L,K], 

   [O,K,L,L,K,L],[O,K,L,L,K,K],[O,K,L,K,L,L],[O,K,L,K,L,K],[O,K,L,K,K,L], 

   [O,K,L,K,K,K],[O,K,K,L,L,L],[O,K,K,L,L,K],[O,K,K,L,K,L],[O,K,K,L,K,K], 

   [O,K,K,K,L,L],[O,K,K,K,L,K],[O,K,K,K,K,L],[O,K,K,K,K,K],[R,L,L,L,L,L], 

   [R,L,L,L,L,K],[R,L,L,L,K,L],[R,L,L,L,K,K],[R,L,L,K,L,L],[R,L,L,K,L,K], 

   [R,L,L,K,K,L],[R,L,L,K,K,K],[R,L,K,L,L,L],[R,L,K,L,L,K],[R,L,K,L,K,L], 

   [R,L,K,L,K,K],[R,L,K,K,L,L],[R,L,K,K,L,K],[R,L,K,K,K,L],[R,L,K,K,K,K], 

   [R,K,L,L,L,L],[R,K,L,L,L,K],[R,K,L,L,K,L],[R,K,L,L,K,K],[R,K,L,K,L,L], 

   [R,K,L,K,L,K],[R,K,L,K,K,L],[R,K,L,K,K,K],[R,K,K,L,L,L],[R,K,K,L,L,K], 

   [R,K,K,L,K,L],[R,K,K,L,K,K],[R,K,K,K,L,L],[R,K,K,K,L,K],[R,K,K,K,K,L], 

   [R,K,K,K,K,K],[L,L,O,L,L,L],[L,L,O,L,L,K],[L,L,O,L,K,L],[L,L,O,L,K,K], 

   [L,L,O,K,L,L],[L,L,O,K,L,K],[L,L,O,K,K,L],[L,L,O,K,K,K],[L,L,R,L,L,L], 

   [L,L,R,L,L,K],[L,L,R,L,K,L],[L,L,R,L,K,K],[L,L,R,K,L,L],[L,L,R,K,L,K], 

   [L,L,R,K,K,L],[L,L,R,K,K,K],[L,K,O,L,L,L],[L,K,O,L,L,K],[L,K,O,L,K,L], 

   [L,K,O,L,K,K],[L,K,O,K,L,L],[L,K,O,K,L,K],[L,K,O,K,K,L],[L,K,O,K,K,K], 

   [L,K,R,L,L,L],[L,K,R,L,L,K],[L,K,R,L,K,L],[L,K,R,L,K,K],[L,K,R,K,L,L], 



   [L,K,R,K,L,K],[L,K,R,K,K,L],[L,K,R,K,K,K],[K,L,O,L,L,L],[K,L,O,L,L,K], 

   [K,L,O,L,K,L],[K,L,O,L,K,K],[K,L,O,K,L,L],[K,L,O,K,L,K],[K,L,O,K,K,L], 

   [K,L,O,K,K,K],[K,L,R,L,L,L],[K,L,R,L,L,K],[K,L,R,L,K,L],[K,L,R,L,K,K], 

   [K,L,R,K,L,L],[K,L,R,K,L,K],[K,L,R,K,K,L],[K,L,R,K,K,K],[K,K,O,L,L,L], 

   [K,K,O,L,L,K],[K,K,O,L,K,L],[K,K,O,L,K,K],[K,K,O,K,L,L],[K,K,O,K,L,K], 

   [K,K,O,K,K,L],[K,K,O,K,K,K],[K,K,R,L,L,L],[K,K,R,L,L,K],[K,K,R,L,K,L], 

   [K,K,R,L,K,K],[K,K,R,K,L,L],[K,K,R,K,L,K],[K,K,R,K,K,L],[K,K,R,K,K,K], 

   [L,L,L,L,L,O],[L,L,L,L,L,R],[L,L,L,L,K,O],[L,L,L,L,K,R],[L,L,L,K,L,O], 

   [L,L,L,K,L,R],[L,L,L,K,K,O],[L,L,L,K,K,R],[L,L,K,L,L,O],[L,L,K,L,L,R], 

   [L,L,K,L,K,O],[L,L,K,L,K,R],[L,L,K,K,L,O],[L,L,K,K,L,R],[L,L,K,K,K,O], 

   [L,L,K,K,K,R],[L,K,L,L,L,O],[L,K,L,L,L,R],[L,K,L,L,K,O],[L,K,L,L,K,R], 

   [L,K,L,K,L,O],[L,K,L,K,L,R],[L,K,L,K,K,O],[L,K,L,K,K,R],[L,K,K,L,L,O], 

   [L,K,K,L,L,R],[L,K,K,L,K,O],[L,K,K,L,K,R],[L,K,K,K,L,O],[L,K,K,K,L,R], 

   [L,K,K,K,K,O],[L,K,K,K,K,R],[K,L,L,L,L,O],[K,L,L,L,L,R],[K,L,L,L,K,O], 

   [K,L,L,L,K,R],[K,L,L,K,L,O],[K,L,L,K,L,R],[K,L,L,K,K,O],[K,L,L,K,K,R], 

   [K,L,K,L,L,O],[K,L,K,L,L,R],[K,L,K,L,K,O],[K,L,K,L,K,R],[K,L,K,K,L,O], 

   [K,L,K,K,L,R],[K,L,K,K,K,O],[K,L,K,K,K,R],[K,K,L,L,L,O],[K,K,L,L,L,R], 

   [K,K,L,L,K,O],[K,K,L,L,K,R],[K,K,L,K,L,O],[K,K,L,K,L,R],[K,K,L,K,K,O], 

   [K,K,L,K,K,R],[K,K,K,L,L,O],[K,K,K,L,L,R],[K,K,K,L,K,O],[K,K,K,L,K,R], 

   [K,K,K,K,L,O],[K,K,K,K,L,R],[K,K,K,K,K,O],[K,K,K,K,K,R],[L,O,L,L,L,L], 

   [L,O,L,L,L,K],[L,O,L,L,K,L],[L,O,L,L,K,K],[L,O,L,K,L,L],[L,O,L,K,L,K], 

   [L,O,L,K,K,L],[L,O,L,K,K,K],[L,O,K,L,L,L],[L,O,K,L,L,K],[L,O,K,L,K,L], 

   [L,O,K,L,K,K],[L,O,K,K,L,L],[L,O,K,K,L,K],[L,O,K,K,K,L],[L,O,K,K,K,K], 

   [L,R,L,L,L,L],[L,R,L,L,L,K],[L,R,L,L,K,L],[L,R,L,L,K,K],[L,R,L,K,L,L], 

   [L,R,L,K,L,K],[L,R,L,K,K,L],[L,R,L,K,K,K],[L,R,K,L,L,L],[L,R,K,L,L,K], 

   [L,R,K,L,K,L],[L,R,K,L,K,K],[L,R,K,K,L,L],[L,R,K,K,L,K],[L,R,K,K,K,L], 

   [L,R,K,K,K,K],[K,O,L,L,L,L],[K,O,L,L,L,K],[K,O,L,L,K,L],[K,O,L,L,K,K], 

   [K,O,L,K,L,L],[K,O,L,K,L,K],[K,O,L,K,K,L],[K,O,L,K,K,K],[K,O,K,L,L,L], 

   [K,O,K,L,L,K],[K,O,K,L,K,L],[K,O,K,L,K,K],[K,O,K,K,L,L],[K,O,K,K,L,K], 

   [K,O,K,K,K,L],[K,O,K,K,K,K],[K,R,L,L,L,L],[K,R,L,L,L,K],[K,R,L,L,K,L], 

   [K,R,L,L,K,K],[K,R,L,K,L,L],[K,R,L,K,L,K],[K,R,L,K,K,L],[K,R,L,K,K,K], 

   [K,R,K,L,L,L],[K,R,K,L,L,K],[K,R,K,L,K,L],[K,R,K,L,K,K],[K,R,K,K,L,L], 

   [K,R,K,K,L,K],[K,R,K,K,K,L],[K,R,K,K,K,K],[L,L,L,L,O,L],[L,L,L,L,O,K], 

   [L,L,L,L,R,L],[L,L,L,L,R,K],[L,L,L,K,O,L],[L,L,L,K,O,K],[L,L,L,K,R,L], 

   [L,L,L,K,R,K],[L,L,K,L,O,L],[L,L,K,L,O,K],[L,L,K,L,R,L],[L,L,K,L,R,K], 

   [L,L,K,K,O,L],[L,L,K,K,O,K],[L,L,K,K,R,L],[L,L,K,K,R,K],[L,K,L,L,O,L], 

   [L,K,L,L,O,K],[L,K,L,L,R,L],[L,K,L,L,R,K],[L,K,L,K,O,L],[L,K,L,K,O,K], 

   [L,K,L,K,R,L],[L,K,L,K,R,K],[L,K,K,L,O,L],[L,K,K,L,O,K],[L,K,K,L,R,L], 

   [L,K,K,L,R,K],[L,K,K,K,O,L],[L,K,K,K,O,K],[L,K,K,K,R,L],[L,K,K,K,R,K], 

   [K,L,L,L,O,L],[K,L,L,L,O,K],[K,L,L,L,R,L],[K,L,L,L,R,K],[K,L,L,K,O,L], 

   [K,L,L,K,O,K],[K,L,L,K,R,L],[K,L,L,K,R,K],[K,L,K,L,O,L],[K,L,K,L,O,K], 

   [K,L,K,L,R,L],[K,L,K,L,R,K],[K,L,K,K,O,L],[K,L,K,K,O,K],[K,L,K,K,R,L], 

   [K,L,K,K,R,K],[K,K,L,L,O,L],[K,K,L,L,O,K],[K,K,L,L,R,L],[K,K,L,L,R,K], 

   [K,K,L,K,O,L],[K,K,L,K,O,K],[K,K,L,K,R,L],[K,K,L,K,R,K],[K,K,K,L,O,L], 

   [K,K,K,L,O,K],[K,K,K,L,R,L],[K,K,K,L,R,K],[K,K,K,K,O,L],[K,K,K,K,O,K], 

   [K,K,K,K,R,L],[K,K,K,K,R,K],[L,L,L,O,L,L],[L,L,L,O,L,K],[L,L,L,O,K,L], 

   [L,L,L,O,K,K],[L,L,L,R,L,L],[L,L,L,R,L,K],[L,L,L,R,K,L],[L,L,L,R,K,K], 

   [L,L,K,O,L,L],[L,L,K,O,L,K],[L,L,K,O,K,L],[L,L,K,O,K,K],[L,L,K,R,L,L], 

   [L,L,K,R,L,K],[L,L,K,R,K,L],[L,L,K,R,K,K],[L,K,L,O,L,L],[L,K,L,O,L,K], 

   [L,K,L,O,K,L],[L,K,L,O,K,K],[L,K,L,R,L,L],[L,K,L,R,L,K],[L,K,L,R,K,L], 

   [L,K,L,R,K,K],[L,K,K,O,L,L],[L,K,K,O,L,K],[L,K,K,O,K,L],[L,K,K,O,K,K], 

   [L,K,K,R,L,L],[L,K,K,R,L,K],[L,K,K,R,K,L],[L,K,K,R,K,K],[K,L,L,O,L,L], 

   [K,L,L,O,L,K],[K,L,L,O,K,L],[K,L,L,O,K,K],[K,L,L,R,L,L],[K,L,L,R,L,K], 

   [K,L,L,R,K,L],[K,L,L,R,K,K],[K,L,K,O,L,L],[K,L,K,O,L,K],[K,L,K,O,K,L], 

   [K,L,K,O,K,K],[K,L,K,R,L,L],[K,L,K,R,L,K],[K,L,K,R,K,L],[K,L,K,R,K,K], 

   [K,K,L,O,L,L],[K,K,L,O,L,K],[K,K,L,O,K,L],[K,K,L,O,K,K],[K,K,L,R,L,L], 

   [K,K,L,R,L,K],[K,K,L,R,K,L],[K,K,L,R,K,K],[K,K,K,O,L,L],[K,K,K,O,L,K], 

   [K,K,K,O,K,L],[K,K,K,O,K,K],[K,K,K,R,L,L],[K,K,K,R,L,K],[K,K,K,R,K,L], 

   [K,K,K,R,K,K],[L,L,L,L,L,L],[L,L,L,L,L,K],[L,L,L,L,K,L],[L,L,L,L,K,K], 

   [L,L,L,K,L,L],[L,L,L,K,L,K],[L,L,L,K,K,L],[L,L,L,K,K,K],[L,L,K,L,L,L], 

   [L,L,K,L,L,K],[L,L,K,L,K,L],[L,L,K,L,K,K],[L,L,K,K,L,L],[L,L,K,K,L,K], 

   [L,L,K,K,K,L],[L,L,K,K,K,K],[L,K,L,L,L,L],[L,K,L,L,L,K],[L,K,L,L,K,L], 

   [L,K,L,L,K,K],[L,K,L,K,L,L],[L,K,L,K,L,K],[L,K,L,K,K,L],[L,K,L,K,K,K], 

   [L,K,K,L,L,L],[L,K,K,L,L,K],[L,K,K,L,K,L],[L,K,K,L,K,K],[L,K,K,K,L,L], 

   [L,K,K,K,L,K],[L,K,K,K,K,L],[L,K,K,K,K,K],[K,L,L,L,L,L],[K,L,L,L,L,K], 



   [K,L,L,L,K,L],[K,L,L,L,K,K],[K,L,L,K,L,L],[K,L,L,K,L,K],[K,L,L,K,K,L], 

   [K,L,L,K,K,K],[K,L,K,L,L,L],[K,L,K,L,L,K],[K,L,K,L,K,L],[K,L,K,L,K,K], 

   [K,L,K,K,L,L],[K,L,K,K,L,K],[K,L,K,K,K,L],[K,L,K,K,K,K],[K,K,L,L,L,L], 

   [K,K,L,L,L,K],[K,K,L,L,K,L],[K,K,L,L,K,K],[K,K,L,K,L,L],[K,K,L,K,L,K], 

   [K,K,L,K,K,L],[K,K,L,K,K,K],[K,K,K,L,L,L],[K,K,K,L,L,K],[K,K,K,L,K,L], 

   [K,K,K,L,K,K],[K,K,K,K,L,L],[K,K,K,K,L,K],[K,K,K,K,K,L],[K,K,K,K,K,K]] 

  : klor list list 

 




