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Memristive Cellular Automata
First steps towards a design for kenomic cellular 
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Abstract
Memristive cellular automata are introduced as a new interpretation and model of 
general morphogrammatics. On the other hand, memristive cellular automata based on 
morphogrammatics are sheding some new light on the still little explored paradigm of 
morphogrammatic thinking as it was invented by the cybernetician Gotthard Gunther 
(1962) and elaborated by Kaehr/Mahler (1993).
Understanding morphogrammatics as a system of kenomic cellular automata. Applying 
retrograde recursivity to kenomic cellular automata by the definition of the rules and by 
their applications. Hence, additional to the properties of CAs, i.e. locality, uniformity, 
syncronicity, the property of memristivity and polysemy shall be implemented. This is 
possible only by a transformation from a symbolic to a kenomic concept of CA. 



1. Calculating Spaces 

"Rechnender Raum in denkender Leere” (SKIZZE-0.9.5)

„D´une certaine manière, ´la pensée‘ ne veut rien dire.” Derrida 

„Seine These, es gäbe weder die ´eine Wahrheit´ noch die ´eine Wirklichkeit‘, sondern das 
Universum sei vielmehr als ein ´bewegliches Gewebe´ aufeinander nicht zurückführbarer 
Einzelwelten zu denken, formulierte die entscheidende Aufgabe der Philosophie der Zukunft: 
eine Theorie bereitzustellen, die es gestattet, die Strukturgesetze des organischen 
Zusammenwirkens der je für sich organisierten Teilwelten aufzudecken.“ Gotthard Günther, 
15. Juni 1980 
 
Cellular Structured Space (Rechnender Raum) 
Tom wrote: 
> 1) Plankalkul 
> 
> :)- 
Rechnender Raum. (Okay, that was cheap). 
From: Eugene.Leitl@lrz.uni-muenchen.de 
Date: Wed May 02 2001 - 15:24:32 PDT 

http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-Prop-book.pdf 

2. Memristive Cellular Automata

2.1. Kenomic matrix and cellular patterns
"A cellular automaton is a collection of "colored" cells on a grid of specified shape that evolves 
through a number of discrete time steps according to a set of rules based on the states of 
neighboring cells. The rules are then applied iteratively for as many time steps as desired.”
http://mathworld.wolfram.com/CellularAutomaton.html

"The simplest class of one-dimensional cellular automata. Elementary cellular automata have 
two possible values for each cell (0 or 1), and rules that depend only on nearest neighbor 
values."

Weisstein, Eric W. "Elementary Cellular Automaton." From MathWorld--A Wolfram Web 
Resource. http://mathworld.wolfram.com/ElementaryCellularAutomaton.html 

Instead of the pre-defined {0, 1} values of each cell in a elementary cellular automaton, the 
value of the neighbor cells gets defined by the kenomic successor rules.

Therefore, the cellular automata rules for kenomic and morphogrammatic cellular automata 
are defined by the memristivity of retrograde recursivity. In a further step it will become 
obvious that the applications of the rules will change memristively according to their retrof-
gradeness. Hence, the ‘set’  of ‘beginning’ rules is defined memristively as well as the applica-
tions (iterability) of the rules. What is thus produced by kenomic automata are memristive 
domains, worlds, universes of kenomic computation.

Rules of functorial interchangeability are guiding the interactions of different cellular worlds 
enabled by kenomic cellular automata.
(Recall: SKISZZE-0.9.5)
http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-medium.pdf
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Instead of the pre-defined {0, 1} values of each cell in a elementary cellular automaton, the 
value of the neighbor cells gets defined by the kenomic successor rules.

Therefore, the cellular automata rules for kenomic and morphogrammatic cellular automata 
are defined by the memristivity of retrograde recursivity. In a further step it will become 
obvious that the applications of the rules will change memristively according to their retrof-
gradeness. Hence, the ‘set’  of ‘beginning’ rules is defined memristively as well as the applica-
tions (iterability) of the rules. What is thus produced by kenomic automata are memristive 
domains, worlds, universes of kenomic computation.

Rules of functorial interchangeability are guiding the interactions of different cellular worlds 
enabled by kenomic cellular automata.
(Recall: SKISZZE-0.9.5)
http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-medium.pdf

Configurations: Transition in time
"The only reason for time is so that everything doesn’t happen at once.” 
~ Albert Einstein 
The exact reason for morphogrammatics and its memristivity is the fact that things happens at 
once, all the time.

"One further ingredient that is needed for our cellular lattice to evolve with discrete time 
steps is a local rule or local transition function governing how each cell alters its state from 
the present instant of time to the next based on a set of rules that take into account the cell’s 
current state and the current state of its neighbors."

Homogene and heterogene transitions

A. Homogene 
One set of unambiguos rules are applied in time. Hence, a unambigous transition is defined.

ci (t + 1) = f [ci -1(t), ci (t), ci+1 (t)] .

ci (t + 1) =

f: [ci -1(t), ci (t), ci+1 (t)] ö [ci -1(t), ci (t), ci+1 (t)]

f : :rules>

xn
t+1 = f J xn+1

t , xn
t , xn-1

t
N

B. Retrogradness of memristic transitions

Example for retrograde kenomic TRANS

CAn
t-1 trans JCAn

t N ö Bf A JCANF Bf B J CAN F

The transition ‘trans’ for a CA at the time t to a new configuration at t+1 is depending retro-

grade recursively on the constellation of the CA of t-1. Hence, CAt+1= trans(CAt-1, CAt).

C. Heterogene
Several rules are applied and defining multiple transitions.
This allows a choice of rules. Otherwise all possible transitions are holding.

ci .j(t + 1) = fi.j ([ci -1(t), ci (t), ci+1 (t)] | [cj - 1(t), cj(t), cj+1 (t)]).
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The transition ‘trans’ for a CA at the time t to a new configuration at t+1 is depending retro-

grade recursively on the constellation of the CA of t-1. Hence, CAt+1= trans(CAt-1, CAt).

C. Heterogene
Several rules are applied and defining multiple transitions.
This allows a choice of rules. Otherwise all possible transitions are holding.

ci .j(t + 1) = fi.j ([ci -1(t), ci (t), ci+1 (t)] | [cj - 1(t), cj(t), cj+1 (t)]).

xnA
t+1 xnB

t+1 =

trans J xn+1
t , xn

t , xn-1
t N = J xn+1

t , xn
t , xn-1

t N A J xn+1
t , xn

t , xn-1
t N B.

2.1.1. Properties of CA and kenoCA
"Therefore the three fundamental features of a cellular automaton are: 
uniformity: all cell states are updated by the same set of rules; 
synchronicity: all cell states are updated simultaneously; 
locality: the rules are local in nature."

The new property is memristivity of kenomic cellular automata.

Locality versus retrogradness
Locality of the rules is not meaning retrogradness of the applicability of the rules applied 
locally.

"A fundamental precept of cellular automata is that the local transition function determining 
the state of each individual cell at a particular time step should be based upon the state of 
those cells in its immediate neighborhood at the previous time step or even previous time 
steps. 
Thus the rules are strictly local in nature and each cell becomes an information processing unit 
integrating the state of the cells around it and altering its own state in unison with all the 
others at the next time step in accordance with the stipulated rule.”
http://www.texnology.com/joel.pdf
 
 “That is, complex global features can emerge from the strictly local interaction of individual 
cells each of which is only aware of its immediate environment.”

Emergent features are not related to retrogradness.

First and second order automata
"These elementary cellular automata are examples of first order automata in the sense that 
the state of a cell at time step t + 1 only depends on the state of its neighbors at the previous 
time step t. Whereas in a second order automaton a cell’s state at time step t + 1 is rather 
more demanding and depends on the state of its neighbors at time steps t - 1 as well as t, 
analogous to the way the Fibonacci sequence was formed.”

Retrogradness is functionally of second order but it is not defined by second order rules.

Hence, for the cell (i, j) = (a), the neighbor cells have the values (a) and (b). That is producing 
6 kenomic patterns for {<a>, <b>} and not 8 distinct digital patterns for {0, 1}. The next steps 
of the rules are depending on their history which is not identical with an abstract continuation 
of the application of rules. Hence, the “resulting value” of the rule, define by the 2 
“neighboring cells” is not abstractly defined by combinatorics of possible valuations but by the 
possibilities opened up by the predecessor states, i.e. by the history of the previous develop-
ment.

Therefore, the combinatorics between digital and kenomic automata are not identical. 

For a 3 cell grid with 2 states there are 23= 8 digital constellations. 

For a 3 cell grid (kenomic matrix)and 2 kenomic ‘states’ there are 4 = ⁄n=1
2 Sn H3, nL. Hence, for 

3 states of a 3 cell grid there are ⁄n=1
3 Sn H3, nL kenomic constellations.

For 8 binary states there are a total of 28= 256 elementary cellular automata.

A visualization of elementary cellular automata is quite straightforward. There are no ambigui-
ties and perplexities involved. Surprises are appearing on an application level but not on the 
level of the basic definitions of the rules and their graphic representations.

It is a principle of morphogrammatic thinking that ambiguity and perplexity comes first.

Morphograms are interpretatively ambiguous. A solution of a graphic representation of ambigu-
ous cellular automata is not easily accessible.

Context rules of applicability
In contrast to the classical definitions of CAs, memristic CAs have to realize their antidromic 
recursivity on all levels of the construction and application, i.e. the context rules for 
antidromic repetitions have to be explicitly defined to rule or guide the applications of the 
elementary kenomic rules of kenomic CAs. 

The combinatorics for cellular automata is exponential with the stable base 2 for two 

elements, i.e. 2m. 
Kenomic developments are combinatorially defined by the Stirling numbers of the second kind, 
⁄n=1
m Sn Hm, nL.

Therefore, a kenomic definition of an “elementary cellular automaton” has to taken all 4 cells 
into account to determine the “resulting value” of the next generation. Otherwise, a value 
constellation for the 3 cells of (000) and (111) would have to be considered as kenomically 

identical. But then the constellations B
0 0 0
- 1 -

Fand B
1 1 1
- 1 -

Fwhich are different couldn’t 

be produced.

Cyclic applications
This is nicely depicted in the paper:
Pascal Bouvry et al, Cellular automata computations and secret key cryptography 
http://pascal.bouvry.org/ftp/parco04.pdf 
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level of the basic definitions of the rules and their graphic representations.
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Ambiguity versus computational reduction 
Mirrored rules, which are the same as their mirrored rule are called amphichiral (64).
Complementary rules are changing the roles of 0 and 1 in the rule definition. 

Number sequences defined by elementay cellular automata: Jacobsthal, Pascal, etc.

Stirling numbers of the second kind are crucial for the architectonics of kenomic cllular 
automata.

Wolfram Rule 30

B
0 0 0
Ñ 0 Ñ

F, B
0 0 1
Ñ 0 Ñ

F, B
0 1 0
Ñ 0 Ñ

F, B
0 1 1
Ñ 1 Ñ

F, B

1 0 0
Ñ 1 Ñ

F, B
1 0 1
Ñ 1 Ñ

F, B
1 1 0
Ñ 1 Ñ

F, B
1 1 1
Ñ 0 Ñ

F.

"For example, the table giving the evolution of rule 30 (30 = 000111102) is illustrated above. In 

this diagram, the possible values of the three neighboring cells are shown in the top row of 
each panel, and the resulting value the central cell takes in the next generation is shown 
below in the center.” (Weisstein, ibd.)

In contrast to the abstract combinatorial definition of the elementary cellular automata rules 

as a product of the the 23=8 states of neighboring cells and the binary next generation states 

28=256 the kenomic cells and ther kenomic states are building a ‘holistic’ pattern. Therefore, 
the whole structure of the base of the elementary rules is changed.

Because the next generation state of the fourth cell is depending on the previous kenomic 
states, the number of the whole pattern is maximally ⁄n=1

4 Sn H4, nL = 1 + 7 + 6 + 1 = 15.

2.2. Elementary 4-kenomic cellular automata rules 
2.2.1. Dyadic and kenomic CA scheme

Following the standard definitions for dyadic CA presented in a systematic way by Jaime 
Rangel-Mondragón:

6   Author Name



rule1 = :0, 1, 0, 1, 1, 1, 1, 1>;

We interpret this rule as describing a

transformation from the set :0, 1> 3 to the set :0, 1>.

ThreadBMapBStringJoinBToString êü IntegerDigitsBÒ, 2, 3FF&, RangeB0, 7FF -> rule1F

:000 -> 0, 001 -> 1, 010 -> 0, 011 -> 1, 100 -> 1, 101 -> 1, 110 -> 1, 111 -> 1>

That is, a rule of the form axb -> y describes the new value y of a given cell, given its 
present value x and those of its two neighbors a and b. In the case of dyadic CA, there are 
2^2^3=256 possible rules. It is possible to prove that linear CA do not need to have large 
neighborhoods; [...]."
http://library.wolfram.com/infocenter/MathSource/505/CAcatalog.nb
 
D yadic CA scheme

CA = 2 3= 8 positions and 2 8 = 256 constellations with x = :‡, ·>.

‡ ‡ ‡

- x -

‡ ‡ ·

- x -

‡ · ‡

- x -

‡ · ·

- x -

· ‡ ‡

- x -

· ‡ ·

- x -

· · ‡

- x -

· · ·

- x -

Null

Kenomic CA scheme

‚

n=1

3

Sn J3, nN = 1 + 3 + 1 = 5

‡ ‡ ‡

- x -

‡ ‡ ·

- y -

‡ · ‡

- y -

‡ · ·

- y -
‡ · ‡

- z -

This representation of the kenomic scheme is conventional. Every other representation 
which fulfils the epsilon/nu-structure of the patterns is accepted. 

Epsilon/Nu-structure of morphograms
How to define the elements of the rule schemata?
Obviously, the elements are not considered as semiotic or syntactic entities and are 
therefore not primarily determined by their atomic identity.

The two sign sequences (aba) and (bab) are seen as structurally, i.e. kenomically equiva-
lent. Instead of using abstractions to form equivalence classes of signs the simple method 
of relational equality and non-equality of pairs of signs shall be used. This defines the 
epsilon/nu-structure of morphograms,(epsilon=equal, nu=non-equal).

JabaN JbabN

≠ ≠ ≠ ≠
= =

Hence both tuples are structurally equivalent because their relations are equal. This 
allows to give a precis definition of the transition rules for Cas.
For reasons of convenience and aesthetics the relational symbols shall be replaced by the 
usual set of marks {‡, ·, ‡}.
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Hence both tuples are structurally equivalent because their relations are equal. This 
allows to give a precis definition of the transition rules for Cas.
For reasons of convenience and aesthetics the relational symbols shall be replaced by the 
usual set of marks {‡, ·, ‡}.

JaaaN J === N B‡‡‡F.

JaabN J= ≠ ≠N B‡‡·F.

JabaN J ≠ ≠ =N B‡·‡F.

JabbN J ≠ = ≠N B‡··F.

JabcN J ≠ ≠ ≠N B‡·‡F.

Transitions
JabaNöJaN : JaaaN

JbabNöJbbbN

JabaNöJaaaN BJ ≠ ≠ =N ö J === NF : B‡‡‡F.

Number of realizations
x = :a, b>, y = :a, b, c>, z = :a, b, c, d>,

m = 2, x*y*y*y*y = 2 5 = 32

m = 3, x*y*y*y*y = 2*3 4 = 162
m = 4, x*y*y*y*z = 2*3*3*3*4 = 216

BxyyyzF =

aaaaa, aaaab, aaaac, aaaad,
aaaba, aaabb, aaabc, aaabd,
aabba, aabbb, aabbc, aabbd,
abbaa, abbab, abbac, abbad,
abbba, abbbb, abbbc, abbbd,
and so on !

‡ ‡ ‡

- x -

‡ ‡ ·

- y -

‡ · ‡

- y -

‡ · ·

- y -
‡ · ‡

- z -

‡ ‡ ‡

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ·

- ‡ -

‡ · ‡

- ‡ -

‡ ‡ ‡

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ·

- ‡ -

‡ · ‡

- · -

‡ ‡ ‡

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ·

- ‡ -

‡ · ‡

- ‡ -

‡ ‡ ‡

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ·

- ‡ -

‡ · ‡

- ‡ -

‡ ‡ ‡

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ·

- · -

‡ · ‡

- ‡ -
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‡ ‡ ‡

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ·

- · -

‡ · ‡

- · -

‡ ‡ ‡

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ·

- · -

‡ · ‡

- ‡ -

‡ ‡ ‡

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ·

- · -

‡ · ‡

- ‡ -

and so on !! !

Reduction
Kenomic reduction of the d : 2 n, n = 3 :

:0, 1> 3 = 8 ‚

n=1

3

Sn J3, nN = 1 + 3 + 1 = 5

‚

n=1

4

Sn J4, nN = 1 + 7 + 6 + 1 = 15

2.2.2. Rules

c2 c1 c3

- c4 -
Jc1, Jc2, c3N, c4N,

Jc1, Jc2, c3NN Jc1, Jc2, c3N, c4N :

Ja, Ja, aNN Ja, Ja, aN, aN, Ja, Ja, aN, bN

Ja, Ja, bNN Ja, Ja, bN, aN, Ja, Ja, bN, bN, Ja, Ja, bN, cN

Ja, Jb, aNN Ja, Jb, aN, aN, Ja, Jb, aN, bN, Ja, Jb, aN, cN

Ja, Jb, bNN Ja, Jb, bN, aN, Ja, Jb, bN, bN, Ja, Jb, bN, c N

Ja, Jb, cNN Ja, Jb, cN, aN, Ja, Jb, cN, bN, Ja, Jb, cN, cN , Ja, Jb, cN, dN.

This construction of the rule-schemata is using the retrograd recursivity of the continuation 
operation for morphograms. Therefore, retrogradness as a memristive property is implemented 
at the very beginning of kenomic cellular automata. In other words, th rules of kenomic cellu-
lar automata are memristive. This holds for all further extensions of the memristive construc-
tion to higher order and more complex kenomic cellular automata.
http://memristors.memristics.com/MorphoReflection/Morphogrammatics%20of%20Reflection.ht
ml 

Rules

1. Ha, a, aL ö
a

b
, that is : Ha, a, aL or Ha, b, aL.

Kenomic rules are build in analogy to the CA rules. Thus the "resulting value the central cell 
takes in the next generation is shown in the center".
1. (a, a, a) ö (a, a, a), (a, b, a).
In fact, the rule might also be interpreted not as disjunctive but as a simultaneity of both: (a, 
a, a) | (a, b, a).
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Thus Ja, a, aN ö
a

b
, hence

Ja, a, aN

ˇ

Ja, b, aN

2. Ja, a, bN ö
a
b
c

3. Ja, b, aN ö
a
b
c

4. Ja, b, bN ö
a
b
c

5. Ja, b, cN ö

a
b
c

d

.

For aª ‡, bª·, cª ‡ and d ª ‡ the following symbolic and graphical representation is depicted.

a a a
Ñ a Ñ

a a a

Ñ b Ñ

a a b
Ñ a Ñ

a a b

Ñ b Ñ

a a b
Ñ c Ñ

0 1 0 1 2

‡ ‡ ‡

- ‡ -

‡ ‡ ‡

- · -

‡ ‡ ·

- ‡ -

‡ ‡ ·

- · -

‡ ‡ ·

- ‡ -

a b a
Ñ a Ñ

a b a

Ñ b Ñ

a b a
Ñ c Ñ

a b b
Ñ a Ñ

0 1 2 0

‡ · ‡

Ñ ‡ Ñ

‡ · ‡

- · -

‡ · ‡

- ‡ -

‡ · ·

- ‡ -

a b b

Ñ b Ñ

a b b
Ñ c Ñ

a b c
Ñ a Ñ

a b c

Ñ b Ñ

a b c
Ñ c Ñ

a b c

Ñ d Ñ

1 2 0 1 2 3

‡ · ·

- · -

‡ · ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ‡

- · -

‡ · ‡

- ‡ -

‡ · ‡

- ‡ -

.

2 elements
‡ ‡ ‡

- ‡ -

‡ ‡ ‡

- · -

‡ ‡ ·

- ‡ -

‡ ‡ ·

- · -

‡ · ‡

- ‡ -

‡ · ‡

- · -

‡ · ·

- ‡ -

‡ · ·

- · -

3 elements 4 elements
‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ‡

- · -

‡ · ‡

- ‡ -

‡ · ‡

- ‡ -
.

System of elementary kenomic cellular rules
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System of elementary kenomic cellular rules
R1 R2 R3 R4

‡ ‡ ‡

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

Ñ ‡ Ñ

‡ · ·

- ‡ -

R6 R7 R8 R9
‡ ‡ ‡

- · -

‡ ‡ ·

- · -

‡ · ‡

- · -

‡ · ·

- · -

R5
‡ · ‡

- ‡ -

R10
‡ · ‡

- · -

R11 R12 R13 R14 R15
‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ·

- ‡ -

‡ · ‡

- ‡ -

‡ · ‡

- ‡ -

2.2.3. Examples
Wolfram
CellularAutomaton[150, {1, 0, 1, 1}, 3]
{{1, 0, 1, 1}, 
{0, 0, 0, 1}, 
{1, 0, 1, 1}, 
{0, 0, 0, 1}}

Kenomic model for rule 150
kenom([150], {1,0,1,1}, 3]):
[[150] = r1, r7, r8, r9], [dual[150] = r6, r2, r3, r4]
                                 
CA wolfram keno dual keno
1011 r5, 3, 5, 1 r9 .8 .9 .1 0100 r4 .3 .4 .6
0001 r7, 8, 7, 6 r7 .1 .7 .8. 1110 r2, 6, 2, 4
1011 r5, 3, 5, 1 r1 .8 .9 .1 1011 r4, 3, 4 !, 6
0001 n = 3, stop 1110 n = 3, stop

Dual kenomic rules
r1, r6,      
r2, r7; r11
r3,r8, r12
r4, r9; r13
r5, r10; r14, r15

Strict Combinations 
type1 = r1.2.3.4.5/10              dual-type1 = r6.7.8.9.10/5
type2 = r1.7.8.9.5/10              dual-type2 = r6.2.3.4.10/5
type3 = r1.2.8.9. 5./10            dual-type3 = r6.7.3.4.10/5
type4 = r1.2.3.9.5/10              dual-type4 = r6.7.8.4.10/5

Combinations with ambiguity or decision space of application
type3 = r1.2.3.8.9.10.14.15

Article Title  11



2.2.4. Keno analogy of rule 150
Symbolic CA rule 150= ;10010110?

‡ ‡ ‡

- ‡ -

‡ ‡ ·

- · -

‡ · ‡

- · -

‡ · ·

- ‡ -

· ‡ ‡

- · -

· ‡ ·

- ‡ -

· · ‡

- ‡ -

· · ·

- · -
.

Nr.\ l 1 2 3 4 5 6 7 8 9 rule = B150; :10010110>F

1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ 5, 7, 4

2 Ñ Ñ Ñ ‡ ‡ ‡ Ñ Ñ Ñ 7, 5, 1, 2, 4

3 Ñ Ñ ‡ Ñ ‡ Ñ ‡ Ñ Ñ 7, 6, 3, 6, 3, 6, 4

4 Ñ ‡ ‡ Ñ ‡ Ñ ‡ ‡ Ñ Ñ

5 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ stop

Kenomic CA rules

keno C150G = r1 .7 .8 .4= B1001F

‡ ‡ ‡

- ‡ -

‡ ‡ ·

- · -

‡ · ‡

- · -

‡ · ·

- ‡ -
.

Nr.\l 1 2 3 4 5 6 7 8 9 rule = BB150F; 1, 7, 8, 4F

1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ 8, 7, 8, 4

2 Ñ Ñ Ñ · · ‡ Ñ Ñ Ñ 1, 7, 8, 4

3 Ñ Ñ Ñ ‡ · · ‡ Ñ Ñ 7, 8, 4, 7, 8, 4

4 Ñ Ñ ‡ · ‡ · · ‡ Ñ 7, 8, 8, 8, 4, 7, 8, 4

5 Ñ · · · · ‡ · · ‡ 1, 1, 1, 7, 8, 4, 7, 8

6 Ñ ‡ ‡ ‡ · · ‡ · · 7, 4, 1, 7, 4, 7, 8, 4, 1

7 · ‡ ‡ · ‡ · · ‡ ‡ Ñ

8 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ stop

keno C150+G = r1 .8 .4 .11 .5= B10121F

‡ ‡ ‡

- ‡ -

‡ · ‡

- · -

‡ · ·

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -
.
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Nr.\l 1 2 3 4 5 6 7 8 9 rule = BB150 +F; 1, x, 8, 4, 11, 5F

1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ 11, 8, 4

2 Ñ Ñ Ñ ‡ ‡ ‡ Ñ Ñ Ñ 11, 5, 4, 11, 4

3 Ñ Ñ ‡ ‡ ‡ ‡ ‡ Ñ Ñ 5, 8, 11, 8, 5, 8

4 Ñ ‡ ‡ ‡ · ‡ ‡ Ñ 4, 4, 11, 5, 5, 4, 4

5 Ñ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 11, 4, 11, 8, 4, 1, 11, 5

6 ‡ ‡ ‡ · ‡ ‡ ‡ · ‡ 11, 8, 8, 11, 4, 11, 8, 5, 8

7 ‡ Ñ Ñ ‡ ‡ ‡ Ñ ‡ Ñ 8, 4, 11, 4, 11, 5, 5, 8,

8 Ñ ‡ ‡ ‡ ‡ ‡ ‡ Ñ ‡ Ñ

9 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ stop

keno @150=D = r1 .8 .4 .11 .10= @10120D

‡ ‡ ‡

- ‡ -

‡ · ‡

- · -

‡ · ·

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- · -
.

Nr.\l 1 2 3 4 5 6 7 8 9 rule = AA150 =E; r1 .8 .4 .11 .10E

1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ 11, 8, 4

2 Ñ Ñ Ñ ‡ · ‡ Ñ Ñ Ñ 10, 8, 10, 10

3 Ñ Ñ · · · · Ñ Ñ Ñ 1, 1, 1, 1, 1, 1, 1

4 Ñ ‡ ‡ ‡ ‡ ‡ ‡ ‡ Ñ 8, 4, 1, 1, 1, 1, 1, 1, 11

5 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ Ñ

6 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ Ñ Ñ

7 ‡ ‡ ‡ ‡ ‡ ‡ ‡ Ñ ‡ Ñ

8 ‡ ‡ ‡ ‡ ‡ ‡ Ñ Ñ Ñ Ñ

9 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ stop

keno @150=D = r1 .8 .4 .11 .14= @10122D

‡ ‡ ‡

- ‡ -

‡ · ‡

- · -

‡ · ·

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -
.
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Nr.\ l 1 2 3 4 5 6 7 8 9 rule = AA150 =E; r1 .8 .4 .11 .14E

1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ 11, 8, 4

2 Ñ Ñ Ñ ‡ Ñ ‡ Ñ Ñ Ñ 11, 8, 14, 8, 4

3 Ñ Ñ ‡ Ñ ‡ Ñ ‡ Ñ Ñ 11, 8, 8, 8, 8, 4

4 Ñ ‡ Ñ Ñ Ñ ‡ Ñ ‡ Ñ 11, 8, 4, 1, 11, 8, 14, 8,

5 ‡ Ñ ‡ ‡ ‡ Ñ ‡ Ñ ‡ Ñ

6 Ñ ‡ ‡ ‡ ‡ Ñ Ñ ‡ Ñ Ñ

7 ‡ ‡ Ñ ‡ ‡ ‡ ‡ Ñ ‡ Ñ

8 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ stop

keno @150=D = r1 .8 .13 .11 .14= @10222D

‡ ‡ ‡

- ‡ -

‡ · ‡

- · -

‡ · ·

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -
.

Nr.\ l 1 2 3 4 5 6 7 8 9 rule = AA150 =E; r1 .8 .13 .11 .14E

1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ 11, 8, 13

2 Ñ Ñ Ñ ‡ Ñ ‡ Ñ Ñ Ñ 11, 8, 8, 8, 13

3 Ñ Ñ ‡ Ñ Ñ Ñ ‡ Ñ Ñ 8, 8, 1, 14, 8, 1

4 Ñ Ñ Ñ ‡ ‡ ‡ Ñ ‡ ‡ 1, 1, 14, 8, 14, 8, 14, 14

5 ‡ ‡ Ñ ‡ Ñ ‡ Ñ ‡ ‡ 13, 11, 14, 8, 8, 8, 13, 11

6 ‡ ‡ ‡ Ñ Ñ Ñ Ñ ‡ ‡ 13, 1, 11, 13, 1, 1, 11, 13, 11

7 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ Ñ

8 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ stop

keno @150=D = r1 .12 .13 .11 .14= @12222D

‡ ‡ ‡

- ‡ -

‡ · ‡

- ‡ -

‡ · ·

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -
.

Nr.\ l 1 2 3 4 5 6 7 8 9 rule = AA150 =E; r1 .12 .13 .1 .14E

1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ 11, 12, 13

2 Ñ Ñ Ñ ‡ ‡ ‡ Ñ Ñ Ñ 11, 13, 1, 11, 11,

3 Ñ Ñ ‡ ‡ ‡ ‡ ‡ Ñ Ñ 11, 13, 1, 1, 1, 11, 13, 13

4 Ñ ‡ ‡ ‡ ‡ ‡ ‡ ‡ Ñ Ñ

5 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ Ñ

6 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ stop

Inside the application :
H8, 1L = KG H8, 2L : @·‡·D õ @‡·‡D : rule8
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2.2.5. Representation of rules
Logical representation of symbolic rules
CellularAutomaton[30,init,t] : 00011110
Mod[p + q + r + q r, 2]

(pÓ
-

qÓrN

ÁÊÊ
128: and(p q r)
252: or(pq)   |- non(or(pq)): 3
60: non(and(pq))

Morphogrammatic representation of kenomic rules
Elementary kenomic cellular rules are not represented by logical functions but by mor-
phograms.
But each logical function can be represented by morphograms.

LOG([252, 3]) = MG[8] .

http://atlas.wolfram.com/01/01/30/ 
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2.3. Elementary 5-kenomic cellular automata rules 

- c5 -

c2 c1 c3

- c4 -

JJc1, Jc2, c3N, c4N, c5N,

‚

n=1

5

Sn Jn, 5N = 1 + 15 + 25 + 10 + 1 = 52

Jc1, Jc2, c3NN Jc1, Jc2, c3N, c4N JJc1, Jc2, c3N, c4N, c5N :

Jc1, Jc2, c3NN Jc1, Jc2, c3N, c4N :

Ja, Ja, aNN Ja, Ja, aN, aN, Ja, Ja, aN, bN

Ja, Ja, bNN Ja, Ja, bN, aN, Ja, Ja, bN, bN, Ja, Ja, bN, cN

Ja, Jb, aNN Ja, Jb, aN, aN, Ja, Jb, aN, bN, Ja, Jb, aN, cN

Ja, Jb, bNN Ja, Jb, bN, aN, Ja, Jb, bN, bN, Ja, Jb, bN, c N

Ja, Jb, cNN Ja, Jb, cN, aN, Ja, Jb, cN, bN, Ja, Jb, cN, cN , Ja, Jb, cN, dN.

Jc1, Jc2, c3N, c4N JJc1, Jc2, c3N, c4N, c5N :

Ja, Ja, aN, aN JJa, Ja, aN, aN aN, JJa, Ja, aN, aN bN

Ja, Ja, aN, bN JJa, Ja, aN, bN aN, JJa, Ja, aN, bN bN, JJa, Ja, aN, bN cN

and so on !

- ‡ -

‡ · ‡

- ‡ -

- ‡ -

· ‡ ‡

- ‡ -

- ‡ -

· · ‡

- ‡ -

3. Morphogrammatics as a theory of kenomic CA
Morphogrammatics was well formalized and implemented as a theory of form and its transforma-
tions. One specific transformation is produced by the so called “reflector”. A reflector is 
reversing the order of a basic morphogram. The results of such reflections are obviously very 
simple but elementary. But morphogrammatics is studying the behavior of complex compounds 
of basic morphograms and their transitions.

It might be of interest to transform the results of reflectional morphogrammatics into the 
framework of memristive cellular automata.
Hence, there shall be a transition from a patter [10, 2,10] to a pattern [2, 2, 11] of morphogra-
matics on the base of kenomic cellular automata transformations.

   
‡ ‡ ‡

‡ ‡ ‡

‡ ‡ ‡

 fl 
‡ ‡ ‡

‡ ‡ ‡

‡ ‡ ‡

The morphogrammatic abstraction helps to hold the numbers low in the realm of the Stirling 
numbers of the seconsd kind.

There are just 3281 = ⁄n=1
9 Sn H9, nL different patterns which are defining 3-compound kenomic 

cellular atomata.
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‡ ‡ ‡

‡ ‡ ‡

‡ ‡ ‡

 fl 
‡ ‡ ‡

‡ ‡ ‡

‡ ‡ ‡

The morphogrammatic abstraction helps to hold the numbers low in the realm of the Stirling 
numbers of the seconsd kind.

There are just 3281 = ⁄n=1
9 Sn H9, nL different patterns which are defining 3-compound kenomic 

cellular atomata.

"The simplest neighborhood is an elementary system consisting of a one-dimensional row of 
cells, each of which can contain the value 0 or 1 (depicted as two colors), with a local 
neighborhood of size 3 (range or radius of 1). 
More complex CA can be defined on two- or higher-dimensional arrays with multicolored cells 
and larger ranges. Each rule 
is represented as an array of cells. 
For the case of a local neighborhood of size 3, each triplet determines a single output cell in 
an array. A triplet with binary values can have eight possible patterns from 111 to 000. A local 
neighborhood of size 3 thus can generate 256 possible rules. 

The formula for calculating the rule size space in a one-dimensional system is kk H2 r+1L
, where 

k represents the color possibilities for each state and r is the range or radius of the neighbor-
hood. It is interesting to note that merely increasing r from 1 to 2 and maintaining the colors at 
two increases the rule space from 256 to 4.3 billion.”
http://www.wolframscience.com/conference/2006/presentations/materials/speller-com-
plex_systems-17-1-2.pdf

4. Cellular automata are morphogrammatically inc-
omplete 

4.1. Reduction and representation
Symbolic CA are representable by keno CA.

4.2. Symbolic CAs are morphogrammatically incomplete
The morphogrammatic base of symbolic CAs are the 8 basic morphograms with 2 kenograms.
It is shown that a pattern of 4 places gives space for morphograms with up to 4 kenograms.
Hence, the morphogrammatic base of kenoCA are 15 morphic patterns and not just 8 like for 
symbolic CAs.
In this sense, the elementary rules of symbolic CA are incomplete in respect of their kenomic 
deep-structure.
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4.3. Compounds of kenoCAs
4.3.1. Composition of kenomic CAs
Interaction between basic kenoCAs is established with a mediation of the 15 basic kenoCAs to 
compound kenoCAs.
The crucial question where are the new ‘values’ coming from that appeared for kenomic 
cellular automata with complexity m=3 and n=2 has an answer in the theory of compound 
kenomic automata.
Composition

‡ ‡ ‡

‡ ‡ ‡

‡ ‡ ‡

= composition
‡ ‡

‡ ‡
,
‡ ‡

‡ ‡
,
‡ ‡

‡ ‡

M 1 2 3

1 ‡ ‡ ‡

2 x · Ñ

3 x x ‡

M 1 2 3

1 c2 = d2 c1 d1

2 c4 c3 = e2 e1

3 d4 e4 e3 = d3

c2 c1 c3

- c4 -
,

d2 d1 c3

- d4 -
,

e2 e1 e3

- e4 -

CA 1.3 CA 1 CA 3

CA 1 CA 1.2 CA 2

CA 3 CA 2 CA 2.3

Interactional exmple

‡ ‡ ‡

‡ ‡ ‡

‡ ‡ ‡

‡ ‡

‡ ‡
,
‡ ‡

‡ ‡
,
‡ ‡

‡ ‡

‡ · ·

- x -

· ‡ ‡

- x -

‡ ‡ ‡

- x -
x = :‡,‡,‡ >

Chiastic structure of composed kenomic ' states ' :‡,‡,‡ > :

ø J‡,‡,‡ N =

‡ ö ‡

‡ ô ‡

As it was designed before,
this scheme holds generally for all m an n of distrubuted and mediated contextures.
Each CA system is contained in a contexture of a polycontextural compound system.
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4.3.2. Example
Homogene composition

keno[150]H3L =[@1001D, @0110D, @1221D]; ((‡, ·), H·, ‡ L,H‡, ‡L)

keno @150 - 1D = r1 .7 .8 .4 = @1001D

‡ ‡ ‡

- ‡ -

‡ ‡ ·

- · -

‡ · ‡

- · -

‡ · ·

- ‡ -
.

Nr.\l 1 2 3 4 5 6 7 8 9 rule = @@150 - 1D; 1, 7, 8, 4D

1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ 8, 7, 8, 4

2 Ñ Ñ Ñ · · ‡ Ñ Ñ Ñ 1, 7, 8, 4

3 Ñ Ñ Ñ ‡ · · ‡ Ñ Ñ 7, 8, 4, 7, 8, 4

keno @150 - 2D = r1 .7 .8 .4 = @0220D; H·, ‡ L

· · ·

- ‡ -

· · ‡

- ‡ -

· ‡ ·

- ‡ -

· ‡ ‡

- · -
.

Nr.\l 1 2 3 4 5 6 7 8 9 rule = @@150 - 2D; 1, 7, 8, 4D

1 ‡ ‡ ‡ ‡ · ‡ ‡ ‡ ‡ 8, 7, 8, 4

2 ‡ ‡ ‡ ‡ ‡ · ‡ ‡ ‡ 1, 7, 8, 4

3 ‡ ‡ ‡ · ‡ ‡ · ‡ ‡ 7, 8, 4, 7, 8, 4

keno @150 - 3D = r1 .7 .8 .4 = @1221D; H‡, ‡L

‡ ‡ ‡

- ‡ -

‡ ‡ ‡

- ‡ -

‡ ‡ ‡

- ‡ -

‡ ‡ ‡

- ‡ -
.

Nr.\l 1 2 3 4 5 6 7 8 9 rule = @@150 - 3D; 1, 7, 8, 4D

1 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 8, 7, 8, 4

2 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 1, 7, 8, 4

3 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 7, 8, 4, 7, 8, 4
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kenoB150F J3N:

Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ

Ñ Ñ Ñ · · ‡ Ñ Ñ Ñ

Ñ Ñ Ñ ‡ · · ‡ Ñ Ñ

‡ ‡ ‡ ‡ · ‡ ‡ ‡ ‡

‡ ‡ ‡ ‡ ‡ · ‡ ‡ ‡

‡ ‡ ‡ · ‡ ‡ · ‡ ‡

‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

Interactional constellations

keno @150=D = r1 .8 .13 .11 .14= @01222D

‡ ‡ ‡

- ‡ -

‡ · ‡

- · -

‡ · ·

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -

Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ

Ñ Ñ Ñ · · ‡ Ñ Ñ Ñ

Ñ Ñ Ñ ‡ · · ‡ Ñ Ñ

‡ ‡ ‡ ‡ · ‡ ‡ ‡ ‡

‡ ‡ ‡ ‡ ‡ · ‡ ‡ ‡

‡ ‡ ‡ ‡ ‡ ‡ · ‡ ‡

‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

‡ ‡ ‡ ‡ ‡ Ñ ‡ ‡ ‡

‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

4.4. Kenomic CAM?
The question is what kind of physical realization of kenomic cellular automata could be imag-
ined to transform kenomic CAs into kenomic automata machines? 
Interacting grids of memristive crossbar systems is the answer.

Is it time for a new “Cellular Automata Machine" (Toffoli/Margolus)?

4.5 APPENDIX
Polysemy and morphogrammatic saturation 
Polysemy holds inside and between Cas. The conventional start of a CA run has not to be 
restricted to a single beginning it is possible to have polysemy right at the start of a run.

(Gunther, Cybernetic Ontology, 1962, p. 95)
http://www.thinkartlab.com/pkl/archive/GUNTHER-BOOK/CYBERN1.html

‡ · ‡

- ‡ -
= MG

‡ · ‡

- Ê -
 = rule[15]

keno @polysemD = r1 .8 .13 .14 .15 = @10 223D @10 224D
  

‡ ‡ ‡

- ‡ -

‡ · ‡

- · -

‡ · ·

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -
ª

‡ · ‡

- Ê -
.

Nr. 1 2 3 4 5 6 7 8 9 rule = @@polysemD; r1 .8 .13 .14 .15D

1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ 11, 8, 13

2 Ñ Ñ Ñ ‡ Ñ ‡ Ñ Ñ Ñ 11, 8, 8, 8, 13

3 Ñ Ñ ‡ Ñ Ñ Ñ ‡ Ñ Ñ 8, 8, 1, 14, 8, 1

4 Ñ Ñ Ñ ‡ ‡ ‡ Ñ ‡ ‡ 1, 1, 14, 8, 14, 8, 14, 14

5 ‡ ‡ Ñ ‡;Ê Ñ ‡ Ñ ‡;Ê ‡ 13, 11, 15, 8, 8, 8, 15, 11

6 ‡ ‡ ‡;Ê Ñ Ñ Ñ Ñ ‡;Ê ‡ 13, 1, 11, 13, 1, 1, 11, 13, 11

7 ‡ ‡;Ê ‡ ‡ ‡ ‡ ‡ ‡;Ê ‡ 15

8 ‡;Ê Ñ ‡ ‡ Ñ Ñ ‡;Ê Ñ ‡;Ê 15

9 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ stop
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4.5 APPENDIX
Polysemy and morphogrammatic saturation 
Polysemy holds inside and between Cas. The conventional start of a CA run has not to be 
restricted to a single beginning it is possible to have polysemy right at the start of a run.

(Gunther, Cybernetic Ontology, 1962, p. 95)
http://www.thinkartlab.com/pkl/archive/GUNTHER-BOOK/CYBERN1.html

‡ · ‡

- ‡ -
= MG

‡ · ‡

- Ê -
 = rule[15]

keno @polysemD = r1 .8 .13 .14 .15 = @10 223D @10 224D
  

‡ ‡ ‡

- ‡ -

‡ · ‡

- · -

‡ · ·

- ‡ -

‡ ‡ ·

- ‡ -

‡ · ‡

- ‡ -
ª

‡ · ‡

- Ê -
.

Nr. 1 2 3 4 5 6 7 8 9 rule = @@polysemD; r1 .8 .13 .14 .15D

1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ 11, 8, 13

2 Ñ Ñ Ñ ‡ Ñ ‡ Ñ Ñ Ñ 11, 8, 8, 8, 13

3 Ñ Ñ ‡ Ñ Ñ Ñ ‡ Ñ Ñ 8, 8, 1, 14, 8, 1

4 Ñ Ñ Ñ ‡ ‡ ‡ Ñ ‡ ‡ 1, 1, 14, 8, 14, 8, 14, 14

5 ‡ ‡ Ñ ‡;Ê Ñ ‡ Ñ ‡;Ê ‡ 13, 11, 15, 8, 8, 8, 15, 11

6 ‡ ‡ ‡;Ê Ñ Ñ Ñ Ñ ‡;Ê ‡ 13, 1, 11, 13, 1, 1, 11, 13, 11

7 ‡ ‡;Ê ‡ ‡ ‡ ‡ ‡ ‡;Ê ‡ 15

8 ‡;Ê Ñ ‡ ‡ Ñ Ñ ‡;Ê Ñ ‡;Ê 15

9 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ stop
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