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Some Formal Aspects of morphic
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Abstract
Different  notions  of  palindromy,  palindromicity  and  palindromic  words  are  of  importance  in  the
scientific  literature.  A short  comparison of  the  semiotic,  i.e.  identity  based concept  as  it  occurs  in
linguistic, numeric and music compositions, the complementarity of the DNA-palindrome formulation
(Kari),  continued  by  the  DOW  approach  with  canonical  representation  (Jonoška),  and  the  general
morphogrammatic contribution, are  analyzed in this paper “Formal Aspects of morphic Palindromes”.
The  aim  of  this  paper  is  not  to  elaborate  a  full-fledged  mathematical  theory  but  to  collect  some
approaches and to give some further hints to what could and should be done to achieve it. A very first
result is given here by a morpho-grammar for morphic palindromes.
(Work in progress, vers. 0.4, July 2013)

1.  Formal Aspects of Palindromes

1.1.  General Concepts
1.1.1.  Mathematical Concepts of Palindromes and DNA
‘Given a finite word w = x1 x2 · · · xm (where each xi is a letter), the length of w,
denoted by |w|, is equal to m. We denote by ~ w the reversal of w, given by ~ w = xm · ·
·  x2  x1 (the “mirror  image” of  w).  If  w =  ~  w,  then w is  called a  palindrome.  By
convention, the empty word ε is assumed to be a palindrome.

‘A finite word z is a factor of a finite or infinite word w if w = uzv for some words u, v. In
the special case u = ε (resp. v = ε), we call z a prefix (resp. suffix) of w. If u != ε and v !=
ε, then we say that z is an interior factor of w = uzv. A proper factor (resp. proper
prefix, proper suffix) of a word w is a factor (resp. prefix, suffix) of w that is shorter than
w.‘’
http://arxiv.org/pdf/0807.2303.pdf

"Obviously, the palindromic language is closed under reversal, since Pal(L) = Pal( )."

Θ-palindromes
"Generalizations of rich words appeared soon. Instead of classical palindromes defined as
words invariant under the reversal mapping one can consider Θ-palindromes, i.e., words
invariant under an involutive antimorphism Θ.

"2.1 Antimorphisms and their fixed points
A mapping φ on A* is called

• a morphism if φ(vw) = φ(v)φ(w) for any v, w ∈ A* ;

• an antimorphism if φ(vw) = φ(w)φ(v) for any v, w ∈ A* .
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"We denote the set of all morphisms and antimorphisms on A* by AM (A* ). Together with
composition, it forms a monoid with the identity mapping Id as the unit element.

The set of all morphisms, denoted by M( A*), is a submonoid of AM(A*).

"The reversal mapping R defined by

                   R(w1 w2 · · · wn ) = wn wn−1 · · · w2 w1 for all w = w1 · · · wn ∈ A*

is an involutive antimorphism, i.e., R2 = Id. It is obvious that any antimorphism is a
composition of R and a morphism. Thus

                       AM ( A* ) = M (A* ) ∪ R( M ( A* )) .

"A fixed point of a given antimorphism Θ is called Θ-palindrome, i.e., a word w is a
Θ-palindrome if w = Θ(w). If Θ is the reversal mapping R, we say palindrome or classical
palindrome instead of R-palindrome. One can see that if Θ has a fixed point containing
all  the  letters  of  A,  then  Θ  is  an  involution,  and  thus  a  composition  of  R  and  an
involutive permutation of letters."

Edita Pelantová, Štĕpán Starosta, Palindromic richness for languages invariant under
more symmetries.
http://arxiv.org/pdf/1108.3042.pdf (21. Febr 2013)

Summary
Depending on the alphabet and the mapping function, different types of palindromes are
defined.
An alphabet might be finite or infinite.
For a numeric alphabet, numerical palindromes are defined.
For a linguistic alphabet, linguistic palindromes are defined. And so on.
Mostly, numeric and linguistic palindromes are defined in the literature by R=1.
Depending on the morphism and anti-morphisms R, classical palindromes are defined for
R=1=id. With R as a relabeling function (morphism), generalized palindromes in the sense
of N. Jonoška are defined.

Morphogrammatic palindromes are not based on a pro-given alphabet, they evoke their
alphabet of differentiations in the process of inscribing them. Given the system of such
an inscription, different and more classical formalizations are accessible.

http://www.liafa.univ-paris-diderot.fr/~labbe/Publications/2011-codings.pdf

httpp://www.i.kyushu-u.ac.jp/~te104068/papers/CPM2011.pdf

http://www.deepdyve.com/lp/springer-journals/watson-crick-palindromes-in-dna-
computing-UPvR0lM2I3/5

Kari
http://users.ics.aalto.fi/sseki/files/dnafoundall.pdf

Following  Szilárd  Zsolt  Fazekas’  et  al  concise  paper,  some important  definitions  are
cited:

Palindromicity
"The central concept to the work presented here is palindromicity. First off, for a word

w by wR we denote its reversal, that is w[|w| . . . 1]. If w = w R , the word is called a

palindrome; for words of even length we have w = uuR, while for odd length we have w =

uauR with u a word and a some letter at their centre.
The set of all palindromes of a language L is denoted by Pal(L) = Pal ∩ L. If Pal(L) = L,
the language L is called a palindromic.

"Theorem 1. A regular language L ⊆ Σ* is palindromic, if and only if it is a union of
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finitely many languages of the form Lp = {p} or L  = qr(sr)* qR where p, r and s are
palindromes, and q is an arbitrary word.

"We note here that the location of Pal - the language of all palindromes - in the Chomsky
Hierarchy is well-known; it is linear context-free. Another fact worth noting is that the
primitive root of every palindrome is again a palindrome.

"Trivially,  every  palindrome  p  =  aqa,  with  q  a  (possibly  empty)  palindrome,  has
palindromic  prefixes  λ,  a  and  aqa,  therefore  whenever  we  say  a  palindrome has  a
non-trivial palindromic prefix (suffix), we mean that it has a proper prefix (suffix) of
length at least two which is a palindrome.”
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1809-15.pdf

Leopold about complementarity and multiple heads

"As  Kuske  and  Weigel  [6]  observed,  the  complementarity  does  not  really  play  any
significant role in the operation of conventional Watson-Crick automata. All language
classes of WK-automata are the same, even when the complementarity relation can only
be the identity relation.

"Their argumentation will carry over to all types of automata defined here. Thus this
simplification to plain strings does not really take us farther away from the motivation
for these automata, but makes notations and definitions much less complicated.

"The idea of letting the two heads run in opposite ways was already mentioned by P ˘
aun et. al in the book on DNA Computing [11] and also in a later article [10], where
these  devices  were  called  reverse  WK-automata.  However,  their  power  was  not
investigated in more detail.

"Finally, let us note that conventional automata with several heads have been studied
before extensively, one of the earliest works is by Ibarra [5] and research on the topic is
still going on. However, it seems that no model equivalent to the one defined in this
article has been defined, i.e., automata where the two heads run in oppositedirections
and can turn only after reading the entire word.

Finally, it should be mentioned that the heads in our model do not sense each other. This
means they cannot detect the step in which they are at the same position.

http://wortspieler.org/Dateien/Work/Pubs/NagyLeupold_WCAutomata.pdf

"What if finite automata worked on DNA strands instead of abstract strings of symbols?
A DNA strand is not just a simple string, but normally is a double strand with a three-
dimensional helix structure.

"A  run  is  a  complete  reading  of  the  input  string  by  both  heads  in  their  respective
direction.
• There are start and end markers on the input string.
• After a run the heads turn around and can read the respectively other side of the
strand - which is the same string in our case.
An input word is accepted in k runs, iff the automaton halts in an accepting state after k
runs."

http://www.informatik.uni-giessen.de/ncma2009/files/Leupold.pdf

http://www.pps.univ-paris-diderot.fr/~mellies/tensorial-logic/6-braided-notions-
of-dialogue-categories.pdf

1.1.2.  Assembly Words - The Florida approach
Single occurrence trito-word: [1,2,3,4] is a trito-palindrome .
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Partial completion examples: [1,2,3,4] to [1,2,3,4,2,1], [1,2,3,4,3,2,1] and .
- ispalindrome[1,2,3,4,2,1];
val it = true : bool
- ispalindrome[1,2,3,4,3,2,1];
val it = true : bool

[1,1,2,3] to [1,1,2,3,1,1]:
- ispalindrome[1,1,2,3];
val it = false : bool
- ispalindrome[1,1,2,3,1,1];
val it = true : bool
- palindrome[1,1,2,3,1,1];
val it = false : bool

Not all assembly words of 3 letters are trito-palindromic
- ispalindrome[1,2,1,3,3,2];
val it = false : bool

Trito-Palindromic:
- ispalindrome[1,2,3,2,3,1];
val it = true : bool
- palindrome[1,2,3,2,3,1];
val it = false : bool

DOW-palindromic, includes ascending order ‘abstraction'

- ispalindrome[1,2,3,3,2,1];
val it = true : bool
- palindrome[1,2,3,3,2,1];
val it = true : bool

- kref[1,1,2,2,3,3];
val it = [1,1,2,2,3,3] : int list

The ML-operation tnf in  kref = tnf(rev(w)), corresponds ReLabel for positive integers
only.
The  decision  for  ‘ascending  order’  by  ‘relabeling’  in  the  DOW-approach  has  no
conceptual justification except of its technical advantage for practical applications. DNA
palindromes are not per se canonically ordered.

Assembly words and palindromes

"We consider an assembly word to be a permutation of {1,1,2,2,...,n,n} such that when
the ith term appears for the first time in the word, it is preceeded by 1,2,...,i-1.
  Ex:     112332 is an assembly word
        113232 is not an assemby word (first 3 not preceeded by 2)
Assembly words which are invariant under orientation reversal are called palindromes.
  Ex:   12341243 is the orientation reversal of 12342134
    (reverse word and map 4->1, 3->2, 1->3, 2->4)
  Ex:   121323 is a palindrome.” (J. Burns)

http://shell.cas.usf.edu/~saito/DNAweb/SimpleAssemblyTable.txt
- kref[1,2,3,4,1,2,4,3];
val it = [1,2,3,4,2,1,3,4] : int list

- tnf[1,2,3,4,2,1,3,4];
val it = [1,2,3,4,2,1,3,4] : int list
- tnf[1,2,3,4,1,2,4,3];
val it = [1,2,3,4,1,2,4,3] : int list
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- ENstructure [1,2,3,4,1,2,4,3] = ENstructure[1,2,3,4,2,1,3,4];
val it = false : bool

- ispalindrome[1,2,1,3,2,3];
val it = true : bool

WEB tools of the Florida group
http://shell.cas.usf.edu/~jonoska/index.html
http://knot.math.usf.edu/data/index.html
http://knot.math.usf.edu/assembly/
http://knot.math.usf.edu/assembly/properties.html
http://knot.math.usf.edu/data/search.html
http://shell.cas.usf.edu/~saito/DNAweb/SimpleAssemblyTable.txt
http://arxiv.org/pdf/1105.2926v1.pdf
DOW-Palindromes
Search for
`size` = '3' AND `pal` = 'Yes' AND `assembly` = '1'
returned 7 results:
112233    122331    121323    123123     123231 123312  123321

http://knot.math.usf.edu/data/search.html
Mathematica Code for Assambly Words:
AssemblyWords[1]={{1, 1}};
AssemblyWords[n_]:=Flatten[Map[Table[Join[{1},Insert[#,1,i]],{i,2n-1}]&,AssemblyWords[n-1]+1],1]
ReLabel[L_List]:=L/.Map[#[[1]]->#[[2]]&,Transpose[{DeleteDuplicates[L],Range[Length[Union[L]]]}]]
RevWord[L_List]:=ReLabel[Reverse[L]]

http://jtburns.myweb.usf.edu/index.html?http%3A//jtburns.myweb.usf.edu/assembly/mathematica.htm

AssemblyWords[3]
[1]:=    AssemblyWords[3]
Out[1]:=
        [[1,1,2,2,3,3],[1,2,1,2,3,3],{1,2,2,1,3,3},{1,2,2,3,1,3},
{1,2,2,3,3,1},{1,1,2,3,2,3},{1,2,1,3,2,3},{1,2,3,1,2,3},
{1,2,3,2,1,3},{1,2,3,2,3,1},{1,1,2,3,3,2},{1,2,1,3,3,2},
{1,2,3,1,3,2},{1,2,3,3,1,2},{1,2,3,3,2,1}}

Palindromes with ‘ascending order’ operation (tnf)
112233 122331  121323  123123  123231  123312 123321
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The bold AssemblyWords are not trito-palindromic.
List.filter ispalindrome “Tcontexture 6”;
[[1,1,1,1,1,1],[1,1,1,2,2,2],[1,1,2,1,2,2],[1,2,1,2,1,2],[1,2,2,1,1,2],
   [1,1,2,2,1,1],[1,2,1,1,2,1],[1,2,2,2,2,1],[1,1,2,2,3,3],[1,2,1,3,2,3],
   [1,2,2,3,3,1],[1,2,3,1,2,3],[1,2,3,2,3,1],[1,2,3,3,1,2],[1,2,3,3,2,1],
   [1,1,2,3,1,1],[1,2,1,1,3,1],[1,2,2,2,2,3],[1,1,2,3,4,4],[1,2,3,4,1,2],
   [1,2,3,4,2,1],[1,2,1,3,4,3],[1,2,3,1,4,3],[1,2,3,3,4,1],[1,2,2,3,3,4],
   [1,2,3,2,3,4],[1,2,3,3,2,4],[1,2,3,4,5,1],[1,2,3,4,2,5],[1,2,3,3,4,5],
   [1,2,3,4,5,6]] : int list list

Classification of trito-palindromes in respect of DOW properties

Bold listed palindromes of Tcontexture 6 are DOWs. Number is seven.
Emphazised listed palindrome are triple OWs, TOWs.
[1,1,2,2,1,1] is 1-2-DOW
DOW-word = (123435654126)
Trito-palindrome:
- ispalindrome[1,2,3,4,3,5,6,5,4,1,2,6];
val it = false : bool
isDOW: true,
DOW-palindromic: false,
(123435654126) != [123451564623]
Dow-word != ReLabel(DOW-word), reverse

Example
Trito-palindrome: yes
- ispalindrome[1,2,1];
val it = true : bool
DOW : false

palin[3] := AssemblyWords[3] = RevWord[AssemblyWords[3]]

DNA-Palindromic

"The meaning of ‘‘palindromic’’ in this context is different from what one might expect
from  its  linguistic  usage:  50-GTAATG-30  is  not  a  palindromic  DNA  sequence,  but
50-GTATAC-30  is  (50-GTATAC-30  is  WK complementary  to  30-CATATG-50,  which  is  the
same as 50-GTATAC-30).

"It  is  exactly  this  biological  meaning of  the word ‘‘palindrome’’  that we attempt to
model here, by the notion of Watson-Crick palindrome.
Using  our  formalization  and  convention  on  strand  directionality,  if  WK  denotes  the
Watson-Crick antimorphic involution, WK(GTATAC) = GTATAC.

"Thus, the study of h-palindromes for antimorphic involutions is interesting from two
points of view: firstly, it may be desirable for certain DNA computing experiments to use
DNA  strands  that  contain  h-palindromic  enzyme  restriction  sites  as  subwords,  and
secondly, in general, a set of DNA codewords should be free of h-palindromic words, due
to the intermolecular hybridizations that these would entail.” Kari

DOW-Palindrome: Double occurrence words DOW with ascending order

The common definition for palindromes as “Palindromes are words that read from either
the left or the right end are the same.” gets a generalization by the operation of an
“ascending order” over the words by a bijection, i.e. a relabeling, between the word
and  its  reversal.  With  that  a  kind  of  “asymmetric”  palindromes  are  accepted  as
palindromes.

"Definition 2.1 A double occurrence word is palindromic (or symmetric) if it is equivalent
to its reverse. A double occurrence word that is palindromic is called a palindrome.
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"1.4 Assembly words
Let A be an alphabet set. A double occurrence word (DOW) over A is a word which
contains each symbol of A exactly 0 or 2 times. Words w1 over A1 and w2 over A2 are
equivalent if there is a bijection between A1 and A2 under which w1 maps to w2. If w =
a1 . . . ak is a word over A, its reverse w is defined by ak . . . a1. Two words w1, w2 are

reverse equivalent if w1 is equivalent to w2 or wR2.

"An  assembly  word  is  a  double  occurrence  word  with  reverse  equivalence  classes.”
(Jamies_thesis)

Ascending order
"Double occurrence words labeled by this convention are said to be in ascending order.
Two double occurrence words are said to be equivalent if they are equal after being
relabeled in ascending order. If two double occurrence words are not equivalent, they
are said to be distinct.

"Definition 2.1 A double occurrence word is palindromic (or symmetric) if it is equivalent
to its reverse. A double occurrence word that is palindromic is called a palindrome.
(we shall assume that all double occurrence words are in ascending order)."

Reverse DOW-word plus canonical form (= ascending order):
palindrome: canonical(reverse(word)) = word

Example
word = (122331)
rev(word) = (133221)
word !=semrev(word)
canonical(rev(word)) = (122331),
hence, word is palindrome.

The canonical form is similar to tnf for morphograms.

The tnf-operation in morphogrammatics is motivated and justified by the EN-structure of
morphograms.

Relabeling
It  seems  that  the  operation  of  canonical  representation  by  ascending  order  has  no
systematic justification by the DOW approach, and seems to be based on purely practical
or technical motivations. It promotes an interesting decision but is not necessarily in
tune with the other more classical approaches.

"For convenience, we let  ∑ = {1, 2,..., n} and relabel each double occurrence word such
that when i appears for the  first time in the word, it is preceded by 1, 2, ..., i-1. Double
occurrence  words labeled by this  convention are said to be in  ascending order.  Two
double  occurrence  words  are  said  to  be  equivalent  if  they  are  equal  after  being
relabeled in ascending order.” (Burns, Muche, p. 3, 2011)

"Let A be an alphabet set. A double occurrence word (DOW) over A is a word which
contains each symbol of A exactly 0 or 2 times. Words w1 over A1 and w2 over A2 are
equivalent if there is a bijection between A1 and A2 under which w1 maps to w2. If w =

a1 . . . ak is a word over A, its reverse wR is defined by ak . . . a1. Two words w1, w2 are
reverse  equivalent  if  w1  is  equivalent  to  w2  or  .  An  assembly  word  is  a  double
occurrence word with reverse equivalence classes.” (Jamie, p.3, 2013)
We say that two assembly words are equivalent  if  they are the same or if  they are
reverses.
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"An assembly word is a palindrome if it is equal to its reverse written in ascending order.
The graph  w is said to be palindromic if w is a palindrome.” (Saito, 2012)
http://math.usf.edu/~saito/DNAweb

Cyclic Permutations and deuterograms
Cyclic Permutations of 123321:     
123321, 122133, 112332
- Dcontexture 6;
val it =
  [[1,1,1,1,1,1],[1,1,1,2,2,2],[1,1,1,1,2,2],[1,1,1,1,1,2],[1,1,2,2,3,3],
   [1,1,1,2,2,3],[1,1,1,1,2,3],[1,1,2,2,3,4],[1,1,1,2,3,4],[1,1,2,3,4,5],
   [1,2,3,4,5,6]] : int list list

The deuterogram [1,1,2,2,3,3] has trito-representations.

1.1.3.  Semiotic Palindromes: linguistic, numeric, pictographic, sonic
"For  Eliot  circularity  involves  progression;  it  entails  a  quest  that  may  carry  the
protagonist back to where he began, but that produces added acumen or insight.
Retraction is not the allure. Nor is it the attraction for Jerry in Albee's The Zoo Story
who utters, "Sometimes it's necessary to go a long distance out of the way in order to
come back a short distance correctly." Again in this case return to the beginning implies
a new beginning.” (Stan Fogel, Palinodes and Palindromes, 1984)
journals.hil.unb.ca/index.php/IFR/article/download/13657/14740

1.2.  Morphogrammatic approach to palindromes
1.2.1.  Morphogrammatic characterization of palindromes
Morphograms are not considered as sign sequences but as complexions of differentiations
or  differences.  Therefore  the  concept  of  “relabeling’  reverted  morphograms  is
superfluous  and covert  at  the  very  beginning  of  the  definition  of  morphograms and
palindromes  by  their  ENstructure.  The  ENstructure  is  defining  a  morphogram  by
indicating its structure of differentiation.

In this  sense, morphic palindromes that are semiotically asymmetric, are genuine. A
relabeling  in  ascending  order  of  the  asymmetric  semiotic  palindromes  by  the  DOW
approach  is  then  introducing  an  additional  operation  (abstraction)  on  semiotic
palindromes.

The ENstructure of a morphogram is independet of any relabeling operation because a
morphogram is  not  definied  by  its  atomic  signs  but  by  the  differentiation  structure
between signs, in fact by its kenograms.
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In  other  words,  the  semiotic  representation  of  a  morphogram  is  by  definition  in
“ascending order” and represented by its trito-normal form, tnf.

But that doesen’t exclude the fact that equivalent morphograms may occur at different
locations in different realizations as repetitions.

With  the  additional  bijective  relabeling  function  to  produce  an  ascending  order  on
reversed palindromic words, the important property of a genuine asymmetry  and its
consequences gets eroded.

In the case of palindromes, the operation on a word, say reversion, is producing the
reverted word. For non-symmetric palindromes, this reversion is producing asymmetric
words that are not palindromes in the classical definition of palindromicity.

With the help of a bijection that is producing an ascending order on the reverted word,
palindrome, the word is accepted as a palindrome.

The understanding  of  palindromes,  especially  for  DOWs,  in  the  sense  of  the  Florida
group,  there  are  two operations  involved  to  produce  palindromes,  the  first  are  are
reversion  and  repetition,  the  second,  the  relabeling  operation.  The  operation  of
relabeling aims to give a canonical notation to the reversed word, so it can be read as a
‘symmetrical’ palindrome.

This strategy makes a difference to the common definitions of palindromes.
It is necessary a necessary technical step for words defined on an atomistic alphabet.

This delaying operation of relabeling is superfluous in the context of morphogrammatics.

Morphograms are defined by their differentiation and not by their signs.

This is not excluding the possibility to inscribe morphograms in a canonical notation as
sign  sequences.  The  trito-normal  form  operation,  tnf,  is  just  delivering  that.
Morphograms  as  sign  sequences  in  ascending  (lexical)  order  are  useful  for  practical
elaborations but are also disabeling importand features.

Morphograms are not special abstractions from sign systems but are based on the level of
inscription defined by the Stirling approach of E/N-differences.

For technical reasons and for practical convenience, this is the approach practiced in
this and other papers about morphogrammatics.
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From  an  epistemological  point  of  view  it  seems  that  the  convenient  strategy  of
relabeling  reverted  words  is  adapting  the  non-ecological  approach  of  buffering  and
gluing.

The morphogrammatic  approach to palindromes enables  directly  genuine asymmetric
palindromes without detour.

This relabeling strategy might turn out to be an obstacle for an adequate and direct
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biological modeling of DNA processes as it is intended.

Hence, the grammatological status of morphograms should be cleared, again.

1.2.2.  Programming aspects
ML-Modules (for concatenational morphogrammatics)
type keno = int;
type kseq = keno list;

fun tnf ks =
  let
    fun pos n [] = raise Nth
       |pos 1 (hd::tl) = hd
       |pos n (hd::tl) =pos (n-1) tl;
       
    fun firstocc item list =
      let
        fun place1 item [] n = raise Place
           |place1 item (x::xs) n = if item=x then n
                                    else place1 item xs n+1;
      in
        place1 item list 1
      end;

fun nfirst n [] =raise Place
       |nfirst 1 (hd::tl)=[hd]
       |nfirst n (hd::tl)=hd::nfirst (n-1) tl;

    fun tnf1 [] res n k = res
       |tnf1 (hd::tl) res 1 k = tnf1 tl [1] 2 2
       |tnf1 (hd::tl) res n k =
          if member (pos n ks) (nfirst (n-1) ks)            
          then tnf1 tl
                  (res@[pos (firstocc (pos n ks) ks) res])(n+1) k          
          else tnf1 tl
                  (res@[k]) (n+1) (k+1);  
  in        
    tnf1 ks [] 1 1  
  end;

val tnf = fn : ''a list -> int list

type enstruc = (int*int*EN) list list;
fun ENstructure z =
   map (fn trl => map (fn pair => delta pair z)
                      trl)
       (pairstructure (length z));

fun teq a b = (ENstructure a) = (ENstructure b);

ML-Morphogrammatics, tnf, ks, ENstructure
- tnf[3, 2, 4, 1, 5];
val it = [1,2,3,4,5] : int list

- ENstructure[1,1,2,2,3,3] = ENstructure[3,3,2,2,1,1];
val it = true : bool

Mathematica, ReLabel
ReLabel[L_List] :=
L /. Map[#[[1]] -> #[[2]] &,
   Transpose[{DeleteDuplicates[L], Range[Length[Union[L]]]}]]

ReLabel[{3, 2, 4, 1, 5}]
{3, 2, 4, 1, 5} /.Transpose[
  DeleteDuplicates[{3, 2, 4, 1, 5}] -> {1, 2, 3, 4, 5}]
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1.2.3.  Gaps in palindromes
(pal, non-pal/pal, pal)
- ispalindrome[1,2,2,3,2,2,2,4,5,5,6];
val it = false : bool

Hence, (palin1, palin2,palin3)∉Palin

- ispalindrome[1,2,2,3,4,5,4,4,5,5,6];
val it = false : bool
- ispalindrome[1,2,2,3,4,5,5,6];
val it = true : bool
- tnf[4,5,4];
val it = [1,2,1] : int list
- ispalindrome it;
val it = true : bool
Hence, (palin1, palin2,palin3)∉Palin

- ispalindrome[1,2,2,3,4,5,5,4,5,5,6];
val it = false : bool
Henc, (palin1, non-palin2, palin3)∉Palin

Relabeling
w = [1,2,3,4,5,1,5,6,4,6,2,3]
rev(w) = [6,2,1,4,5,6,5,3,4,3,2,1]

- tnf[6,2,1,4,5,6,5,3,4,3,2,1] = [1,2,3,4,5,1,5,6,4,6,2,3];
val it = true : bool

ENstructure(tnf(rev(w))) = ENstructure(w)

1.2.4.  Completion of palindromes
"We say that whenever a word has a palindrome as prefix or suffix, then it is extended
with the reverse of the rest of the word.

"To illustrate this with an example, after palindromic completion from the word abbb we
get both abbba and abbbba, depending on which of the suffixes bb or bbb we choose for
the binding loop.

"Furthermore, we consider iterated palindromic completion, the successive application
of palindromic completion, taken to the limit. Under these conditions we prove that one
can obtain precise characterizations of both words and regular languages whose iterated
palindromic completion is regular.

"The next immediate result says that, since each palindromic prefix of a word is also a
suffix of it, the left and right palindromic completions are symmetric.

"Lemma  2.  For  palindromes,  the  right  palindromic  completion  equals  the  left
palindromic completion.

"Thus, whenever considering several steps of palindromic completion for some language
L, it is enough to consider either the right, or the left, palindromic completion of L1.”
(Szilárd Zsolt Fazekas et al )

How does that apply to asymmetric palindromes of morphogrammatics?
For  asymmetric  palindromes  the  completion  hast  to  involve  the  structural  laws  of
morhogrammatics.  At  this  point,  completion  shall  be  involved  with  accretive  and
iterative compositions and concatenations. In this case reduced to the concatenation of
the inversion.

The  DOW-palindromic  completion,  in  contrast  to  the  familiar  completion,  is  the
concatenation  of  the  reversed  suffix  (prefix)  in  ascending  order  of  the  word.  As  a
consequence of the ascending order, i.e the canonical representation of the reversion,
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the reversion might turn additionally to the reversion into the mode of a repetition or a
accretion.

The morphic  completion  of  a  morphogram takes  the  polysemy of  the  concatenation
operation,  kconcat,  i.e.  its  iterative  and  accretive  mode,  directly  into  account.
Therefore the additional modi to reversion, the cases of repetition and accretion of the
pre- or suffix, i.e. head or tail of the morphogram, are accepted primordially as parts of
the definition.

[abbb] => [abbba], [abbbc]
[abbb] => [abbbba], [abbbbc].

Definition
A morphic assembly word is a palindrome if its suffix is either a repetition, reversion or
accretion of its prefix (head). This concept of completion has to take the context rules
for morphic palindromes (pal-CR) into account.

1.2.5.  Partial, complete and totally complete completion
Partial completion of morphic palindromes
- kconcat[1,2,2,2][1];
val it = [[1,2,2,2,1],[1,2,2,2,2],[1,2,2,2,3]] : int list list
Palindrome: [[1,2,2,2,1],[1,2,2,2,3]]

- kconcat[1,2,2,2][2,1];
val it = [[1,2,2,2,2,1],[1,2,2,2,1,2],[1,2,2,2,3,1],[1,2,2,2,1,3],[1,2,2,2,3,2], [1,2,2,2,2,3],[1,2,2,2,4,3]] : int
list list
Palindrome:  [[1,2,2,2,2,1],[1,2,2,2,2,3]]

- kconcat[1,2,2,3][2,1];
val it =
  [[1,2,2,3,2,1],[1,2,2,3,1,2],[1,2,2,3,3,1],[1,2,2,3,1,3],[1,2,2,3,4,1],
   [1,2,2,3,1,4],[1,2,2,3,3,2],[1,2,2,3,2,3],[1,2,2,3,4,2],[1,2,2,3,2,4],
   [1,2,2,3,4,3],[1,2,2,3,3,4],[1,2,2,3,5,4]] : int list list
- List.filter ispalindrome it;
val it = [[1,2,2,3,3,1],[1,2,2,3,3,4]] : int list list

- kconcat[1,2,2,3][2,2,1];
val it =
  [[1,2,2,3,2,2,1],[1,2,2,3,1,1,2],[1,2,2,3,3,3,1],[1,2,2,3,1,1,3],
   [1,2,2,3,4,4,1],[1,2,2,3,1,1,4],[1,2,2,3,3,3,2],[1,2,2,3,2,2,3],
   [1,2,2,3,4,4,2],[1,2,2,3,2,2,4],[1,2,2,3,4,4,3],[1,2,2,3,3,3,4],
   [1,2,2,3,5,5,4]] : int list list
- List.filter ispalindrome it;
val it = [[1,2,2,3,2,2,1],[1,2,2,3,1,1,2],[1,2,2,3,4,4,1],[1,2,2,3,2,2,4]]
  : int list list

Complete completion
- kconcat[1,2,2,3][3,2,2,1];

Formal Aspects.nb 13 of 47

11/08/2013 17:29



val it =
  [[1,2,2,3,3,2,2,1],[1,2,2,3,2,3,3,1],[1,2,2,3,3,1,1,2],[1,2,2,3,1,3,3,2],
   [1,2,2,3,2,1,1,3],[1,2,2,3,1,2,2,3],[1,2,2,3,4,2,2,1],[1,2,2,3,2,4,4,1],
   [1,2,2,3,4,1,1,2],[1,2,2,3,1,4,4,2],[1,2,2,3,2,1,1,4],[1,2,2,3,1,2,2,4],
   [1,2,2,3,4,3,3,1],[1,2,2,3,3,4,4,1],[1,2,2,3,4,1,1,3],[1,2,2,3,1,4,4,3],
   [1,2,2,3,3,1,1,4],[1,2,2,3,1,3,3,4],[1,2,2,3,5,4,4,1],[1,2,2,3,5,1,1,4],
   [1,2,2,3,1,5,5,4],[1,2,2,3,4,3,3,2],[1,2,2,3,3,4,4,2],[1,2,2,3,4,2,2,3],
   [1,2,2,3,2,4,4,3],[1,2,2,3,3,2,2,4],[1,2,2,3,2,3,3,4],[1,2,2,3,5,4,4,2],
   [1,2,2,3,5,2,2,4],[1,2,2,3,2,5,5,4],[1,2,2,3,5,4,4,3],[1,2,2,3,5,3,3,4],
   [1,2,2,3,3,5,5,4],[1,2,2,3,6,5,5,4]] : int list list

- List.filter ispalindrome it;
val it =
  [[1,2,2,3,3,2,2,1],[1,2,2,3,2,3,3,1],[1,2,2,3,3,1,1,2],[1,2,2,3,1,2,2,3],
   [1,2,2,3,4,2,2,1],[1,2,2,3,4,1,1,2],[1,2,2,3,3,4,4,1],[1,2,2,3,1,4,4,3],
   [1,2,2,3,3,2,2,4],[1,2,2,3,2,3,3,4]] : int list list
- length it;
val it = 10 : int

This case might be called complete completion.

Totally complete completion
kconcat[1,2,2,3][1,2,2,3];
Palindromes:
[[1,2,2,3,1,2,2,3],[1,2,2,3,2,3,3,1],[1,2,2,3,3,1,1,2],[1,2,2,3,3,2,2,1],
   [1,2,2,3,4,1,1,2],[1,2,2,3,4,2,2,1],[1,2,2,3,1,4,4,3],[1,2,2,3,3,4,4,1],
   [1,2,2,3,4,5,5,1],[1,2,2,3,2,3,3,4],[1,2,2,3,3,2,2,4],[1,2,2,3,4,2,2,5],
   [1,2,2,3,3,4,4,5],[1,2,2,3,4,5,5,6]] : int list list
- length it;
val it = 14 : int

Modi for head=[1,2,2,3]
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|kconcat[1,2,2,3][3,2,2,1]|= |kconcat[1,2,2,3][1,2,2,3]| = 34
|palin(kconcat[1,2,2,3][3,2,2,1])| < |palin(kconcat[1,2,2,3][1,2,2,3])|
- length(kconcat[1,2,2,3][1,2,2,3]);
val it = 34 : int
- length(kconcat[1,2,2,3][3,2,2,1]);
val it = 34 : int

This modus might be called totally complete completion.

The difference between the two forms of  completion,  the complete and the totally
complete,  is the result of a difference in the application of the tnf-function for the
complete  completion,  where  morphograms  of  the  form  [1,2,2,3,  6,5,5,4]  are  not
accepted as palindromes.
While tnf[1,2,2,3,6,5,5,4] = [1,2,2,3,4,5,5,6] is in ascending order and accepted as a
morphic palindrome.
- tnf[1,2,2,3,6,5,5,4];
val it = [1,2,2,3,4,5,5,6] : int list
- ispalindrome it;
val it = true : bool

- length(kconcat[1,2,2,3][1,2,2,3]);
val it = 34 : int
- length(kconcat[1,2,2,3][3,2,2,1]);
val it = 34 : int

Other completion cases
Morphogram [1,1,2]: prefix is not a palindrome
- ispalindrome[1,1,2,1,1];
val it = true : bool
- ispalindrome[2,1,1,1,2];
val it = false : bool
- tnf[2,1,1,1,2];
val it = [1,2,2,2,1] : int list
- ispalindrome it;
val it = true : bool

"Lemma  2.  For  palindromes,  the  right  palindromic  completion  equals  the  left
palindromic completion."
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This lemma holds for symmetric palindromes only.

word = abbb
prefix: abbbba
suffix: abbbba

For morphic palindromes we get:
kconcat[1,1][1,1];
Palindrome: val it = [[1,1,1,1],[1,1,2,2]] : int list list
- kconcat[1,2][2,1];
- List.filter ispalindrome it;
val it = [[1,2,2,1],[1,2,1,2],[1,2,3,1],[1,2,2,3]] : int list list

DOW palindromes L2 = {[1,1,2,2], [1,2,2,1],[1,2,1,2]}

Partial completion examples: [1,2,3,4] to [1,2,3,4,2,1], [1,2,3,4,3,2,1].
- ispalindrome[1,2,3,4,2,1];
val it = true : bool
- ispalindrome[1,2,3,4,3,2,1];
val it = true : bool

Non-palindromic base
[1,1,2,3]∉ Pal to [1,1,2,3,1,1]∈Pal:
- ispalindrome[1,1,2,3];
val it = false : bool
- ispalindrome[1,1,2,3,1,1];
val it = true : bool
- palindrome[1,1,2,3,1,1];
val it = false : bool

[1,1,2,3] to [3,2,1,1,2,3]
- ispalindrome[3,2,1,1,2,3];
val it = false : bool
- tnf[3,2,1,1,2,3];
val it = [1,2,3,3,2,1] : int list
- ispalindrome it;
val it = true : bool

1.2.6.  Depiction by assembly and differentiation graphs
Assembly graph abstraction
Assembly Graphs are abstracting from the underlying values of the alphabet of the  word
(palindrome).
Therefore, e.g., AssGraph[1,2,2,1] = AssGraph[3,4,4,3] = AssGraph[4,3,3,4].

That  is,  AssGraphs  as  such  are  depicting  some  aspects  of  the  ENstruture  of
morphograms. They correspond to the operation of ascending relabeling. But they are
not  mirroring  the  number  of  differentiations  between  the  elements,  which  is
represented for morphograms by the number of subsystems of the morphogram.

- ENstructure[3,4,4,3] = ENstructure[1,2,2,1].

http://knot.math.usf.edu/assembly/index.html

Differentiation graph for the palindrome [1,1,2,2,3,3]
- ENstructure [1,1,2,2,3,3];
val it =
[[],
[(1,2,E)],
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[(1,3,N),(2,3,N)],
[(1,4,N),(2,4,N),(3,4,E)],
[(1,5,N),(2,5,N),(3,5,N),(4,5,N)],
[(1,6,N),(2,6,N),(3,6,N),(4,6,N),(5,6,E)]] : (int * int * EN) list list

- ispalindrome[1,1,2,2,3,3];
val it = true : bool

DiagrMorphFMS [1,1,2,2,3,3]

Assembly Graph for the palindrome (112233)

Comparison
The differentiation  graph is  answering the question: How are the ‘elements” of the
palindrome differentiated? What makes the difference between the elements in respect
of  their  property  of  equal/non-equal  and  their  place  (locus)  in  the  grid  of  the
palindrome? Each act of differentiation is creating the ‘elements’ of differentiations.

The  assembly  graph  are  answering  the  question:  How  are  the  elements  of  the
palindrome connected in  the  linearly  ordered succession  structure?  The elements  of
palindromes are pre-given as the elements of the word in question.

For  the  complexity  of  just  3  elements,  both  approaches,  the  semiotic  and  the
morphogrammatic,  coincide.  There  are  just  3  differentiations  for  the  differentiation
graph and just 3 successions in the assembly graph.

Assembly Graphs
Palindrome P = [1,2,2,3,3,4,4,1]

Palindrome P = [1,2,2,3,1,4,4,3]
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Palindrome P = [1,2,2,3,3,4,4,5,5,1]

1.2.7.  Types of Separation: Reducible and irreducible DOWs
"Definition 2.2  If a double occurrence word w can be written as a product  w = uv of two
non-empty double occurrence words u; v, then w is called reducible; otherwise, it is
called irreducible.

"Definition 2.3 A non-empty double occurrence word is strongly-irreducible if it does not
contain a proper sub-word that is also a double occurrence word.

"The double occurrence word 12213434 is reducible because it can be written as the
product of the two double occurrence words 1221 and 3434, but 12344123 is irreducible.
However, since 44 is a proper sub-word of 12344123 it is not strongly-irreducible. The
word 12132434 is strongly-irreducible. By definition, strongly-irreducible words are also
irreducible, so 12132434 is irreducible as well. In particular 11 is strongly-irreducible.

"Lemma 2.4 Every double occurrence word contains a strongly-irreducible sub-word.”

1.2.8.  DOWs and palindromes
”  [...]  separate  the  classes  of  double  occurrence  words  into  palindromes  and
non-palindromes and describe the construction of large double occurrence words from
smaller double occurrence words."

Classical palindromes are trivially symmetric (or specially, double) occurrence words.
DOW palindromes with relabeling operations are DOWs.
There are asymmetric palindromes that are not DOWs.

DOWs that are non-palindromic.
- ispalindrome[1,2,3,1,3,2];
val it = false : bool

In contrast:
- ispalindrome[1,2,3,1,2,3];
val it = true : bool
- ispalindrome[1,2,3,3,2,1];
val it = true : bool

non-DOW
- ispalindrome[1,1,2,3,4,4];
val it = true : bool
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[1,1,2] [3,4,4]
- kref[3,4,4];
val it = [1,1,2] : int list

1.2.9.  Modi of reducibility for morphic palindromes
A  reducible  palindromic  morphogram is  reducible  either  into  repetive,  reversive  or
accretive parts.

The word 12132434 is strongly-irreducible.
Properties
Assembly Word: 12132434
Reverse Word:   12132434
Palindromic:                Yes
Weakly Irreducible:   Yes
Strongly Irreducible: Yes

- ispalindrome[1,2,1,3,2,4,3,4];
val it = true : bool
- tnf[4,3,4,2,3,1,2,1];
val it = [1,2,1,3,2,4,3,4] : int list

[1,2,1,3] => accr[1,2,1,3] = [2,4,3,4].

- ispalindrome[1,2,1,3];
val it = false : bool
- tnf[2,4,3,4];
val it = [1,2,3,2] : int list
- ispalindrome [1,2,3,2];
val it = false : bool

- ENstructure[1,2,1,3] = ENstructure[2,4,3,4];
val it = false : bool

- kconcat[1,2,1,3][1,2,1,3];
val it = [] : int list list

- kconcat[1,2,1,3][3,1,2,1];
Palindrome: val it =    11
  [[1,2,1,3,3,1,2,1],[1,2,1,3,2,1,3,1],[1,2,1,3,3,2,1,2],[1,2,1,3,1,3,2,3],
   [1,2,1,3,4,1,2,1],[1,2,1,3,4,2,1,2],[1,2,1,3,3,1,4,1],[1,2,1,3,1,3,4,3],
   [1,2,1,3,3,4,2,4],[1,2,1,3,2,4,3,4],[1,2,1,3,3,4,5,4]] : int list list

Following  the  Florida  group  (N.  Jonoška),  the  modi  repetition  and  reversion  are
corresponding generally, i.e. without the restriction to DOWs, to “repeat words” and
“return words" (Ryan Arredondo). What is missing up to now, as far I can see, are the
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“accretion  words” or  as  they  may be  called  now the  “augmentation  words” of  the
morphogrammatic approach.

The word 12132434 is strongly-irreducible.

The word 12132434, read as a morphogram is decomposable into its non-palindromic
parts  [1,2,1,3]  and  [2,4,3,4].  The  morphogram [1,2,1,3,2,4,3,4]  then  appears  as  an
element  of  the  morphic  concatenation  kconcat  of  [1,2,1,3]  and  [3,1,2,1],
kconcat[1,2,1,3][3,1,2,1].
Hence,  the  palindromic  morphogram [1,2,1,3,2,4,3,4]  is  decomposable  into  its  head
[1,2,1,3]  and into the accretion  of  the head [2,4,3,4]  as  its  body in  context of  the
concatenation  kconcat[1,2,1,3][3,1,2,1].
Also, [1,2,1,3] ∩ [3,1,2,1] != ⌀, the word (morphogram) [1,2,1,3,2,4,3,4] is reducible by
accretion. This is in conflict with the DOW analysis of the reducibility of words.

The given example, [1,2,1,3,2,4,3,4], is a palindromic ‘double occurrence word' (DOW)
but the parts are neither palindromic nor DOWs, and are therefore not reducible to
‘double occurrence words’.

All palindromic morphograms are reducible by decomposition in the modi of repetition,
accretion or reversion.

Strictly separable non-DOW palindromes
pal = (pal1, pal2)
pal1∩ pal2 = ⌀
Example
pal = [1,2,2,3,4,5,5,6]: [1,2,2,3] ∩ [4,5,5,6] = ⌀

DOW example for a strictly separable reducible word:
- ispalindrome[1,2,2,1,3,4,4,3];
val it = true : bool
[1,2,2,1] ∩ [3,4,4,3] = ⌀

No classical non-DOW palindrome is strictly separable.
With relabeling in ascending order, pal is a palindrome too.

For fst=last(pal1,2):
ispalindrome(tnf[pali1minus frts-lst, palin2 minus frst-lst]) is palindrome:
Palindrome [1,2,3,4,1,2,3,4,1]:
- ispalindrome(tnf[2,3,4,2,3,4]); repetition
val it = true : bool
- ispalindrome(tnf[2,3,4,4,5,2]); reversion
val it = true : bool
- ispalindrome(tnf[2,3,4,5,6,2]); reversion
val it = true : bool

[1,2,2,3,3,2,2,1] to [2,3,3,2]:
- ispalindrome(tnf[2,3,3,2]);
val it = true : bool
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[1,2,2,3,4,2,2,1] to [2,3,4,2]:
- ispalindrome(tnf[2,3,4,2]);
val it = true : bool

[1,2,2,3,3,2,2,1] to [3,3]: palindrome,
[1,2,2,3,4,2,2,1] to [3,4]: palindrome

1.2.10.   Counting palindromes
The number of palindromes of assembly words

"If a double occurrence word w of size n >= 2 is a palindrome beginning and ending with
1, then the word formed by removing both 1s is also a palindrome. Hence there are Ln 1
palindromes with n letters that start and end with 1.”
[1, 2,2,3,4,5,5,1]:
- ispalindrome (tnf[2,2,3,4,5,5]);
val it = true : bool

- ispalindrome(tnf[2,2,3,2,3,3]);
val it = true : bool

The recursive formula for DOW palindromes of length n is counted by:

The number of DOW palindromes with n letters, for any positive integer n is given by the
closed formula:

Jonathan  Burns,  et  al,  Four-Regular  Graphs  with  Rigid  Vertices  Associated  to  DNA
Recombination, 2011
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Number of morphic palindromes

A080107         
"Number of fixed points of permutation of SetPartitions under {1,2,..,n}->{n,n-1,..,1}.
Number  of  symmetric  arrangements  of  non-attacking  rooks  on  upper  half  of  n  X  n
chessboard."
1, 1, 2, 3, 7, 12, 31, 59, 164, 339, 999, 2210, 6841, 16033, 51790, 127643, 428131, 1103372, 3827967,
10269643,  36738144,  102225363,  376118747,  1082190554,  4086419601,  12126858113,  46910207114,
143268057587, 566845074703

http://oeis.org/A080107

Mathematica for A080107
<<DiscreteMath`NewCombinatorica`; Table[t = SetPartitions[n]; t= t /. Thread[Range[n]
-> Range[n, 1, -1]]; t= 1 + RankSetPartition /@ t; t= ToCycles[t]; t= Cases[t, {_Integer}];
Length[t], {n, 7}]

bi-symmetric partitions
The number of bi-symmetric partitions was enumerated as the sequence A080107

Mathematical  aspects  of  palindromes  as  “bi-symmetric  partitions”  are  pofoundly
studied under different motivations.

Guoce Xin, Terence Y.J. Zhang, Enumeration of bilaterally symmetric 3-noncrossing
partitions

"Theorem 1. For any given partition P and vacillating tableau V, Prefl =  Vrev if and only if
φ(P) = V.

"A vacillating tableau V is said to be palindromic if V = Vrev. A partition P of [n] is said to

be bilaterally symmetric (bi-symmetric for short) if P = Prefl. Theorem 1 implies that P is
bi-symmetric if and only if V(P) is palindromic.

The enumeration of bi-symmetric partitions and matchings are not hard, but turns out to
be very difficult if we also consider the statistic of crossing number or nesting number.

http://www.sciencedirect.com/science/article/pii/S0012365X08003919 (2008)

Christian Schröder, Palindromic and Even Eigenvalue Problems

"In mathematics it makes sense to talk about palindromic polynomials like p(λ) = 5λ4

+7λ3 + 2λ2 + 7λ + 5, where the coefficients form the palindromic sequence 5, 7, 2, 7, 5.

"Passing from scalar to matrix  coefficients results in palindromic matrix polynomials,

P(λ) = Aiλi where Ai = Ak−i ∈ C .

"While  these  polynomials  are  interesting  in  themselves,  a  slight  variation  recently
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received a lot more attention: the *-palindromic polynomials P(λ) = Aiλi , where Ai =
∈ C  and A* denotes the transpose or conjugate transpose of A.

So, *-palindromic polynomials are invariant under reversing the order of the coefficients
-- and (conjugate-) transposing."

http://page.math.tu-berlin.de/~schroed/Publicat/FasMMS07.pdf

It seems to be quite natural to ask about the consequences for palindromic polynomials
if morphic abstractions to the palindromic coefficients are applied.

What happens to morpho(p(λ)) for the coefficients (5λ4 +7λ3 + 2λ2 + 7λ + 5)?

The sequence (5, 7, 2, 7, 5) is  at first  morphogrammatically equal to [1,2,3,2,1] as
tnf[5,7,2,7,5].
But  more  interestingly,  this  sequence  belongs  morphogrammatically  to  a  field  of
equivalent palindromic return-sequences of the ‘root’ palindrome [1,2,3,2,1].

The example of the symmetric palindrome [1,2,3,2,1] has a field of 14 palindromes that
are  representing  the  possibilities  of  its  ‘backwards’  reading  without  violating  its
structure and palindromicity.

           symmetric       asymmetric palindromes
          [1,2,3,2,1]       [1,2,3,2,1]
          ↑            ↓       ↑           ↓       
          [1,2,3,2,1]       [3,4,1,4,3]

Palindromic iterability scheme for [1,2,3,2,1]

Palindromic fied of [1,2,3,2,1] aka [5,7,2,7,5]
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Obviously,  the  forwards  and  the  backwards  reading  of  the  palindrome are  involving
different contexts of viewpoints of the understanding of the formula. Only one viewpoint
is  confirming  exactly  as  the  same for  both  directions  of  reading  the  modus  of  the
iterability is iteratve inversion.

1.2.11.  Return and repeat words
Patterns translated
A return word is a word of the form a1 a2 · · · an an · · · a2 a1 , ai ∈ Σ for all i, and ai !=
aj for i != j
A repeat word is a word of the form a1 a2 · · · an a1 a2 · · · an , ai ∈ Σ for all i, and ai !=
aj for i != j

Special cases of morphic equivalence of return and repeat words

Both cases, return and repeat of the prefix [1,2,3,4], are DOW words and palindromic.
Their ENstructure is different. Obviously, the repeat words need a relabeling mapping to
install palindromicity between the word and its repetition.

Ryan  Arredondo,  Reductions  on  Double  Occurrence  Words  (03/08/2013
)http://131.247.211.200/multimedia/Boca.pdf

DOW palindromes(3)
112233    122331    121323    123123     123231 123312  123321
direct:
repeat: 123123
return: 123321
with relabeling:
repeat: 121323, 123312, 123231,
return: 122331, 112233
repeat:
- ispalindrome[1,2,3,4,1,2,3,4];
val it = true : bool
return:
- ispalindrome[1,2,3,4,4,3,2,1];
val it = true : bool

- ENstructure[1,2,3,4,1,2,3,4] = ENstructure[1,2,3,4,4,3,2,1];
val it = false : bool

non-DOW palindromes

repetition as augmentation:
[1,2,2,3,3,2,2,4]

-tnf[4,2,2,3,3,2,2,1];
val it = [1,2,2,3,3,2,2,4] : int list

The Florida model of palindromes is not giving a constructive method of constructing
palindromes.

Applied to the restricted case of DOWs, the operations of “repeat” and “direct” are not
directly covering all cases. The property of palindromicity via relabeling of repeat and
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return has secoundarily to check the composed word for palindromicity. Not all possible
combinations are delivering palindromes.

1.2.12.  Constructing palindromes
Given the head of a possible palindrome. How to construct out of the given head a
palindrome?

Procedures  are  “repeat”  (repetition)  and  “return”  (reversion),  completed  with  the
relabeling  procedure and the test  of  palindromicity.  This  approach holds  for  double
occurence words (DOW) and adapts to the general case too.

Are there morphic palindromes not definied by this procedures?

Given  the  head  [1,2,2,3],  how  is  the  DOW  morphic  palindrome  [1,2,2,3,1,4,4,3]
constructed?
The body = [1,4,4,3] is a repetition of the head = [1,2,2,3] modulo relabeling. Therefore
it is accepted as the body of the palindrome.
The case for a body = [4,5,5,6] is accepted by relabeling: rel[4,5,5,6] = [1,2,2,3]. But
the accepted morphic palindrome [1,2,3,4,5,5,6] is not a DOW palindrome. Hence, the
DOW property is restricting the range of combinations.

Hence,  the  main  condition  that  words  are  DOWs  has  to  be  respected  as  the  first
distinction of the constructions.

Repetion  or  reversion  as  augmentation  in  the  sense  of  accretion  is  therefore  not
necessary for DOWs with relabeling function.

Without the restrinction on DOWs, a morphogram [1,2,2,3,4,5,5,6] is well accepted as a
morphic palindrome.

But not the morphogram [1,2,2,3,2,4,4,5]:
- ispalindrome [1,2,2,3,2,4,4,5];
val it = false : bool

To construct all general morphic palindrome it seems to be necessary to add more rules
to support repetition, reversion and accretion. This is covered by the context rules for
palindromes (pal-CR).

Similar to the morphogrammatic rules for multiplication where context rules are limiting
the  combinatorial  possibilities  given  by  an  atomistic  or  symbolic  approach  to  the
multiplication  of  sign  sequences,  the  building  of  palindromes  as  a  special  kind  of
concatenation  has  to  apply  the  context  rules  on  the  morphogrammatic  operation
kconcat[-][-].

Reversion
kconcat [mg](rev[mg])
Repetition
kconcat[mg][mg]

The  test  shows  that  the  reversive  kconcat  [mg](rev[mg])  is  part  of  the  repetive
kconcat[mg][mg].

Hence,  for  morphic  palindromes,  reversion  is  a  special  case  of  repetition  for
morphogrammatic concatenation.
Again,
- Tcard 8;
val it = 4140 : int

- length(kconcat[1,2,2,3] [3,2,2,1]);
val it = 34 : int
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- length(kconcat[1,2,2,3][1,2,2,3]);
val it = 34 : int

Palindrome:  val it =
  [[1,2,2,3,3,2,2,1],[1,2,2,3,2,3,3,1],[1,2,2,3,3,1,1,2],[1,2,2,3,1,2,2,3],
   [1,2,2,3,4,2,2,1],[1,2,2,3,4,1,1,2],[1,2,2,3,3,4,4,1],[1,2,2,3,1,4,4,3],
   [1,2,2,3,3,2,2,4],[1,2,2,3,2,3,3,4]] : int list list
- length it;
val it = 10 : int

Palindrome: val it =
  [[1,2,2,3,1,2,2,3],[1,2,2,3,2,3,3,1],[1,2,2,3,3,1,1,2],[1,2,2,3,3,2,2,1],
   [1,2,2,3,4,1,1,2],[1,2,2,3,4,2,2,1],[1,2,2,3,1,4,4,3],[1,2,2,3,3,4,4,1],
   [1,2,2,3,4,5,5,1],[1,2,2,3,2,3,3,4],[1,2,2,3,3,2,2,4],[1,2,2,3,4,2,2,5],
   [1,2,2,3,3,4,4,5],[1,2,2,3,4,5,5,6]] : int list list
- length it;
val it = 14 : int

Asymmetry with reverse and relabel
symmetric and asymmetric words

word = [1,2,2,3,1,3]
word = DOW, non-palindrome
- rev[1,2,2,3,1,3];
val it = [3,1,3,2,2,1] : int list
- tnf it;
val it = [1,2,1,3,3,2] : int list
- ispalindrome it;
val it = false : bool

- tnf[1,2,2] = tnf[3,1,3];
val it = false : bool

tnf(rev(word)): DOW, non-palindrome
word != tnf(rev(word))

word = [1,2,1,3,2,3]
word = DOW, palindrome
- ispalindrome[1,2,1,3,2,3];
val it = true : bool
- rev[1,2,1,3,2,3];
val it = [3,2,3,1,2,1] : int list
- tnf it;
val it = [1,2,1,3,2,3] : int list

- tnf[1,2,1] = tnf[3,2,3];
val it = true : bool

tnf(rev(word)): DOW, palindrome
word = tnf(rev(word))
- ispalindrome[1,2,2,3];
val it = true : bool
- tnf[3,2,2,1];
val it = [1,2,2,3] : int list

Equality, equivalence and ‘canonical forms'

"Two DOWs are said to be equal if they have the same canonical form.”
This corresponds to some morphogrammatic approaches:
Two morphograms are equivalent iff they have the same (equal) E/N-structure.

There is a difference too in constucting palindromes or to filter them out of a set of
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words (morphograms), say with the procedure List.filter ispalindrome “Tcontexture n”
for morphic palindromes.

Hence, where are the asymmetric palindromes gone?

The  asymmetric  morphic  palindromes  are  asymmetric  because  they  insist  on  the
difference  between  semiotic  or  symbolic  constructions,  i.e.  words,  and  the
kenogrammatic scriptural level of morphogrammatic constructions, i.e. morphograms.

Accepting  this  basic  difference  in  the  mode  of  writing,  the  case  for  asymmetric
palindromes is clearly established. There is no such fallacy of having forgotten to apply
the relabeling fixture.

It is just a secondary, and obviously convenient and practical decision, to employ the
operation of relabeling in a second step to produce on a semiotic level symmetry where
there is in fact asymmetry.

1.2.13.  What are the advantages of the morphogrammatic understanding of
palindromes?
Neither the identitive semiotic approach nor the more abstract approach of equivalences
of relabeled palindromes offers a mechanism to deal with distributed palindromes in
contextural complexions.

Morphograms, and therefore palindromes too, are not just simple sequences of signs but
involved into a distribution and mediation mechanism, called morphic dissemination.

Hence a single morphogram or a single palindrome is therefore just a morphogram at a
single locus.

At least two different modi of distribution of palindromes have to be considered: first
the intra-contextural and second the trans-contextural distribution and its mediations.

Therefore palindromes are not just appearing in a intra-contextural distribution but also
in disjunct, i.e. discontextural distributions. As a consequence, a new type of possible
palindromes occurs: the palindromes, i.e. palindromic paths, in fact journeys, between
contextures.

In short: A palindrome is not a just palindrome per se. A palindrome is situated in a
context that frames it as a palindrome at the distinguished place or locus it occurs.

The classical concept of palindromes is based on the uniqueness of its alphabet. Because
this uniqueness is unique it has not to be inscribed, noted or reflected. It is as it is.

Morphograms are not given in the is-abstraction mode but in the mode of “X as Y is Z”,
that is the as-abstraction.

1.3.  Towards an algorithm for the production of morphic palindromes
1.3.1.  Definitions

w = wR       R(w) = rev(uv) = rev(v)rev(u)
w = uv

relabeling: pal:: rel(rev(w)) = w
rel(rev(w)) = rel(rev(v) rev(u))

uv = u o v, o = accretive, iterative concatenation (composition)
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u = pal or non-pal

frame
repetition = frame of v = frame of u
reversion = frame of v = accr(rev(frame of u)) and lst(v) = frst(u)
augmentation: frame of v != frame of u or rev(frame(u))
core
repetition: core(v) = accr(core(u)), core(v) != frame(u)
reversion:
augmentation:

First attempt

For all w∈Pal : tnf[v] = u
u = palindrome.
1. v = direct repetition or v = direct reversion,
2. v = direct accretive repetition or v = direct accretive reversion,
3. v = direct accretion of u.

Example
u = palindrome = [1,2,3,4]
1. v = direct repetition :                [1,2,3,4];
     or v = direct reversion:             [4,3,2,1], [5,3,2,1];
2. v = direct accretive repetition:    [1,3,5,4], [1,5,6,4];
         inverse accretive repetition:   [1,3,2,4], [1,5,2,4];
or v = direct accretive reversion:    [4,5,6,1], [5,6,7,1], [3,4,5,1],
          repetive accretive revers:     [2,4,5,1], [5,2,3,1], [4,3,5,1];
          rev-core:                           [4,2,3,1]; [5,2,3,1], [5,3,2,1];
3. v = direct accretion of u:            [2,3,4,5], [3,4,5,6], [4,5,6,7], [5,6,7,8];
           repetive accretion:             [4,1,2,3], [5,1,2,3];
        rev-core                              [2,4,5,1], [2,5,4,1]; [4,3,2,5], [4,2,3,5];
                                                 [5,2,3,6], [5,3,2,6];      

1.3.2.  Recursive generation of palindromes
Production rule for Palindromes

A palindrome is a word that reads the same both forward and backwards, such as rotor.
An algorithm to determine whether or not a word is a palindrome can be expressed
recursively. Simply strip off the first and last letters; if they are different, the word is
not a palindrome. If they are, test the remaining string (after the first and last letters
have been removed) to see if it is a palindrome.

Classical grammar for palindromes over the alphabet   = {a, b}.
Context Free Grammar (CFG) production rules for palindromes:

http://www.univ-orleans.fr/lifo/Members/Mirian.Halfeld/Cours/TLComp/l3-CFG.pdf
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Example
S -->3 a  -->2  bab -->1 ababa  -->1 aababaa.

1.3.3.  List of morphic palindromes from [1] tp [1,2,3,4,5,6,7]
[[1],
[1,1],[1,2],                               even; iter, accr
odd(3): [1,1,1],[1,2,1],[1,2,3],   odd; iter, accr-sym, accr-asym
even(4): [1,1,1,1],[1,1,2,2],[1,2,1,2], [1,2,2,1],[1,2,2,3],[1,2,3,1],[1,2,3,4],

odd(5): [1,1,1,1,1], [1,1,2,1,1],[1,1,2,3,3],[1,2,1,2,1],[1,2,1,3,1],[1,2,2,2,1],[1,2,2,2,3],
                                           [1,2,3,1,2],[1,2,3,2,1],[1,2,3,2,4],[1,2,3,4,1],[1,2,3,4,5],

even(6): [1,1,1,1,1,1],[1,1,1,2,2,2],[1,1,2,1,2,2],[1,1,2,2,1,1],[1,1,2,2,3,3],[1,1,2,3,1,1],[1,1,2,3,4,4],
        [1,2,1,1,2,1],[1,2,1,1,3,1],[1,2,1,2,1,2],[1,2,1,3,2,3], [1,2,1,3,4,3],
        [1,2,2,1,1,2],[1,2,2,2,2,1], [1,2,2,2,2,3],[1,2,2,3,3,1],[1,2,2,3,3,4],
        [1,2,3,1,2,3],[1,2,3,1,4,3],[1,2,3,2,3,1],[1,2,3,2,3,4], [1,2,3,3,1,2],
        [1,2,3,3,2,1], [1,2,3,3,2,4],[1,2,3,3,4,1],[1,2,3,3,4,5],
        [1,2,3,4,1,2], [1,2,3,4,2,1],[1,2,3,4,2,5],[1,2,3,4,5,1],[1,2,3,4,5,6],

odd(7): [1,1,1,1,1,1,1],
   [1,1,1,2,1,1,1],[1,1,1,2,3,3,3],[1,1,2,1,2,1,1],
   [1,1,2,1,3,1,1],[1,1,2,2,2,1,1],[1,1,2,2,2,3,3],[1,1,2,3,1,2,2],
   [1,1,2,3,2,1,1],[1,1,2,3,2,4,4],[1,1,2,3,4,1,1],[1,1,2,3,4,5,5],
   [1,2,1,1,1,2,1],[1,2,1,1,1,3,1],[1,2,1,2,1,2,1],[1,2,1,2,3,2,3],
   [1,2,1,3,1,2,1],[1,2,1,3,1,4,1],[1,2,1,3,2,1,2],[1,2,1,3,4,2,4],
   [1,2,1,3,4,5,4],[1,2,2,1,2,2,1],[1,2,2,1,3,3,1],[1,2,2,2,2,2,1],
   [1,2,2,2,2,2,3],[1,2,2,3,1,1,2],[1,2,2,3,2,2,1],[1,2,2,3,2,2,4],
   [1,2,2,3,4,4,1],[1,2,2,3,4,4,5],[1,2,3,1,2,3,1],[1,2,3,1,3,2,1],
   [1,2,3,1,3,4,1],[1,2,3,1,4,2,1],[1,2,3,1,4,5,1],[1,2,3,2,1,2,3],
   [1,2,3,2,3,2,1],[1,2,3,2,3,2,4],[1,2,3,2,4,2,1],[1,2,3,2,4,2,5],
   [1,2,3,3,3,1,2],[1,2,3,3,3,2,1],[1,2,3,3,3,2,4],[1,2,3,3,3,4,1],
   [1,2,3,3,3,4,5],[1,2,3,4,1,2,3],[1,2,3,4,1,5,3],[1,2,3,4,2,3,1],
   [1,2,3,4,2,3,5],[1,2,3,4,3,1,2],[1,2,3,4,3,2,1],[1,2,3,4,3,2,5],
   [1,2,3,4,3,5,1],[1,2,3,4,3,5,6],[1,2,3,4,5,1,2],[1,2,3,4,5,2,1],
   [1,2,3,4,5,2,6],[1,2,3,4,5,6,1],[1,2,3,4,5,6,7].

Morphogrammatic ʻgrammarʼ for palindromes
In contrast to classical grammars, morphogrammatic production systems are contextual
in the specific sense that they are relating the range of their production to the just
produced  products  (strings,  objects,  morphograms)  and  not  to  a  pre-given  alphabet
manipulated by stable rules.

Again, the operation of ‘concatenation’ for palindromes, with w = u o v, is not atomically
defined  as  for  atomistic  formal  languages  but  is  retro-recursive  entangled  with  the
operands of the previous operation. Hence, the operator of morphic concatenation or
specifically,  the  operator  of  prolongation,  and  here,  for  palindromes,  of  double,
forwards and backwards,  prolongations,  is  reflecting the contextual  realizations  that
have to be prolongated.

Mimickry of a production system for palidromes.
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Some productions

[⌀]              1P1   P = [    [1,1]     : iter, rep     : rule1
                   1P2               [1,2]     : accr, asym  : rule4
                  ( 2P1              [2,1],    : but [1,2] = [2,1])

[1]               1P1   P = [1]  [1,1,1]   : iter, rep     : rule 1
                   2P2  [2,1,2]   [1,2,1]   : accr, rep    : rule3
                   2P3  [2,1,3]   [1,2,3]   ; accr, asym  : rule4
                 ( 3P2  [3,1,2]  )

[1,1]            1P1                    [1,1,1,1]   : iter          : rule1
                   2P2  [2,1,1,2] -> [1,2,2,1]    : accr, sym  : rule3
                   2P3  [2,1,1,3] -> [1,2,2,3]    : accr, asym : rule4
                  (3P2  [3,1,1,2] -> [1,2,2,3]    : accr, asym : rule4’ )
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[1,2]           1P2   [1,1,2,2]                    : repetition    : rule1
                          [2,1,2,1] -> [1,2,1,2]   : reversion     : rule2
                          [3,1,2,3] -> [1,2,3,1]   : accr, sym    : rule3
                          [3,1,2,4] -> [1,2,3,4]   : accr, asym   : rule4
[1,1,1,1]          [1,1,1,1,1] =
                        [2,1,1,1,1,2] -> [1,2,2,2,2,1] =
                        [2,1,1,1,1,3] -> [1,2,2,2,2,3] =
                             ([3,1,1,1,1,2] -> [1,2,2,2,2,3])

[1,2,2,1]           [1,1,2,2,1,1]  =
                        [2,1,2,2,1,2] -> [1,2,1,1,2,1] =
                        [3,1,2,2,1,3] -> [1,2,3,3,2,1] =
                        [3,1,2,2,1,4] -> [1,2,3,3,2,4]  =

[1,2,2,3]           [1,1,2,2,3,3]  =
                        [3,1,2,2,3,1] -> [1,2,3,3,1,2] =
                        [4,1,2,2,3,5] -> [1,2,3,3,4,5] =
                        [2,1,2,2,3,2] -> [1,2,1,1,3,1] =
                        [4,1,2,2,3,4] -> [1,2,3,3,4,1] =

[1,1,2,2,]          [1,1,1,2,2,2] =
                         [2,1,1,2,2,1] -> [1,2,2,1,1,2] =
                         [3,1,1,2,2,4] -> [1,2,2,3,3,4] =
                         [3,1,1,2,2,3] -> [1,2,2,3,3,1] =

[1,2,1,2]            [1,1,2,1,2,2] =
                         [2,1,2,1,2,1] -> [1,2,1,2,1,2] =
                         [3,1,2,1,2,4] -> [1,2,3,2,3,4] =
                         [3,1,2,1,2,3] -> [1,2,3,2,3,1] =

[1,2,3,1]            [1,1,2,3,1,1] =
                         [4,1,2,3,1,4] -> [1,2,3,4,2,1] =
                         [4,1,2,3,1,5] -> [1,2,3,4,2,5] =
                         [2,1,2,3,1,3] -> [1,2,1,3,2,3] =
                         [3,1,2,3,1,2] -> [1,2,3,1,2,3] =

[1,2,3,4]      1P4  [1,1,2,3,4,4]  =    frame              iter
                   4P1  [4,1,2,3,4,1] -> [1,2,3,4,1,2] =    rev
                   2P3  [2,1,2,3,4,3] -> [1,2,1,3,4,3] =    core
                   3P2  [3,1,2,3,4,2] -> [1,2,3,1,4,3] =    core
                          [5,1,2,3,4,6] -> [1,2,3,4,5,6] =    accr, asym
                          [5,1,2,3,4,5] -> [1,2,3,4,5,1] =    accr, sym

Productions for odd palindromes
=> [1]
[1]          [1,1,1]
              [2,1,2] -> [1,2,1]
              [2,1,3] -> [1,2,3].
[1,1,1]    [1,1,1,1,1]    
              [2,1,1,1,2]  -> [1,2,2,2,1]
              [2,1,1,1,3]  -> [1,2,2,2,3]
[1,2,1]    [1,1,2,1,1]  
              [2,1,2,1,2] -> [1,2,1,2,1]
              [3,1,2,1,3] -> [1,2,3,2,1]   
              [3,1,2,1,4] -> [1,2,3,2,4]
[1,2,3]   [1,1,2,3,3]
             [3,1,2,3,1] -> [1,2,3,1,2]
             [2,1,2,3,2] -> [1,2,1,3,1]  
             [4,1,2,3,4] -> [1,2,3,4,1]
             [4,1,2,3,5] -> [1,2,3,4,5].
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[1,2,3] :           [ ,1,2,3, ]   
                        [ ,1,2,3, ],  
                        [ ,1,2,3, ]
                        [ ,1,2,3, ]
                        [ ,1,2,3, ]

sum(pal(5)) = 12
[1,1,1,1,1], [1,1,2,1,1],[1,1,2,3,3],[1,2,1,2,1],[1,2,1,3,1],[1,2,2,2,1],[1,2,2,2,3],
[1,2,3,1,2],[1,2,3,2,1],[1,2,3,2,4],[1,2,3,4,1],[1,2,3,4,5]

Further exemplification
P = [1,2,3,4,5,6] : u o v : [1,2,3] o [4,5,6]
                           succ(u) o succ(v) : {1,2,3} {4,5,6} {7,8}

P = [1,2,3,4,5,6]:                                       tnf
                        [ ,1,2,3,4,5,6, ] ->  [1,2,3,1,4,5,6,4]
                        [ ,1,2,3,4,5,6, ] ->  [1,2,3,4,1,5,6,4]
                        [ ,1,2,3,4,5,6, ] ->  [1,2,1,3,4,5,6,5]
                        [ ,1,2,3,4,5,6, ] ->  [1,2,3,4,5,1,6,3]
                        [ ,1,2,3,4,5,6, ] ->  [1,1,2,3,4,5,6,6]
                        [ ,1,2,3,4,5,6, ] ->  [1,2,3,4,5,6,1,2]
                        [ ,1,2,3,4,5,6, ] ->  [1,2,3,4,5,6,7,1]
                        [ ,1,2,3,4,5,6, ] ->  [1,2,3,4,5,6,7,8].

P = [1,2,3,1,4,5,6,4] :                                            tnf
                                  [1,1,2,3,1,4,5,6,4,4] -> [1,1,2,3,1,4,5,6,4,4]
                                  [4,1,2,3,1,4,5,6,4,1] -> [1,2,3,4,2,1,5,6,1,2]
                                  [2,1,2,3,1,4,5,6,4,6] -> [1,2,1,3,2,4,5,6,4,6]
                                  [6,1,2,3,1,4,5,6,4,2] -> [1,2,3,4,2,5,6,1,5,3]
                                  [3,1,2,3,1,4,5,6,4,5] -> [1,2,3,1,2,4,5,6,4,5]
                                  [5,1,2,3,1,4,5,6,4,3] -> [1,2,3,4,2,5,1,6,5,4]
                                  [7,1,2,3,1,4,5,6,4,7] -> [1,2,3,4,2,5,6,7,5,1]
                                  [7,1,2,3,1,4,5,6,4,8] -> [1,2,3,4,2,5,6,7,5,8] .

[1,2,2,3]:         [ ,1,2,2,3, ] -> [1,2,1,1,3,1]
                        [ ,1,2,2,3, ] -> [1,1,2,2,3,3]
                        [ ,1,2,2,3, ] -> [1,2,3,3,1,2]  
                        [ ,1,2,2,3, ] -> [1,2,3,3,4,1]
                        [ ,1,2,2,3, ] -> [1,2,3,3,4,5] .

        tnf(succ([mg])) = succ(tnf[mg])
[2,1,2]  [2,2,1,2,2] -> [1,1,2,1,1]       
                                  [1,2,1,2,1]           
              [3,2,1,2,3] -> [1,2,3,2,1]
              [3,2,1,2,4] -> [1,2,3,2,4]

1.3.4.  Grammar for morphic palindromes
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Production example
([w1=1, w2=2], [w1=1,w2=1]): P = [1,2]  and P = [1,1]

P = [1,1]:     w1Pw1                     [1,1,1,1]  ; rule1 (rule2)
                   w3Pw3   [2,1,1,2] -> [1,2,2,1]  ; rule3
                   w3Pw4   [2,1,1,3] -> [1,2,2,3]  ; rule4

P = [1,2]:     w1Pw2   [1,1,2,2]                    ; rule1 : direct repetition
                   w2Pw1   [2,1,2,1] -> [1,2,1,2]  ; rule2 : inverse repetition
                   w3Pw3   [3,1,2,3] -> [1,2,3,1]   ; rule3 : symmetric accretion
                   w3Pw4   [3,1,2,4] -> [1,2,3,4]  ; rule4 : asymmetric accretion
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Easy test for palindromicity of a morphogram

Like for classical  palindromes there is  a method to reduce palindrome to its  atomic
elements by using the rules in reverse.

This goes back to Palul Lorenzen’s Principle of Inversion for formal calculi.

The difference to morphic calculi is defined by their context rules that don’t exist for
formal calculi (systems, languages).

Classical rules
Ex. S --> {⌀,|a|, |b|, |c|, aSa, bSb, cSb}

Example
(acbcaacbca) is palindrome?
Rule-a: (cbcaacbc)
Rule-c: bcaacb
Rule-b: caac
Rule-c: aa
Rule-a: a.

Hence, (acbcaacbca) is a classical palindrome.

Morphic rules

Negative examples
Given the morphogram [1,2,3,1,1,2]. Is it a palindrome?
One method is to apply the grammar rules in reverse. If the morphogram is reducible to
[1] (or [1,1], [1,2]) following the reverted rules, then it is a palindrome.

rule2: [1,2,3,1,1,2] -> [2,3,1,1]
rule2: [2,3,1,1] -> [3,1]
??    : [3,1] -> [1]  : there is no rule to produce [1] from [3,1].
Hence, [1,2,3,1,1,2] is not a palindrome.

Further example:
rule1: [1,2,3,1,1,1,1] -> [2,3,1,1,1]
rule2: [2,3,1,1,1] -> [3,1,1]
no rules for [3,1,1] -> [1].
Hence, [1,2,3,1,1,1,1] is not a palindrome.

Positive example

Morphogram [1,2,3,4,1,1,3,4,5,1]:
rule1:   [1,2,3,4,1,1,3,4,5,1] -> [2,3,4,1,1,3,4,5]  :
rule4: [2,3,4,1,1,3,4,5] -> [3,4,1,1,3,4]    : (2,5) , no rule for [2,5] applicable!!
rule4: [3,4,1,1,3,4] -> [4,1,1,3]
rule4: [4,1,1,3]  ->  [1,1]
rule1: [1,1]  ->  [1].

Reformulation
Hence, the morphogram has to be re-writen in a form that is accessible to the rules.
This is shown with the following examples.

Morphogram [1,2,3,4,1,1,3,4,5,1] -> [1,4,3,2,1,1,3,2,5,1] tnf
rule1: [1,4,3,2,1,1,3,2,5,1] -> [4,3,2,1,1,3,2,5]
rule4: [4,3,2,1,1,3,2,5] -> [3,2,1,1,3,2]
rule4: [3,2,1,1,3,2] -> [2,1,1,3]
rule4: [2,1,1,3] -> [1,1]
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rule1: [1,1] -> [1].
Hence, the morphogram [1,2,3,4,1,1,3,4,5,1] is a palindrome.

The rules and their inversion are not directly applicable to the morphogram read as a
sign sequence. The rules are written in a canonical form. Hence, the notation of the
morphogram has to be adjusted  to the rules to be directly applied. This  is  possible
without conflicts by the tnf-function.

A more direct solution is achieved by the choice for the E/N-notation.
The EN-notation is neutral to the list-representation of the morphograms.

Hence,
ENstructureEN[1,2,3,4,1,1,3,4,5,1] = ENstructureEN[1,4,3,2,1,1,3,2,5,1].

ENstructureEN tables: direct cutting

More at:
http://memristors.memristics.com/Grammars%20and%20Programs
/Grammars%20and%20Programs.html
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Production of [1,2,3,1,2,3]   [3,1,2,3,1,2])
-> ⌀
rule4: [⌀] -> [1,2]
rule3: [1,2] ->  [3,1,2,3]  -> [1,2,3,1])
rule4: [3,1,2,3] -> [4,3,1,2,3,5] -> [1,2,3,1,2,3].

Revesion of production has to consider the reversion of the tnf-operation as part of the
context-rules.  This  reformulation  is  not  bijective.  Different  realisations  that  are
compatible to the rules are possible.

For  the  morphogram  [1,2,3,1,2,3],  which  is  also  a  DOW  palindrome,  there  are  4
realisations possible that are conform with the rules:
[1,2,3,1,2,3]:
    [3,1,2,3,1,2]
    [2,1,3,3,2,1]
    [1,3,2,1,3,2]
    [2,3,1,2,3,1]

Again, with the E/N-notation that is not depending on a canonical representation, this
distinction  would  disapear.  The  disadvantage  of  the  E/N-approach  is  its  higher
complexity that would have to be considered.
- ENstructure [1,2,3,1,2,3];
val it =
  [[],[(1,2,N)],
       [(1,3,N),(2,3,N)],
       [(1,4,E),(2,4,N),(3,4,N)],
       [(1,5,N),(2,5,E),(3,5,N),(4,5,N)],
       [(1,6,N),(2,6,N),(3,6,E),(4,6,N),(5,6,N)]] : (int * int * EN) list list

- ENstructureEN;
val it = fn : ''a list -> EN list list

- ENstructureEN[1,2,3,1,2,3];
val it = [[],[N],[N,N],[E,N,N],[N,E,N,N],[N,N,E,N,N]] : EN list list

   

Is the morphogram [1,2,3,1,2,3] a palindrome?
version1: tnf: [1,2,3,1,2,3] ->  [3,1,2,3,1,2]
rule4: [3,1,2,3,1,2] -> [1,2,3,1]
rule3: [3,1,2,3] -> [1,2]
rule4: [1,2] -> [⌀].

Morphogram [1,2,3,1,2,3]
version2: tnf: [1,2,3,1,2,3] ->  [2,1,3,2,1,3]
rule4: [2,1,3,2,1,3] -> [1,3,2,1]
rule1: [1,3,2,1] ->  [3,2]
rule4:  tnf[3,2] -> [2,1] -> [⌀]
[⌀].

Hence, the morphogram [1,2,3,1,2,3] is a palindrome.
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Negative example
- ispalindrome[1,2,3,2,1,3];
val it = false : bool

tnf: [1,2,3,2,1,3] -> [2,1,3,1,2,3]
rule4: [2,1,3,1,2,3] -> [1,3,1,2]
rule4: [1,3,1,2] -> [3,1]
[3,1] : no rule

There is no rule to change adequately [3,1] into an acceptable form, like [2,1], [1,2],
[2,3] etc.
Hence, the morphogram [1,2,3,2,1,3] is not a palindrome.

ML-test
- ispalindrome[1,2,3,1,1,2];
val it = false : bool
- ispalindrome[1,2,3,1,1,1,1];
val it = false : bool
- ispalindrome [1,2,3,4,1,1,3,4,5,1];
val it = true : bool
- ispalindrome[1,2,3,1,2,3];
val it = true : bool

Comparison
The classical rule system for palindromes is given by (S --> ⌀, |a|, |b|, aSa, bSb) for the
alphabet ∑ = {a, b}.

Hence,  for  each  new  situation  of  the  complexity  of  a  running  system,  the
classical  grammar with its alphabet and rules has to be re-formulated from an external
observer of the grammar in dependence of the new alphabet.

For  ∑ = {a, b, c}
S --> {⌀, |a|, |b|, aSa, bSb} ∪ {|c|, cSc}

The morphic rules for palindromes are based on differentiations,  independent of an
alphabet.  Hence,  the  rules  for  morphic  palindromes  are  covering  all  morphic
palindromes.

"Being a palindrome is a lexical property rather than a mathematical one.” Dan Dyler

This might be obvious for classical palindromes. It stops to be an ephemeric property of
lexicography if morphograms are involved.

1.3.5.  Representation of the modi
All  modi  of  iterability  of  palindromes,  i.e.  the  modi  of  repetition,  reversion  and
accretion, are representable by the 4 morphogrammatic grammar rules, Rule1-Rule4.

Question: Given a head, are all its palindromic completion derivable?

The  source  of  the  derivation  is  not  necessarily  identical  with  the  head  of  the
palindrome.
Therefore, the palindromes with the head = [1,2] have not to be derivable from its head.
It is sufficient if all palindromes with the head [1,2] are derivable from the sources [1,1]
and [1,2].
It is a sligthly different question, how to complete the head of a palindrome to get the
complete palindrome.
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reversion
P = [1,1]   w3Pw3   [2,1,1,2] -> [1,2,2,1]  ; rule3   
P = [1,2]   w3Pw3   [3,1,2,3] -> [1,2,3,1]  ; rule3

accretion
P = [1,1]   w3Pw4   [2,1,1,3] -> [1,2,2,3]  ; rule4   
P = [1,2]   w3Pw4   [3,1,2,4] -> [1,2,3,4]  ; rule4  

repetition
P = [1,2]   w2Pw1   [2,1,2,1] -> [1,2,1,2]  ; rule2.

1.3.6.  Production by complementation of palindromes
Given the palindrome [1,2,1] as a head, what are the resulting possible palindromes?

Palindromes [1,2,1,x,x,x]

[1,2,1] Q [x1 x2 x3], with x1= x 3
               [1,2,1]   : rule1,1,1 : repetition
               [1,3,1]   : rule1,2,1 : repetition
               [2,1,2]   : rule3,3,3 : reversion
               [3,2,3]   : rule3,1,3 : accretion
               [3,4,3]   : rule3,4,3 : accretion

Hence,  the  head  [1,2,1]  allows  to  generate  the  5  following  palindromes  by  retro-
recursive prolongation with the palindrome grammar rules:
[1,2,1,1,2,1],[1,2,1,1,3,1],[1,2,1,2,1,2],[1,2,1,3,2,3], [1,2,1,3,4,3].

Are  there  applications  of  the  rules  on  the  head  =  [1,2,1]  that  are  violating
palindromicity?

[head] + [empty body] x rules = palindromes

1.3.7.  Palindromization of morphograms
Given an arbitary morphogram mg as a head of a possible palindrome, what are the
resulting palindromes?

Repetition : ??
Reversion: [1,2,2] Q x x x

[1,2,2]  :: [1,2,2,2,2,1], [1,2,2,3,3,1], [1,2,2,3,3,4]

1.3.8.  DOW palindromes produced by morphoPal grammar
DOW-PAl(3): 112233 12233  121323 123123  123231 123312  123321

P = [1,1] :   [2,1,1,3] -> [1,2,2,3]            : rule4
                [2,2,1,1,3,3]  -> [1,1,2,2,3,3] : rule4
                [2,1,1,2]  ->  [1,2,2,1]           : rule3
             [3,2,1,1,2,3] ->  [1,2,3,3,2,1]    : rule3
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P = [1,2]
               [2,1,2,1]   ->    [1,2,1,2]         : rule2
            [3,1,2,1,2,3] -> [1,2,3,2,3,1]      : rule3

[1,1,2,2]                                             : rule1
[3,1,1,2,2,3] -> [1,2,2,3,3,1]                 : rule3

[3,1,2,3] -> [1,2,3,1]                            : rule3                                           
[2,1,2,3,1,3] -> [1,2,1,3,2,3]                 : rule1
[3,1,2,3,1,2] -> [1,2,3,1,2,3]                 : rule2

   [2,1,1,3] -> [1,2,2,3]                          : rule4
[3,1,2,2,3,1] -> [1,2,3,3,1,2]                 : rule4

non-DOW palindromes

P = [1,1] :  
             [1,1,1,1]   -> [1,1,1,1,1,1]           : rule1
             [2,1,1,3] : rule4  ->  [1,2,1,1,3,1] : rule1
             [2,1,1,2] : rule3  ->  [1,2,1,1,2,1] : rule1 .

DOW-palindromes are produced on the base of [1,1] and [1,2], or: just on [1] and [⌀],
and the rules of the morphoPal grammar.

How has the application of the morphoPal rules to be ruled to produce just the DOW
palindromes?

The morphoPal rules are delivering all possible morphic palindromes of a given length.
Hence, a restriction to the ‘double occurence words’ property has to be applied.

The  morphoPal  rules  are  divided  in  two  sets,  one  is  repeating  the  elements  of  a
production  in  direct  or  in  inverse  form.  The  other  rules  are  augmenting  the  the
‘alphabet’,  i.e.  the  differentiations,  of  the  words  by  symmetrical  or  asymmetrical
augmentation (accretion) of the elements of the production.

1.4.  Programming aspects
1.4.1.  Recursive programming of the morphoRules
Programming classical palindromes is straight forwards, easy to access and realized in all
programming languages.

http://rosettacode.org/wiki/Palindrome_detection

In general there are 2 approaches to consider:
1. The non-recursive and
2. The recursive approach.

The non-recursive works  with the construct  “reverse”,  the recursive works  over  the
constructs “head” and “last” of a string.

For the morphogrammatic approach, the descriptive approach has to completed by
a) reversion
b) repetition and
c) accretion.

The  (retro-)recursive  morphogrammatic  approach  has  to  deal  additionally  with  the
concept of trito-normal form, tnf, also called in other contexts an “OrderedCollection”
or a “relabeling by ascending order” and, more important, the variability of the head
(first) and last (tail) function for strings.

This variability is ruled by the morphoRules of the grammar for morphic palindromes.
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Warning
The following tables had been manually produced on the base of normed (canonized)
palindromes in trito-normal form, tnf, as it is used in the ML implementation.

The Scala program for the recursive production of palindromes, MorphoGrammar, is not
yet  accepting  this  approach.  It  is  based  purely,  as  it  is  defined,  on  non-canonized
palindromes.

Hence, a morphogram [1,2,3] is not accepted as a palindrome by the MorphoGrammar
program. Written as the list (1,2,3) it is not recognized as a morphogram that is written
as [1,2,3].
scala> isPalindrome2(List(1,2,3))
res17: Boolean = false

With  the  list  written  in  the  form  as  it  is  produced,  i.e.  as  (2,1,3)  or  (3,1,2),  the
morphogram [1,2,3] is accepted by the MorphoGrammar as a palindrome.
scala> isPalindrome2(List(2,1,3))
res2: Boolean = true

Hence, the approach of the tables is some kind of zigzagging between produced and
normed palindromes.
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1.4.2.  Comments on the implementations
Context rules vs. implementation

The intuitive and manual use of the rules follows some context rules (conditions)that
are not yet implementet in the proposed grammar and the production program.

Recursion  on  words  is  not  yet  running  round  with  the  Scala  grammar  and  program
’genPalindrome”.
Additionally, a strict 'mechanical' application of the rules on the length of the 'words' is
producing automatically some redundancy.
On the other hand, the manual application of the rules is delivering correctly the list of
palindromes. Obviously, some intuitive properties are not yet formalized.
This is discussed with the following example.

exclusion:
: rule3, because of fst=scnd but not last = lastn like

with  .

Hence, rule3(1,2) is not applicable to .
An application produces non-palindromic morphograms.

redundancy:
:  rule4  on  (1,2)  is  applicable.  But  the  result  is  also

produced by rule1 on (3,4):
: rule1 on (3,4).

Hence, the application rule4 on (1,2) can be omitted.

Example for redundancy
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limitation:
The implemented rules are not yet covering recursively all  correct applications on a
word (morphogram).
The present implementation is not yet considering cases like:

.

Manual examples

ML-Test odd(3): sum(pal(5)) = 12
[1,1,1,1,1], [1,1,2,1,1],[1,1,2,3,3],[1,2,1,2,1],[1,2,1,3,1],
[1,2,2,2,1],[1,2,2,2,3],[1,2,3,1,2],[1,2,3,2,1],[1,2,3,2,4],
[1,2,3,4,1],[1,2,3,4,5].
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Reminder: PALINDROME is not a regular language.

"In the automata theory, a set of all palindromes in a given alphabet is a typical example
of a language that is context-free, but  not regular. This means that it is, in theory,
impossible  for  a  computer  with  a  finite  amount  of  memory  to  reliably  test  for
palindromes.

In  addition,  the  set  of  palindromes  may  not  be  reliably  tested  by  a  deterministic
pushdown  automaton  which  also  means  that  they  are  not  LR(k)-parsable  or
LL(k)-parsable.  When  reading  a  palindrome  from  left-to-right,  it  is,  in  essence,
impossible to locate the "middle" until the entire word has been read completely.” (WiKi)
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