

 Summer-Edition 2017

— vordenker-archive —

Rudolf Kaehr

(1942-2016)

Title

Memristive Recursivity

Towards stack-free computation

Archive-Number / Categories

3_33 / K09, K08, K11

Publication Date

2013

Keywords / Topics

RECURSIVITY AND MEMORY : Two different kinds of memory and recursion, Trito-Trans-Successor TTS,

Diamond recursion schemes, Recurrence and retro-gradeness in formal systems

MEMRISTIVITY AND MEMORY, RECURSIVITY AND MEMRISTIVE MEMORY

Disciplines

Computer Science Logic and Foundations of Mathematics, Cybernetics, Theory of Science, Memristive Systems

Abstract

Towards stack-free computation.

There are two fundamentally different aspects to consider for memristive iteration and recursion and

computation. One is modeling existing mathematical concepts in a more economic way, and is not in

anyway re-modeling its mathematical concepts. The other aspect of memristive computation takes the

fact into account that memristive computing is structurally fundamentally different from the estab-

lished mathematical and physical concept of computation.

The first is based on recursivity, the latter on retrograde recursivity.

Citation Information / How to cite

Rudolf Kaehr: "Memristive Recursivity", www.vordenker.de (Sommer Edition, 2017) J. Paul (Ed.),

http://www.vordenker.de/rk/rk_Memristive-Recursivity_2013.pdf

Categories of the RK-Archive
K01 Gotthard Günther Studies

K02 Scientific Essays

K03 Polycontexturality – Second-Order-Cybernetics

K04 Diamond Theory

K05 Interactivity

K06 Diamond Strategies

K07 Contextural Programming Paradigm

K08 Formal Systems in Polycontextural Constellations

K09 Morphogrammatics

K10 The Chinese Challenge or A Challenge for China

K11 Memristics Memristors Computation

K12 Cellular Automata

K13 RK and friends

http://www.vordenker.de/index.html
http://www.vordenker.de/index.html
http://www.vordenker.de/navigation.htm
https://de.wikipedia.org/wiki/Rudolf_Kaehr
http://www.vordenker.de/rk/rk_Memristive-Recursivity_2013.pdf
http://www.vordenker.de/rk/rk_Memristive-Recursivity_2013.pdf

Memristive Recursivity
Towards stack-free computation

Rudolf Kaehr Dr.phil „

«

Copyright ThinkArt Lab ISSN 2041-4358

Abstract
Towards stack-free computation.
There are two fundamentally different aspects to consider for memristive iteration and
recursion and computation. One is modeling existing mathematical concepts in a more
economic way, and is not in anyway re-modeling its mathematical concepts. The other
aspect of memristive computation takes the fact into account that memristive computing
is structurally fundamentally different from the established mathematical and physical
concept of computation.
The first is based on recursivity, the latter on retrograde recursivity.
(work in progress, 0.3, July/Nov. 2013)

1. Recursivity and memory
Recursivity and memory
Recursivity is memory intense
With each new loop the results of the previous loop has to be handled.
These values of the last computation are stored as objects to be reused for the new
calculation.

"Q: Does the recursive version usually use less memory?
A: No -- it usually uses more memory (for the stack)."

http://pages.cs.wisc.edu/~vernon/cs367/notes/6.RECURSION.html

The stack

"To remember ‘where it got up to’, the program has a stack. A stack is a
special area of memory set aside for remembering ‘where to go back to’
every time the program makes a method call.

Implications for recursion

"So what implications does this all have for recursion? Well, each time we
make a recursive call, we ‘eat up’ a bit more space on the stack. So the
maximum depth of recursion is limited by:
our thread's stack size (the amount of memory allocated to the stack);
the number of parameters and local variables used on each call to our
method."

http://pages.cs.wisc.edu/~vernon/cs367/notes/6.RECURSION.html

http://www.javamex.com/tutorials/techniques/recursion_how.shtml

"During recursion, function calls continue to require more and more stack
memory which does not get released until the recursive chain terminates.
Stack overflow results when memory allocations are beyond what the stack
is able to provide. So if a function has too many levels of recursive calls,
one can run out of memory.”

http://joel.inpointform.net/software-development/explanation-of-stack-heap-and-
recursion-causing-stack-overflow/

Again,

"In the recursion example, notice how the result of each call must be remem-
bered, to do this each recursive call requires an entry on the stack until all
recursive calls have been made. This makes the recursive call more expen-
sive in terms of memory. While in the tail recursive example, there are no
intermediate values that need to be stored on the stack, the intermediate
value is always passed back as a parameter.”

http://myadventuresincoding.wordpress.com/tag/recursion/

Thus, the quesion is: How are the calls remembered? Are there any paradigmatical
differences to observe?

A first answer is given by the distinction of external and intrinsic memory functions.

The first is conceptually realized by the methods of mathematical recursion and
technically by the application of CMOS devices for storage.

The second is conceptually realized by the methods of morphogrammatic retro-
gradeness and technically by the applictions of memristive systems based on
memristors.

1.1. Two different kinds of memory and recursion
There are, therefore, two fundamentally different situations to distinguish where the
interaction of recursivity and memory are appearing.

One is the classical case, memory is a technical device to realize recursive functions.
In this case, that corresponds to the classical mathematical situation of iteration and
recursion, memory is not a genuine concept of the definition of recursion.

Memory occurs in the context of the implementation for programming and
computation.

In fact, memory occurs in recursive mathematical calculations as a mental representa-
tion by the mathematician.

It is a fundamentally different situation if memory is involved in the very definition of
the formal concept of recursion as it is constitutive for morphogrammatic calcula-
tions. Or memory appears as an ‘external’ device of calculation.

In this case, memory is implemented, or as it is also called “in-sourced” into the
very definition of iterability as it is constitutive for any morphogrammatic iteration,
recursion and reflection.

The morphogrammatic concept of retro-grade recursion shall be used to model the
behavior of memristive systems in respect of the iterability of its operations.

2 Author Name

http://www.javamex.com/tutorials/techniques/recursion_how.shtml
http://joel.inpointform.net/software-development/explanation-of-stack-heap-and-recursion-
http://myadventuresincoding.wordpress.com/tag/recursion/

The morphogrammatic concept of retro-grade recursion shall be used to model the
behavior of memristive systems in respect of the iterability of its operations.

 Afroze Ahmed, Memristor Seminar Report, Feb 22, 2012

"Memristance is a property of an electronic component to retain its resis-
tancelevel even after power had been shut down or lets it remember (or
recall) the lastresistance it had before being shut off.”

http://www.scribd.com/doc/82430989/Memristor-Seminar-Report

"Memristive architectures are ideally suited for computation within a mem-
ory, and thus memristors should not be regarded only as memory, but also
as nanoscale computing units.” (Lehtonen)

As far as I can see, the paradigmatical difference between external and intrinsic
memory functions is not yet in the focus of the known research and develop-
ment of memristors and the behaviour of memristive systems.

Due to the pressure of producing success in this field, research is concentrated
on the obvious prossibilities offered by memristive systems: smaller, faster,
cheaper, and the same.

1.2. Recurrence and retro-gradeness in formal systems
1.2.1. Conceptual analysis

Morphogrammatics of retro-grade recursion, or reflection, is a second-order
concept, that implies a double recurrence for its recursivity.

As an example I follow the “accumulator” concept of recursion in Scala.

"While in the tail recursive example, there are no intermediate values that
need to be stored on the stack, the intermediate value is always passed back
as a parameter."

http://myadventuresincoding.wordpress.com/2010/06/20/tail-recursion-in-
scala-a-simple-example/#comments

A deconstructive interpretation of the classical recursion concept might use the
more implicite version of reursion with the construct of an “accumulator”.

By a speculative turn, the “accumulator” written in Scala and realized in CMOS
gets a transformation towards an intrinsic implementation of the ‘accumulation’
into the very concept of ‘number’ itself.

'Number’ in this scenario is a retrograde construct, realized by memristive
computation.

Hence, there is not anymore an iterative and recursive understanding of iterabil-
ity applied.

Iteration and retrogradeness

Graph scheme formathematical recursion

J E N

J G Nå

ã é

J A N J d N

EJn, aN = Jo, n, aN,

GJi, n, wN ª n = i

A Ji, n, w 'N

d Ji, n,wN = Ji ', n, w 'N

m ' = m + 1 , m œ 

R. Peters, Dialectica 47í48, p. 375, 1958

Article Title 3

http://www.scribd.com/doc/82430989/Memristor-Seminar-Report
http://myadventuresincoding.wordpress.com/2010/06/20/tail-recursion-in-scala-

Graph scheme formathematical recursion

J E N

J G Nå

ã é

J A N J d N

EJn, aN = Jo, n, aN,

GJi, n, wN ª n = i

A Ji, n, w 'N

d Ji, n,wN = Ji ', n, w 'N

m ' = m + 1 , m œ 

R. Peters, Dialectica 47í48, p. 375, 1958

Successor : succ i JBMGFN :

" i œ Jm : gJMGNN, 1 § i § mgJMGN + 1

selection
retrogression

choice

JBmg 1 ... mg i ... mg nF Bmg 1 ... mg i .. mg nFN
result

Bmg 1 ... mg i ... mg n mg n+1F

choice
progression

selection

Trito-Trans-Successor TTS

4 Author Name

fun TTS ts =

map Jfn i = > tsüBiFN

Jfromto 1 JJAG tsN + 1NN;

With:
ts : trito-sequence,
AG: aggregation,
fun AG ks = length (rd ks);

- TTS [1,2];
val it = [[1,2,1],[1,2,2],[1,2,3]] : int list list
direct successors: [1,2,1],[1,2,2],
accretive successor: [1,2,3]

 Diamond recursion schemes

begin

JBMGF BMGFN : Diamond

n

BMGF ï ≠ repeat

=

stop

Kalu z
Ò
nin - like

begin

JBMGF BMGFN : memristance

= ≠ å : decision

ã é n : operation

stop BMGF : iteration

The crucial element of a morphogrammatic recursion scheme is obviously its
chiastic concept of retro-grade iteration defined by the self-application unit:
”diamond".
The Diamond structure represents the

mechanism of memristance of the morphogram MG. MG is

Diamond

KCMGG CMGGO
=

K CMGG
retro

CMGG

X

CMGG
progr

CMGG

:: Jfromto 1 JJAG tsN + 1N

The iteration operation (prolongation, successon) n : [diamond]
n

 [MG] and

the decision unit: = ≠ with its two modes: "=" for “stop”, and “≠” for repeti-

tion “repeat”.

Article Title 5

The iteration operation (prolongation, successon) n : [diamond]
n

 [MG] and

the decision unit: = ≠ with its two modes: "=" for “stop”, and “≠” for repeti-

tion “repeat”.

All together defines the morphogrammatic recursion scheme as a composition of
the units “diamond”, “decision”, “operation, calculation” and “repetition,
iteration”.

This unit “Diamond” is checking the possibilities of the prolongation (successor)
operation that is needed because the succession is not abstractly, i.e. indepen-
dently of the history of the operations, defined, and is not depending on an
abstract, pre-given alphabet.

This retrograde feature is implemented by the procedure: Hfromto 1 HHAG tsL + 1L.
That is, the function AG (ts) delivers the values of the ‘historical’ constellation
(state) of the trito-sequence ts, and for accretion, the value 1 is added.

succ i JMGN :

retrograde repeat

no

begin : JBMGF öBMGFN ö BMGF
yes

BMGF : stop

prograde n

Example
For the start, the aggregation AG is of the example is AG[1,2] = 2, hence the
accretion is 3.
Therefore, out of the historical event '[1,2]', just two prolongation in the mode
of iteration are defined: [1,2,1] and [1,2,2]. This situation is complemented by
accretion to the third pattern [1,2,3]. There are no more possibilities for a prolon-
gation of [1,2] available.

6 Author Name

Accretion

B1, 2F B1, 2, 1F , B1, 2, 2F , B1, 2, 3F :

B1,2, 3F

≠

start : JB1, 2F B1, 2FN B1, 2, 1F

n = 1
J1N

B1,2,3F

≠

JB1, 2F B1, 2FN B1, 2, 2F

n = 2
J2N

JB1, 2F B1, 2FN B1, 2, 3F : = stop

n = 3
J3N

JcollectN : :B1, 2, 1F , B1, 2, 2F , B1, 2, 3F>

1.2.2. Bifunctoriality of diamond recursion
In contrast to classical approaches, morphogrammatic calculations
are irreducibly polysemic, delivering different results depending on
the complexity of the calculated objects. But this kind of polysemy
is conceived as simultaneous and its different aspects are seen as
mediated.

On the other hand, it seems reasonable to interpret the results as
changing position in the contextural grid only if accretive opera-
tions are involved. Hence, a so called “transkontexturale Überschre-
itung” (Gunther) is connected with a succession of an iterative and
an accretive prolongation. After Gunther, a trans-contextural transi-
tion happens only if a succession is defined by a connection of
iterative and accretive successors.

Article Title 7

On the other hand, it seems reasonable to interpret the results as
changing position in the contextural grid only if accretive opera-
tions are involved. Hence, a so called “transkontexturale Überschre-
itung” (Gunther) is connected with a succession of an iterative and
an accretive prolongation. After Gunther, a trans-contextural transi-
tion happens only if a succession is defined by a connection of
iterative and accretive successors.

Therefore, accretion shall be an indicator for a change of position
in the contextural grid.

Mathematically this shall be modeled in the framework of polycon-
textural functoriality.

A technical metaphor might be the change of position in a poly-
layered memristive crossbar system.

Polyfunctorial modeling

Following strictly the wording of the ‘trans-contextural transition’,
a modeling is proposed that takes both parts, the iterative and the
accretive, as separated, and distributed over the polycontextural
grid. The mediation of the parts is guaranteed by the polycontextu-
rality of the grid as such. But there is not yet a direct mediation of
the parts intended nor is their any interaction possible.

This Guntherian strategy might still be regulated by a restricted
concept of mediation that is not yet taking the tabularity of polycon-
texturality into account but follows a hierarchy of reflexional levels
(Reflexionsstufen, Gunther).

This situation is mapped onto the polycontextural concept of dis-
tributed levels of bifunctoriality.

The “hat” in the examples sketches the general framework of poly-
functoriality. There are 3 dis-contextural (strictly disjunct) uni-
verses (Grothendieck) involved, symbolized as  H3L. All 3 uni-
versa are mediated by “ˇ" , and are incorporating functors f and g.

The “head” has the design of the distributed functors fi, gi,
i=1,2,3. While the “body” formulates the mediated bifunctoriality
of the functors. The indices are indicating the loci of the functors
in the polycontextural grid,

8 Author Name

Interchangeability of a 3- contextural category with

composition KÎNand mediation Kˇ N

Hat :

 J3N = J1 ˇ 1.2  2 N ˇ 1.2 .3  3

J1Ë1.2  2 NË 1.2 .3  3 = « :

 i = :f i, g i >, i = 1, 2, 3

Head :

B

g 1 - g 3
f 1 g 2 -

- f 2 f 3

F :

Body :

Jf 1 Î1.0 .0 g 1N

ˇ 1.2 .0

Jf 2 Î0.2 .0 g 2N

ˇ 1.2 .3

Jf 3 Î0.0 .3 g 3N

=

f 1

ˇ 1.2 .0

f 2
ˇ 1.2 .3

f 3

Î1 Î2 Î3

g 1

ˇ 1.2 .0

g 2
ˇ 1.2 .3

g 3

A further modeling that is insisting on the simultaneity, and not
just the parallelism, of the iterative and accretive results is
achieved with a ‘transpositional’ distribution of the accretive
results together with its iterative functorial parts over a tabular
concept of polycontexturality.

Article Title 9

Interchangeability of a 3- contextural category with

composition, mediation Kˇ Nand transposition K ú O

f 1
ˇ 1.2

f 2 ù 2.1 f 1
ˇ 2.3

f 3 ù 3.1 f 1

B

Î 1.1 - -

Î2.1 Î2.2 -

Î3.1 - Î 3.3

F

g 1
ˇ 1.2

g 2 ù 2.1 g 1

ˇ 2.3
g 3 ù 3.1 g 1

=

Jf 1 Î1.1 g 1N

ˇ 1.2

Jf 2 Î2.2 g 2N ù 2.1 Jf 1 Î2.1 g 1N

ˇ 2.3

Jf 3 Î3.3 g 3N ù 3.1 Jf 1 Î3.1 g 1N

There also might be a good reason to understand accretion, i. e.
interaction, not just as a transposition but as a replication in the
sense of a reflectional use of the accretive part of the calculation.

Interchangeability and replication JÂN

f 1 Â 1.2 f 1
ˇ 1.2

f 2
ˇ 2.3

f 3

B

BÎ 1.1 Î1.2F--

-Î2.2 -

-- Î 3.3

F

g 1 Â 1.2 g 1
ˇ 1.2

g 2 Â 2.1 g 1
ˇ 2.3
g 3

=

JJf 1 Î1.1 g 1N Â 1.2 Jf 1 Î1.2 g 1NN

ˇ 1.2

Jf 2 Î2.2 g 2N Â 2.1 Jf 1 Î2.1 g 1NN

ˇ 2.3

Jf 3 Î3.3 g 3N

And obviously, it could be necessary to distribut the accretive part
of the operation over the replicative and the transpositional dimen-
sion of the grid too.

Interpretation

operator: succ,
operand: [1,2],
operation:

10 Author Name

operator: succ,
operand: [1,2],
operation:

succ B1, 2F = :B1, 2, 1F, B1, 2, 2F, B1, 2, 3F> :

succ iter B1, 2F = :B1, 2, 1F, B1, 2, 2F> : Jf 1Î1.0 .0 g 1N

succ accrB1, 2F = :B1, 2, 3F> : Jf 2Î2.0 .0 g 2N

Null

Polycontextural mediation of succC1, 2G

Jsucc iter Î1.0 .0 B1, 2FN

ˇ 1.2 .0

Jsucc accr Î0.2 .0 B1, 2FN

ˇ 1.2 .3

comp Jsucc iter, succ accrN

=

succ iter

ˇ 1.2 .0

succ accr
ˇ 1.2 .3

comp 1.2 .3

Î1 Î2 Î3

B1, 2F

ˇ 1.2 .0

B1, 2F

ˇ 1.2 .3

Jsucc iter, succ accrN

Short notation of succ[1,2] mediation

succ iter B1, 2F = :B1, 2, 1F, B1, 2, 2F>

ˇ 1.2 .0

succ accrB1, 2F = :B1, 2, 3F>

ˇ 1.2 .3

comp Jsucc iter, succ accrN

This kind of distribution and mediation seems to be quite strait forward
and is not posing any interpretational problems at all.

Matrix notation for mediation of succ[1,2]

Article Title 11

PM O1 O2 O3
M1 S1.1 - -

M2 - S2.2 -

M3 - - S3.3

=

PM O1 O2 O3

M1 :B1, 2, 1F, B1, 2, 2F> - -

M2 - :B1, 2, 3F> -

M3 - - compJS1, S2N

Transposition (transjunction)
Polycontextural modeling is not limited to a '

diagonal' interpretation of of the concept of mediation.

Polycontextural mediation and transposition

Jsucc iter Î1.1 B1, 2FN

ˇ 1.2

Jsucc accr Î2.2 B1, 2FN ù 2.1 Jsucc iter Î2.1 B1, 2FN ù 1.1 Jsucc iter Î3.1 B1, 2FN

ˇ 2.3

Jf 3 Î3.3 g 3N ù 3.1 Jf 1 Î3.1 g 1N

=

succ iter
ˇ 1.2

succ accr ù 2.1 succ iter
ˇ 2.3

Jf 3 Î3.3 g 3N ù 3.1 Jf 1 Î3.1 g 1N

B

Î 1.1 - -

Î2.1 Î2.2 -

Î3.1 - Î 3.3

F

B1, 2F

ˇ 1.2

B1, 2F ù 2.1 B1, 2F

ˇ 2.3

comp J g 3 ù 3.1 g 1N

Short notation for mediation and transposition of succ[1,2]

12 Author Name

succ iter B1, 2F = :B1, 2, 1F, B1, 2, 2F> 1.1

ˇ 1.2 .0

succ accrB1, 2F = :B1, 2, 3F> 2.2 ù2.1 Jsucc iter Î 2.1 B1, 2F N = :B1, 2, 1F, B1, 2, 2F> 2.1 ù3.1 Jsucc

ˇ 1.2 .3

comp Jsucc iter, succ accrN 3.3

succ iter B1, 2F = :B1, 2, 1F, B1, 2, 2F>

ˇ 1.2 .0

Jsucc accrB1, 2F N ù 2.1 Jsucc iter Î2.1 B1, 2F N ù 3.1 Jsucc iter Î3.1 B1, 2F N

ˇ 1.2 .3

comp Jsucc iter, succ accrN

This kind of transpositional mediation is probably not self-evident
at a first glance. Because the succession function is interpreted not
just as accretive but also as ‘transjunctive’, i.e. transpositional,
and its direct result set at the locus S1.1 gets an additional interpre-
tation at the loci S2.1and S3.1.

Operations and their results in polycontextural systems are always
interpreted results and not just prima facie objects. Interpretation
is a mode of iterability, therefore the objects of interpretation are
repeated, modeled, thematized as something that differs from the
‘given’ object of thematization. Iterability involves memory. Also
the ‘same is different’, it its memory function guarantees that it is
the same and not something totally different.

Therefore, different representations of the interpretations have to
be registered as differently localized. Each has a different meaning
even if they look the same, syntactically, or are having abstractly
the same mathematical definition.

Matrix notation for mediation and transposition of succ[1,2]

Article Title 13

PM O1 O2 O3
M1 S1.1 S2.1 S3.1
M2 - S2.2 -

M3 - - S3.3

=

PM O1 O2 O3

M1 ;C1, 2, 1G, C1, 2, 2G? :B1, 2, 1F, B1, 2, 2F> :B1, 2, 1F, B1, 2, 2F>

M2 - :B1, 2, 3F> -

M3 - - comp Jsucc iter, succ accrN

Interpretation for replication

The mechanism of interpretation of replication works along the steps
demonstrated for the transpositional case.

The same holds for mixed situation of replication and transposition. Addi-
tionally, a new kind of iterative intervention is introduced with the itera-
tion of an object at the same contextural locus.

Matrix for replication

PM O1 O2 O3
M1 S1.1 x x
M2 S1.2 S2.2 x
M3 S1.3 x S3.3

Matrix for transposition and replication

PM O1 O2 O3
M1 S1.1 S2.1 S3.1
M2 S 1.2 S2.2 -

M3 S 1.3 - S3.3

Matrix for ‘fractalization’ (iteration) and replication

PM O1 O2 O3
M1 S1.1 S2.1 -
M2 S 1.2 .2 .2 S2.2 S3.2
M3 - S2.3 S3.3

Accretion and mediation

With each accretion of a calculation the range of polycontexturality
might be augmented. For the balanced matrix, m and n are equal.

14 Author Name

succ accr PM
Km,nO

JO, MN PM
Km+1,n+1O

JO, MN

succ iter PM
Km,nO

JO, MN PM
Km,nO

JO, MN

A more differentiated appraoch is considering, as far as possible,
the concept of monomorphies of morphograms.

Example for monomorphies

- kconcat [1,2,1,3,2,2][1];
val it = [[1,2,1,3,2,2,1],[1,2,1,3,2,2,2],[1,2,1,3,2,2,3],[1,2,1,3,2,2,4]] :
int list list

MG0 =[1,2,1,3,2,2] MG4 =[1,2,1,3,2,2,4]

MG loc1 loc2 loc3 loc4
Dec mg1 mg2 mg1mg3 mg 2

MG 1

MG 2

MG 3

MG 2

1 - 1 - -

- 2 - - -

- - - 3 -

- - - - 22

MG loc1 loc2 loc3 loc4 loc 5
Dec mg1 mg2 mg1 mg3 mg 2mg 4

MG 1

MG 2

MG 3

MG 2

MG 4

1 - 1 - - -

- 2 - - - -

- - - 3 - -

- - - - 22 -

- - - - - 4

MG3 =[1,2,1,3,2,2,3] MG1 =[1,2,1,3,2,2,1]
MG2 = [1,2,1,3,2,2,2]

MG loc1 loc2 loc3 loc4 loc 5
Dec mg1 mg2 mg1 mg3 mg 2mg 3

MG 1

MG 2

MG 3

MG 1

MG 4

1 - 1 - - -

- 2 - - - -

- - - 3 - -

- - - - 22 -

- - - - - 3

Article Title 15

MG loc1 loc2 loc3 loc4 loc 5
Dec mg1 mg2 mg1 mg3 mg 2mg 1

MG 1

MG 2

MG 3

MG 2

MG 4

1 - 1 - - -

- 2 - - - -

- - - 3 - -

- - - - 22 -

- - - - - 1

MG loc1 loc2 loc3 loc4
Dec mg1 mg2 mg1 mg3mg 2

MG 1

MG 2

MG 3

MG 1

MG 4

1 - 1 - -

- 2 - - -

- - - 3 -

- - - - 222
- - - - -

1.2.3. Programming aspects
Recursion

scala> def factorial(number:Int) : Int = {
 | if (number == 1)
 | return 1
 | number * factorial (number - 1)
 | }
factorial: (number: Int)Int

scala> println(factorial(5)) 120

"The new accumulator parameter stores the intermediate value, so we are no
longer doing a calculation against the value returned from the function like
we were before."

scala> def factorial(accumulator: Int, number: Int) : Int = {
 | if (number == 1)
 | return accumulator
 | factorial (number * accumulator, number - 1)
 | }
factorial: (accumulator: Int, number: Int)Int
scala> println(factorial(1,5)) 120

More for Java at:
http://stackoverflow.com/questions/8183426/factorial-using-recursion-
in-java

Recursion on the base of the retro-gradeness of morphograms

scala> def mg-factorial(morphogram:Morph List Int) : Morph = {
 | if (morphogram == [])
 | return []
 | kmul [morphogram (n)][morphogram (factorial(n-1))]
 | }
mg-factorial: (morphogram: Morph) Morph List

16 Author Name

http://stackoverflow.com/questions/8183426/factorial-using-recursion-in-

scala> def mg-factorial(morphogram:Morph List Int) : Morph = {
 | if (morphogram == [])
 | return []
 | kmul [morphogram (n)][morphogram (factorial(n-1))]
 | }
mg-factorial: (morphogram: Morph) Morph List

fun allTcontextureFac n =

allkmul KTcontexture KnOO KTcontexture Kfac Kn-1OOO;

val allTcontextureFac = fn : int -> int list list list

fun TcontextureFacNum n = Tcontexture Kfac nO;

val TcontextureFacNum = fn : int -> int list list

Example

- allTcontextureFac 3;
val it =
 [[[1,1,1,1,1,1]],[[1,1,1,2,2,2]],[[1,1,2,1,1,2]],

[[1,1,2,2,2,1],[1,1,2,3,3,1],[1,1,2,2,2,3],[1,1,2,3,3,4]],[[1,2,1,1,2,1]],

[[1,2,1,2,1,2],[1,2,1,3,1,3],[1,2,1,2,3,2],[1,2,1,3,4,3]],[[1,2,2,1,2,2]],

[[1,2,2,2,1,1],[1,2,2,3,1,1],[1,2,2,2,3,3],[1,2,2,3,4,4]],[[1,2,3,1,2,3]],
 [[1,2,3,2,3,1],[1,2,3,3,1,2],[1,2,3,2,1,4],[1,2,3,2,4,1],[1,2,3,4,1,2],
 [1,2,3,3,1,4],[1,2,3,3,4,1],[1,2,3,4,3,1],[1,2,3,4,1,5],[1,2,3,4,5,1],
 [1,2,3,2,3,4],[1,2,3,3,4,2],[1,2,3,4,3,2],[1,2,3,2,4,5],[1,2,3,4,5,2],
 [1,2,3,3,4,5],[1,2,3,4,3,5],[1,2,3,4,5,6]]] : int list list list

Reflectional analysis of allTcontextureFac 3

EWhat we get with this approach of a reflectianal analysis of morphic
factorials, allTcontextureFac 3, is a 6 layered system of mediated
contextures

S1: [1,1,1,1,1,1],
S2: [1,1,1,2,2,2],[1,1,2,1,1,2], [1,2,1,1,2,1],
[1,1,2,2,2,1], [1,2,1,2,1,2], [1,2,2,1,2,2],[1,2,2,2,1,1]

S3: [1,1,2,3,3,1],[1,1,2,2,2,3],[1,2,1,3,1,3],[1,2,1,2,3,2],
[1,2,2,3,1,1],[1,2,2,2,3,3],
[1,2,3,1,2,3],[1,2,3,2,3,1],[1,2,3,3,1,2],[[1,2,3,1,2,3],

Article Title 17

S3: [1,1,2,3,3,1],[1,1,2,2,2,3],[1,2,1,3,1,3],[1,2,1,2,3,2],
[1,2,2,3,1,1],[1,2,2,2,3,3],
[1,2,3,1,2,3],[1,2,3,2,3,1],[1,2,3,3,1,2],[[1,2,3,1,2,3],

S4:
[1,2,1,3,4,3],[1,1,2,3,3,4],[1,2,2,3,4,4],[1,2,3,2,1,4],[1,2,3,2,4,1],[1,2,
3,4,1,2],
[1,2,3,3,1,4],[1,2,3,3,4,1],[1,2,3,4,3,1],,[1,2,3,2,3,4],
[1,2,3,3,4,2],[1,2,3,4,3,2],

S5:[1,2,3,4,1,5],[1,2,3,4,5,1],[1,2,3,4,1,5],[1,2,3,4,5,1],[1,2,3,2,4,5],[
1,2,3,4,5,2],
[1,2,3,3,4,5],[1,2,3,4,3,5],

S6:[1,2,3,4,5,6].

This classification corresponds to fac n: fac 3 = 6.

A reduction of allTcontextureFac 3 to the deutero-structure is
given by the following procedure.

setof(map dnf(flat(allTcontextureFac 3)));

[[1,1,1,1,1,1],
[1,1,1,1,2,2],[1,1,2,2,2,2], [1,1,1,2,2,2]
[1,1,1,2,3,3],[1,1,2,2,2,3],[1,1,1,2,2,3],[1,2,2,2,3,3],[1,1,2,2,3,3],
[1,2,2,3,4,4],[1,1,2,2,3,4],[1,1,2,3,3,4],[1,2,2,3,3,4],
[1,1,2,3,4,5],[1,2,2,3,4,5],[1,2,3,3,4,5],
[1,2,3,4,5,6]].

A further genuin reduction to its proto-structure is achieved with
the following procedure:

- setof(map pnf(flat(allTcontextureFac 3)));

[[1,1,1,1,1,1],
[1,1,1,1,1,2],
[1,1,1,1,2,3],
[1,1,1,2,3,4],
[1,1,2,3,4,5],
[1,2,3,4,5,6]] .

2. Memristivity and memory

"Well, each time we make a recursive call, we ‘eat up’ a bit more space on
the stack. “

http://www.researchgate.net/publication/221504050_Fractional-order_Memris-
tive_Systems

This fact gets replaced by the memristive fact: Each time we make a recursive call,
we continue the call at the place it stopped before. At this place the value of the
history is stored (memorized) by the memristive memory inside the previous call.
The structure of this memorized ‘state’ dictates how and to what range further opera-
tions might be applied.

18 Author Name

http://www.researchgate.net/publication/221504050_Fractional-order_Memris-tive_

This fact gets replaced by the memristive fact: Each time we make a recursive call,
we continue the call at the place it stopped before. At this place the value of the
history is stored (memorized) by the memristive memory inside the previous call.
The structure of this memorized ‘state’ dictates how and to what range further opera-
tions might be applied.

Saraju P. Mohanty, Memristor: From Basics to Deployment

"Digital design using memristor will need lots of research effort as Boolean
logic can’t be directly implemented."

Memristance is a property of an electronic component to retain its resistance level
even after power had been shut down or lets it remember (or recall) the last resis-
tance it had before being shut off.

Eero Lehtonen, Memristive Computing, 2012

"The main conclusion of this thesis is that memristive computing will be
advantageous in large-scale, highly parallel mixed-mode processing architec-
tures. This can be justified by the following two arguments.
First, since processing can be performed directly within memristive memory
architectures, the required circuitry, processing time, and possibly also
power consumption can be reduced compared to a conventional CMOS imple-
mentation.
Second, intrachip communication can be naturally implemented by a memris-
tive crossbar structure.”

http://www.doria.fi/bitstream/handle/10024/79925/AnnalesAI446LehtonenDISS.pdf

I have argued in previous papers that memristivity is making a crucial difference on
a paradigmatic level and is not depending on such complex properties of systems
like “large-scale, highly parallel mixed-mode processing architectures”.

Even the simplest step of iteration, especially for recursion, has two different forms
of conceptualization and realization: the repetitive “stack-oriented” and the memris-
tive “history-oriented” approaches.

"Memristive architectures are ideally suited for computation within a mem-
ory, and thus memristors should not be regarded only as memory, but also
as nanoscale computing units.” (Lehtonen)

The ‘history'-oriented approach gets its development with the application of
patterns, i.e. morphograms, that have to be calculated. On the level of classical
atomistic elements, say numbers or symbols, the merits of memristivity as a
possibility to go beyond classical computing are not yet accessible.

Article Title 19

http://www.doria.fi/bitstream/handle/10024/79925/AnnalesAI446LehtonenDISS.pdf

The ‘history'-oriented approach gets its development with the application of
patterns, i.e. morphograms, that have to be calculated. On the level of classical
atomistic elements, say numbers or symbols, the merits of memristivity as a
possibility to go beyond classical computing are not yet accessible.

In other words, memristivity leads into a new paradigm of computation if
applied on patterns of constellations. Hence memristics is surpassing the possibili-
ties of isolated memristors if it comes as patterns of activity instead of a system
of single memristors.

Early papers
http://www.thinkartlab.com/pkl/lola/Memristics/Memristics:Memristors,
again.pdf
http://www.thinkartlab.com/pkl/lola/Memristics/Part-II/Memristics-crossbar.pdf
http://memristors.memristics.com/Why-Not/Why-Not.html

3. Recursivity and memristive memory
Memristive recursivity continues where it ended without the require of a separated
memory devise, a stack or pile, for the continuation of the recursion.

Memristive recursivity depends on the memristance of the memristive system and
not on a separated memory.

Memristance is an intrinsic property of memristive systems. Thus it has not to be
added from the outside. There is no glue included.

Because of the chiastic interplay of distributed and mediated computation and mem-
ory the separation of both is arbitrary for memristive systems.

Victor Erokhin, 2012

"Given the property of memristance, it seems more interesting to design new
systems using these new functional properties e.g. the capability to memo-
rize the history of inputs to the device. In this respect, the output will be not
a simple binary decision, but some intermediate value, that depends on the
duration of the inputs. Such processing is to some degree similar to a brain-
like logical decision making process: an answer (YES / NO) depends not only
on the configuration of external stimuli, but also on past experience.”

http://arxiv.org/pdf/1212.3425v1.pdf

4. Memristive electronic devices

J. Joshua Yang, Dmitri B. Strukov and Duncan R. Stewart, Memristive devices for
computing

"Memristive devices are electrical resistance switches that can retain a state
of internal resistance based on the history of applied voltage and current.
These devices can store and process information, and offer several key perfor-
mance characteristics that exceed conventional integrated circuit technology.

"Here, we focus on the chemical and physical mechanisms of memristive
devices, and try to identify the key issues that impede the commercialization
of memristors as computer memory and logic."

20 Author Name

http://www.thinkartlab.com/pkl/lola/Memristics/Memristics:Memristors
http://www.thinkartlab.com/pkl/lola/Memristics/Part-II/Memristics-crossbar.pdf
http://memristors.memristics.com/Why-Not/Why-Not.html
http://arxiv.org/pdf/1212.3425v1.pdf

"Here, we focus on the chemical and physical mechanisms of memristive
devices, and try to identify the key issues that impede the commercialization
of memristors as computer memory and logic."

 https://www.ece.ucsb.edu/~strukov/papers/2013/NatNano2013.pdf

http://www.cse.unt.edu/~smohanty/Publications_Journals/2013/Mohanty_IEEE-
Potentials_2013May_Memristor.pdf

Article Title 21

https://www.ece.ucsb.edu/~strukov/papers/2013/NatNano2013.pdf
http://www.cse.unt.edu/~smohanty/Publications_Journals/2013/Mohanty_IEEE-Potentials_

