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Memristive Recursivity
Towards stack-free computation
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Abstract
Towards stack-free computation.
There are two fundamentally different aspects to consider for memristive iteration and 
recursion and computation. One is modeling existing mathematical concepts in a more 
economic way, and is not in anyway re-modeling its mathematical concepts. The other 
aspect of memristive computation takes the fact into account that memristive computing 
is structurally fundamentally different from the established mathematical and physical 
concept of computation.
The first is based on recursivity, the latter on retrograde recursivity.
(work in progress, 0.3, July/Nov. 2013)

1. Recursivity and memory
Recursivity and memory
Recursivity is memory intense
With each new loop the results of the previous loop has to be handled.
These values of the last computation are stored as objects to be reused for the new 
calculation.

"Q: Does the recursive version usually use less memory? 
A: No -- it usually uses more memory (for the stack)."

http://pages.cs.wisc.edu/~vernon/cs367/notes/6.RECURSION.html

The stack

"To remember ‘where it got up to’, the program has a stack. A stack is a 
special area of memory set aside for remembering ‘where to go back to’ 
every time the program makes a method call.

Implications for recursion

"So what implications does this all have for recursion? Well, each time we 
make a recursive call, we ‘eat up’ a bit more space on the stack. So the 
maximum depth of recursion is limited by:
our thread's stack size (the amount of memory allocated to the stack);
the number of parameters and local variables used on each call to our 
method."

http://pages.cs.wisc.edu/~vernon/cs367/notes/6.RECURSION.html


http://www.javamex.com/tutorials/techniques/recursion_how.shtml

"During recursion, function calls continue to require more and more stack 
memory which does not get released until the recursive chain terminates.  
Stack overflow results when memory allocations are beyond what the stack 
is able to provide.  So if a function has too many levels of recursive calls, 
one can run out of memory.”

http://joel.inpointform.net/software-development/explanation-of-stack-heap-and-
recursion-causing-stack-overflow/

Again,

"In the recursion example, notice how the result of each call must be remem-
bered, to do this each recursive call requires an entry on the stack until all 
recursive calls have been made. This makes the recursive call more expen-
sive in terms of memory. While in the tail recursive example, there are no 
intermediate values that need to be stored on the stack, the intermediate 
value is always passed back as a parameter.”

http://myadventuresincoding.wordpress.com/tag/recursion/

Thus, the quesion is: How are the calls remembered? Are there any paradigmatical 
differences to observe?

A first answer is given by the distinction of external and intrinsic memory functions.

The first is conceptually realized by the methods of mathematical recursion and 
technically by the application of CMOS devices for storage.

The second is conceptually realized by the methods of morphogrammatic retro-
gradeness and technically by the applictions of memristive systems based on 
memristors.

1.1. Two different kinds of memory and recursion
There are, therefore, two fundamentally different situations to distinguish where the 
interaction of recursivity and memory are appearing.

One is the classical case, memory is a technical device to realize recursive functions. 
In this case, that corresponds to the classical mathematical situation of iteration and 
recursion, memory is not a genuine concept of the definition of recursion.

Memory occurs in the context of the implementation for programming and 
computation.

In fact, memory occurs in recursive mathematical calculations as a mental representa-
tion by the mathematician.

It is a fundamentally different situation if memory is involved in the very definition of 
the formal concept of recursion as it is constitutive for morphogrammatic calcula-
tions. Or memory appears as an ‘external’ device of calculation.

In this case, memory is implemented, or as it is also called “in-sourced” into the 
very definition of iterability as it is constitutive for any morphogrammatic iteration, 
recursion and reflection.

The morphogrammatic concept of retro-grade recursion shall be used to model the 
behavior of memristive systems in respect of the iterability of its operations.
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The morphogrammatic concept of retro-grade recursion shall be used to model the 
behavior of memristive systems in respect of the iterability of its operations.

 Afroze Ahmed, Memristor Seminar Report,  Feb 22, 2012

"Memristance is a property of an electronic component to retain its resis-
tancelevel even after power had been shut down or lets it remember (or 
recall) the lastresistance it had before being shut off.”

http://www.scribd.com/doc/82430989/Memristor-Seminar-Report

"Memristive architectures are ideally suited for computation within a mem-
ory, and thus memristors should not be regarded only as memory, but also 
as nanoscale computing units.” (Lehtonen)

As far as I can see, the paradigmatical difference between external and intrinsic 
memory functions is not yet in the focus of the known research and develop-
ment of memristors and the behaviour of memristive systems.

Due to the pressure of producing success in this field, research is concentrated 
on the obvious prossibilities offered by memristive systems: smaller, faster, 
cheaper, and the same.

1.2. Recurrence and retro-gradeness in formal systems
1.2.1. Conceptual analysis

Morphogrammatics of retro-grade recursion, or reflection, is a second-order 
concept, that implies a double recurrence for its recursivity.

As an example I follow the “accumulator” concept of recursion in Scala.

"While in the tail recursive example, there are no intermediate values that 
need to be stored on the stack, the intermediate value is always passed back 
as a parameter."

http://myadventuresincoding.wordpress.com/2010/06/20/tail-recursion-in-
scala-a-simple-example/#comments

A deconstructive interpretation of the classical recursion concept might use the 
more implicite version of reursion with the construct of an “accumulator”. 

By a speculative turn, the “accumulator” written in Scala and realized in CMOS 
gets a transformation towards an intrinsic implementation of the ‘accumulation’ 
into the very concept of ‘number’ itself.

'Number’ in this scenario is a retrograde construct, realized by memristive 
computation.

Hence, there is not anymore an iterative and recursive understanding of iterabil-
ity applied.

Iteration and retrogradeness

Graph scheme formathematical recursion

J E N

J G Nå

ã é

J A N J d N

EJn, aN = Jo, n, aN,

GJi, n, wN ª n = i

A Ji, n, w 'N

d Ji, n,wN = Ji ', n, w 'N

m ' = m + 1 , m œ 

R. Peters, Dialectica 47í48, p. 375, 1958
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Successor : succ i JBMGFN :

" i œ Jm : gJMGNN, 1 § i § mgJMGN + 1

selection
retrogression

choice

JBmg 1 ... mg i ... mg nF Bmg 1 ... mg i .. mg nFN
result

Bmg 1 ... mg i ... mg n mg n+1F

choice
progression

selection

Trito-Trans-Successor TTS
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fun TTS ts =

map Jfn i = > tsüBiFN

Jfromto 1 JJAG tsN + 1NN;

With:
ts : trito-sequence,
AG: aggregation, 
fun AG ks = length (rd ks);

- TTS [1,2];
val it = [[1,2,1],[1,2,2],[1,2,3]] : int list list
direct successors: [1,2,1],[1,2,2],
accretive successor: [1,2,3]

 Diamond recursion schemes

     

begin

JBMGF BMGFN : Diamond

n

BMGF ï ≠ repeat

=

stop

Kalu z
Ò
nin - like

begin

JBMGF BMGFN : memristance

= ≠ å : decision

ã é n : operation

stop BMGF : iteration

The crucial element of a morphogrammatic recursion scheme is obviously its 
chiastic concept of retro-grade iteration defined by the self-application unit: 
”diamond". 
The Diamond structure represents the

mechanism of memristance of the morphogram MG. MG is

Diamond

KCMGG CMGGO
=

K CMGG
retro

CMGG

X

CMGG
progr

CMGG

:: Jfromto 1 JJAG tsN + 1N

The iteration operation (prolongation, successon) n : [diamond] 
n

 [MG] and 

the decision unit: = ≠  with its two modes: "=" for “stop”, and “≠” for repeti-

tion “repeat”.
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The iteration operation (prolongation, successon) n : [diamond] 
n

 [MG] and 

the decision unit: = ≠  with its two modes: "=" for “stop”, and “≠” for repeti-

tion “repeat”.

All together defines the morphogrammatic recursion scheme as a composition of 
the units “diamond”, “decision”, “operation, calculation” and “repetition, 
iteration”.

This unit “Diamond” is checking the possibilities of the prolongation (successor) 
operation that is needed because the succession is not abstractly, i.e. indepen-
dently of the history of the operations, defined, and is not depending on an 
abstract, pre-given alphabet.

This retrograde feature is implemented by the procedure: Hfromto 1 HHAG tsL + 1L.
That is, the function AG (ts) delivers the values of the ‘historical’ constellation 
(state) of the trito-sequence ts, and for accretion, the value 1 is added.

       

succ i JMGN :

retrograde repeat

no

begin : JBMGF öBMGFN ö BMGF
yes

BMGF : stop

prograde n

Example
For the start, the aggregation AG is of the example is AG[1,2] = 2, hence the 
accretion is 3.
Therefore, out of the historical event '[1,2]', just two prolongation in the mode 
of iteration are defined: [1,2,1] and [1,2,2]. This situation is complemented by 
accretion to the third pattern [1,2,3]. There are no more possibilities for a prolon-
gation of [1,2] available.

6   Author Name



Accretion

B1, 2F B1, 2, 1F , B1, 2, 2F , B1, 2, 3F :

B1,2, 3F

≠

start : JB1, 2F B1, 2FN B1, 2, 1F

n = 1
J1N

B1,2,3F

≠

JB1, 2F B1, 2FN B1, 2, 2F

n = 2
J2N

JB1, 2F B1, 2FN B1, 2, 3F : = stop

n = 3
J3N

JcollectN : :B1, 2, 1F , B1, 2, 2F , B1, 2, 3F>

1.2.2. Bifunctoriality of diamond recursion
In contrast to classical approaches, morphogrammatic calculations 
are irreducibly polysemic, delivering different results depending on 
the complexity of the calculated objects. But this kind of polysemy 
is conceived as simultaneous and its different aspects are seen as 
mediated.

On the other hand, it seems reasonable to interpret the results as 
changing position in the contextural grid only if accretive opera-
tions are involved. Hence, a so called “transkontexturale Überschre-
itung” (Gunther) is connected with a succession of an iterative and 
an accretive prolongation. After Gunther, a trans-contextural transi-
tion happens only if a succession is defined by a connection of 
iterative and accretive successors.
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On the other hand, it seems reasonable to interpret the results as 
changing position in the contextural grid only if accretive opera-
tions are involved. Hence, a so called “transkontexturale Überschre-
itung” (Gunther) is connected with a succession of an iterative and 
an accretive prolongation. After Gunther, a trans-contextural transi-
tion happens only if a succession is defined by a connection of 
iterative and accretive successors.

Therefore, accretion shall be an indicator for a change of position 
in the contextural grid.

Mathematically this shall be modeled in the framework of polycon-
textural functoriality.

A technical metaphor might be the change of position in a poly-
layered memristive crossbar system.

Polyfunctorial modeling

Following strictly the wording of the ‘trans-contextural transition’, 
a modeling is proposed that takes both parts, the iterative and the 
accretive, as separated, and distributed over the polycontextural 
grid. The mediation of the parts is guaranteed by the polycontextu-
rality of the grid as such. But there is not yet a direct mediation of 
the parts intended nor is their any interaction possible.

This Guntherian strategy might still be regulated by a restricted 
concept of mediation that is not yet taking the tabularity of polycon-
texturality into account but follows a hierarchy of reflexional levels 
(Reflexionsstufen, Gunther).

This situation is mapped onto the polycontextural concept of dis-
tributed levels of bifunctoriality.

The “hat” in the examples sketches the general framework of poly-
functoriality. There are 3 dis-contextural (strictly disjunct) uni-
verses (Grothendieck) involved, symbolized as  H3L. All 3 uni-
versa are mediated by “ˇ" , and are incorporating functors f and g.

The “head” has the design of the distributed functors fi, gi, 
i=1,2,3. While the “body” formulates the mediated bifunctoriality 
of the functors. The indices are indicating the loci of the functors 
in the polycontextural grid,
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Interchangeability of a 3- contextural category with

composition KÎNand mediation Kˇ N

Hat :

 J3N = J1 ˇ 1.2  2 N ˇ 1.2 .3  3

J1Ë1.2  2 NË 1.2 .3  3 = « :

 i = :f i, g i >, i = 1, 2, 3

Head :

B

g 1 - g 3
f 1 g 2 -

- f 2 f 3

F :

Body :

Jf 1 Î1.0 .0 g 1N

ˇ 1.2 .0

Jf 2 Î0.2 .0 g 2N

ˇ 1.2 .3

Jf 3 Î0.0 .3 g 3N

=

f 1

ˇ 1.2 .0

f 2
ˇ 1.2 .3

f 3

Î1 Î2 Î3

g 1

ˇ 1.2 .0

g 2
ˇ 1.2 .3

g 3

A further modeling that is insisting on the simultaneity, and not 
just the parallelism, of the iterative and accretive results is 
achieved with a ‘transpositional’ distribution of the accretive 
results together with its iterative functorial parts over a tabular 
concept of polycontexturality.
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Interchangeability of a 3- contextural category with

composition, mediation Kˇ Nand transposition K ú O

f 1
ˇ 1.2

f 2 ù 2.1 f 1
ˇ 2.3

f 3 ù 3.1 f 1

B

Î 1.1 - -

Î2.1 Î2.2 -

Î3.1 - Î 3.3

F

g 1
ˇ 1.2

g 2 ù 2.1 g 1

ˇ 2.3
g 3 ù 3.1 g 1

=

Jf 1 Î1.1 g 1N

ˇ 1.2

Jf 2 Î2.2 g 2N ù 2.1 Jf 1 Î2.1 g 1N

ˇ 2.3

Jf 3 Î3.3 g 3N ù 3.1 Jf 1 Î3.1 g 1N

There also might be a good reason to understand accretion, i. e. 
interaction, not just as a transposition but as a replication in the 
sense of a reflectional use of the accretive part of the calculation.

Interchangeability and replication JÂN

f 1 Â 1.2 f 1
ˇ 1.2

f 2
ˇ 2.3

f 3

B

BÎ 1.1 Î1.2F--

-Î2.2 -

-- Î 3.3

F

g 1 Â 1.2 g 1
ˇ 1.2

g 2 Â 2.1 g 1
ˇ 2.3
g 3

=

JJf 1 Î1.1 g 1N Â 1.2 Jf 1 Î1.2 g 1NN

ˇ 1.2

Jf 2 Î2.2 g 2N Â 2.1 Jf 1 Î2.1 g 1NN

ˇ 2.3

Jf 3 Î3.3 g 3N

And obviously, it could be necessary to distribut the accretive part 
of the operation over the replicative and the transpositional dimen-
sion of the grid too.

Interpretation 

operator: succ,
operand: [1,2],
operation: 
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operator: succ,
operand: [1,2],
operation: 

succ B1, 2F = :B1, 2, 1F, B1, 2, 2F, B1, 2, 3F> :

succ iter B1, 2F = :B1, 2, 1F, B1, 2, 2F> : Jf 1Î1.0 .0 g 1N

succ accrB1, 2F = :B1, 2, 3F> : Jf 2Î2.0 .0 g 2N

Null

Polycontextural mediation of succC1, 2G

Jsucc iter Î1.0 .0 B1, 2FN

ˇ 1.2 .0

Jsucc accr Î0.2 .0 B1, 2FN

ˇ 1.2 .3

comp Jsucc iter, succ accrN

=

succ iter

ˇ 1.2 .0

succ accr
ˇ 1.2 .3

comp 1.2 .3

Î1 Î2 Î3

B1, 2F

ˇ 1.2 .0

B1, 2F

ˇ 1.2 .3

Jsucc iter, succ accrN

Short notation of succ[1,2] mediation

succ iter B1, 2F = :B1, 2, 1F, B1, 2, 2F>

ˇ 1.2 .0

succ accrB1, 2F = :B1, 2, 3F>

ˇ 1.2 .3

comp Jsucc iter, succ accrN

This kind of distribution and mediation seems to be quite strait forward 
and is not posing any interpretational problems at all.

Matrix notation for mediation of succ[1,2]
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PM O1 O2 O3
M1 S1.1 - -

M2 - S2.2 -

M3 - - S3.3

=

PM O1 O2 O3

M1 :B1, 2, 1F, B1, 2, 2F> - -

M2 - :B1, 2, 3F> -

M3 - - compJS1, S2N

Transposition (transjunction)
Polycontextural modeling is not limited to a '

diagonal' interpretation of of the concept of mediation.

Polycontextural mediation and transposition

Jsucc iter Î1.1 B1, 2FN

ˇ 1.2

Jsucc accr Î2.2 B1, 2FN ù 2.1 Jsucc iter Î2.1 B1, 2FN ù 1.1 Jsucc iter Î3.1 B1, 2FN

ˇ 2.3

Jf 3 Î3.3 g 3N ù 3.1 Jf 1 Î3.1 g 1N

=

succ iter
ˇ 1.2

succ accr ù 2.1 succ iter
ˇ 2.3

Jf 3 Î3.3 g 3N ù 3.1 Jf 1 Î3.1 g 1N

B

Î 1.1 - -

Î2.1 Î2.2 -

Î3.1 - Î 3.3

F

B1, 2F

ˇ 1.2

B1, 2F ù 2.1 B1, 2F

ˇ 2.3

comp J g 3 ù 3.1 g 1N

Short notation for mediation and transposition of succ[1,2]
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succ iter B1, 2F = :B1, 2, 1F, B1, 2, 2F> 1.1

ˇ 1.2 .0

succ accrB1, 2F = :B1, 2, 3F> 2.2 ù2.1 Jsucc iter Î 2.1 B1, 2F N = :B1, 2, 1F, B1, 2, 2F> 2.1 ù3.1 Jsucc

ˇ 1.2 .3

comp Jsucc iter, succ accrN 3.3

succ iter B1, 2F = :B1, 2, 1F, B1, 2, 2F>

ˇ 1.2 .0

Jsucc accrB1, 2F N ù 2.1 Jsucc iter Î2.1 B1, 2F N ù 3.1 Jsucc iter Î3.1 B1, 2F N

ˇ 1.2 .3

comp Jsucc iter, succ accrN

This kind of transpositional mediation is probably not self-evident 
at a first glance. Because the succession function is interpreted not 
just as accretive but also as ‘transjunctive’, i.e. transpositional, 
and its direct result set at the locus S1.1 gets an additional interpre-
tation at the loci S2.1and S3.1.

Operations and their results in polycontextural systems are always 
interpreted results and not just prima facie objects. Interpretation 
is a mode of iterability, therefore the objects of interpretation are 
repeated, modeled, thematized as something that differs from the 
‘given’ object of thematization. Iterability involves memory. Also 
the ‘same is different’, it its memory function guarantees that it is 
the same and not something totally different.

Therefore, different representations of the interpretations have to 
be registered as differently localized. Each has a different meaning 
even if they look the same, syntactically, or are having abstractly 
the same mathematical definition. 

Matrix notation for mediation and transposition of succ[1,2]
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PM O1 O2 O3
M1 S1.1 S2.1 S3.1
M2 - S2.2 -

M3 - - S3.3

=

PM O1 O2 O3

M1 ;C1, 2, 1G, C1, 2, 2G? :B1, 2, 1F, B1, 2, 2F> :B1, 2, 1F, B1, 2, 2F>

M2 - :B1, 2, 3F> -

M3 - - comp Jsucc iter, succ accrN

Interpretation for replication

The mechanism of interpretation of replication works along the steps 
demonstrated for the transpositional case.

The same holds for mixed situation of replication and transposition. Addi-
tionally, a new kind of iterative intervention is introduced with the itera-
tion of an object at the same contextural locus.

Matrix for replication

PM O1 O2 O3
M1 S1.1 x x
M2 S1.2 S2.2 x
M3 S1.3 x S3.3

Matrix for transposition and replication

PM O1 O2 O3
M1 S1.1 S2.1 S3.1
M2 S 1.2 S2.2 -

M3 S 1.3 - S3.3

Matrix for ‘fractalization’ (iteration) and replication

PM O1 O2 O3
M1 S1.1 S2.1 -
M2 S 1.2 .2 .2 S2.2 S3.2
M3 - S2.3 S3.3

Accretion and mediation

With each accretion of a calculation the range of polycontexturality 
might be augmented. For the balanced matrix, m and n are equal.
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succ accr PM
Km,nO

JO, MN PM
Km+1,n+1O

JO, MN

succ iter PM
Km,nO

JO, MN PM
Km,nO

JO, MN

A more differentiated appraoch is considering, as far as possible, 
the concept of monomorphies of morphograms.

Example for monomorphies

- kconcat [1,2,1,3,2,2][1];
val it = [[1,2,1,3,2,2,1],[1,2,1,3,2,2,2],[1,2,1,3,2,2,3],[1,2,1,3,2,2,4]] : 
int list list

MG0 =[1,2,1,3,2,2]                                   MG4 =[1,2,1,3,2,2,4]

MG loc1 loc2 loc3 loc4
Dec mg1 mg2 mg1mg3 mg 2

MG 1

MG 2

MG 3

MG 2

1 - 1 - -

- 2 - - -

- - - 3 -

- - - - 22

MG loc1 loc2 loc3 loc4 loc 5
Dec mg1 mg2 mg1 mg3 mg 2mg 4

MG 1

MG 2

MG 3

MG 2

MG 4

1 - 1 - - -

- 2 - - - -

- - - 3 - -

- - - - 22 -

- - - - - 4

MG3 =[1,2,1,3,2,2,3]                                      MG1 =[1,2,1,3,2,2,1]                    
MG2 = [1,2,1,3,2,2,2]

MG loc1 loc2 loc3 loc4 loc 5
Dec mg1 mg2 mg1 mg3 mg 2mg 3

MG 1

MG 2

MG 3

MG 1

MG 4

1 - 1 - - -

- 2 - - - -

- - - 3 - -

- - - - 22 -

- - - - - 3
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MG loc1 loc2 loc3 loc4 loc 5
Dec mg1 mg2 mg1 mg3 mg 2mg 1

MG 1

MG 2

MG 3

MG 2

MG 4

1 - 1 - - -

- 2 - - - -

- - - 3 - -

- - - - 22 -

- - - - - 1

MG loc1 loc2 loc3 loc4
Dec mg1 mg2 mg1 mg3mg 2

MG 1

MG 2

MG 3

MG 1

MG 4

1 - 1 - -

- 2 - - -

- - - 3 -

- - - - 222
- - - - -

1.2.3. Programming aspects
Recursion

scala> def factorial(number:Int) : Int = {
     |     if (number == 1)
     |        return 1
     |     number * factorial (number - 1)
     | }
factorial: (number: Int)Int

scala> println(factorial(5))    120

"The new accumulator parameter stores the intermediate value, so we are no 
longer doing a calculation against the value returned from the function like 
we were before."

scala> def factorial(accumulator: Int, number: Int) : Int = {
     |   if (number == 1)
     |     return accumulator
     |   factorial (number * accumulator, number - 1)
     | }
factorial: (accumulator: Int, number: Int)Int
scala> println(factorial(1,5))     120

More for Java at:
http://stackoverflow.com/questions/8183426/factorial-using-recursion-
in-java

Recursion on the base of the retro-gradeness of morphograms

scala> def mg-factorial(morphogram:Morph List Int) : Morph = {
              |  if (morphogram == [ ])
              |     return [ ]
              |  kmul [morphogram (n)][morphogram (factorial(n-1))]
              | }
mg-factorial: (morphogram: Morph) Morph List
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scala> def mg-factorial(morphogram:Morph List Int) : Morph = {
              |  if (morphogram == [ ])
              |     return [ ]
              |  kmul [morphogram (n)][morphogram (factorial(n-1))]
              | }
mg-factorial: (morphogram: Morph) Morph List

fun allTcontextureFac n =

allkmul KTcontexture KnOO KTcontexture Kfac Kn-1OOO;

val allTcontextureFac = fn : int -> int list list list

fun TcontextureFacNum n = Tcontexture Kfac nO;

val TcontextureFacNum = fn : int -> int list list

Example

- allTcontextureFac 3;
val it =
  [[[1,1,1,1,1,1]],[[1,1,1,2,2,2]],[[1,1,2,1,1,2]],
   
[[1,1,2,2,2,1],[1,1,2,3,3,1],[1,1,2,2,2,3],[1,1,2,3,3,4]],[[1,2,1,1,2,1]],
   
[[1,2,1,2,1,2],[1,2,1,3,1,3],[1,2,1,2,3,2],[1,2,1,3,4,3]],[[1,2,2,1,2,2]],
   
[[1,2,2,2,1,1],[1,2,2,3,1,1],[1,2,2,2,3,3],[1,2,2,3,4,4]],[[1,2,3,1,2,3]],
   [[1,2,3,2,3,1],[1,2,3,3,1,2],[1,2,3,2,1,4],[1,2,3,2,4,1],[1,2,3,4,1,2],
    [1,2,3,3,1,4],[1,2,3,3,4,1],[1,2,3,4,3,1],[1,2,3,4,1,5],[1,2,3,4,5,1],
    [1,2,3,2,3,4],[1,2,3,3,4,2],[1,2,3,4,3,2],[1,2,3,2,4,5],[1,2,3,4,5,2],
    [1,2,3,3,4,5],[1,2,3,4,3,5],[1,2,3,4,5,6]]] : int list list list

Reflectional analysis of allTcontextureFac 3

EWhat we get with this approach of a reflectianal analysis of morphic 
factorials, allTcontextureFac 3, is a 6 layered system of mediated 
contextures

S1: [1,1,1,1,1,1],
S2: [1,1,1,2,2,2],[1,1,2,1,1,2], [1,2,1,1,2,1],
[1,1,2,2,2,1], [1,2,1,2,1,2], [1,2,2,1,2,2],[1,2,2,2,1,1]

S3: [1,1,2,3,3,1],[1,1,2,2,2,3],[1,2,1,3,1,3],[1,2,1,2,3,2], 
[1,2,2,3,1,1],[1,2,2,2,3,3], 
[1,2,3,1,2,3],[1,2,3,2,3,1],[1,2,3,3,1,2],[[1,2,3,1,2,3],
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S3: [1,1,2,3,3,1],[1,1,2,2,2,3],[1,2,1,3,1,3],[1,2,1,2,3,2], 
[1,2,2,3,1,1],[1,2,2,2,3,3], 
[1,2,3,1,2,3],[1,2,3,2,3,1],[1,2,3,3,1,2],[[1,2,3,1,2,3],

S4: 
[1,2,1,3,4,3],[1,1,2,3,3,4],[1,2,2,3,4,4],[1,2,3,2,1,4],[1,2,3,2,4,1],[1,2,
3,4,1,2],
[1,2,3,3,1,4],[1,2,3,3,4,1],[1,2,3,4,3,1],,[1,2,3,2,3,4],
[1,2,3,3,4,2],[1,2,3,4,3,2],

S5:[1,2,3,4,1,5],[1,2,3,4,5,1],[1,2,3,4,1,5],[1,2,3,4,5,1],[1,2,3,2,4,5],[
1,2,3,4,5,2],
[1,2,3,3,4,5],[1,2,3,4,3,5],

S6:[1,2,3,4,5,6].

This classification corresponds to fac n: fac 3 = 6.

A reduction of allTcontextureFac 3 to the deutero-structure is 
given by the following procedure.

setof(map dnf(flat(allTcontextureFac 3)));

[[1,1,1,1,1,1],
[1,1,1,1,2,2],[1,1,2,2,2,2], [1,1,1,2,2,2]
[1,1,1,2,3,3],[1,1,2,2,2,3],[1,1,1,2,2,3],[1,2,2,2,3,3],[1,1,2,2,3,3],
[1,2,2,3,4,4],[1,1,2,2,3,4],[1,1,2,3,3,4],[1,2,2,3,3,4],
[1,1,2,3,4,5],[1,2,2,3,4,5],[1,2,3,3,4,5],
[1,2,3,4,5,6]].

A further genuin reduction to its proto-structure is achieved with 
the following procedure:

- setof(map pnf(flat(allTcontextureFac 3)));

[[1,1,1,1,1,1],
[1,1,1,1,1,2],
[1,1,1,1,2,3],
[1,1,1,2,3,4],
[1,1,2,3,4,5],
[1,2,3,4,5,6]] .

2. Memristivity and memory

"Well, each time we make a recursive call, we ‘eat up’ a bit more space on 
the stack. “

http://www.researchgate.net/publication/221504050_Fractional-order_Memris-
tive_Systems

This fact gets replaced by the memristive fact: Each time we make a recursive call, 
we continue the call at the place it stopped before. At this place the value of the 
history is stored (memorized) by the memristive memory inside the previous call. 
The structure of this memorized ‘state’ dictates how and to what range further opera-
tions might be applied.
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This fact gets replaced by the memristive fact: Each time we make a recursive call, 
we continue the call at the place it stopped before. At this place the value of the 
history is stored (memorized) by the memristive memory inside the previous call. 
The structure of this memorized ‘state’ dictates how and to what range further opera-
tions might be applied.

Saraju P. Mohanty, Memristor: From Basics to Deployment

"Digital design using memristor will need lots of research effort as Boolean 
logic can’t be directly implemented."

Memristance is a property of an electronic component to retain its resistance level 
even after power had been shut down or lets it remember (or recall) the last resis-
tance it had before being shut off.

Eero Lehtonen, Memristive Computing, 2012

"The main conclusion of this thesis is that memristive computing will be 
advantageous in large-scale, highly parallel mixed-mode processing architec-
tures. This can be justified by the following two arguments. 
First, since processing can be performed directly within memristive memory 
architectures, the required circuitry, processing time, and possibly also 
power consumption can be reduced compared to a conventional CMOS imple-
mentation. 
Second, intrachip communication can be naturally implemented by a memris-
tive crossbar structure.” 

http://www.doria.fi/bitstream/handle/10024/79925/AnnalesAI446LehtonenDISS.pdf

I have argued in previous papers that memristivity is making a crucial difference on 
a paradigmatic level and is not depending on such complex properties of systems 
like “large-scale, highly parallel mixed-mode processing architectures”.

Even the simplest step of iteration, especially for recursion, has two different forms 
of conceptualization and realization: the repetitive “stack-oriented” and the memris-
tive “history-oriented” approaches.

"Memristive architectures are ideally suited for computation within a mem-
ory, and thus memristors should not be regarded only as memory, but also 
as nanoscale computing units.” (Lehtonen)

The ‘history'-oriented approach gets its development with the application of 
patterns, i.e. morphograms, that have to be calculated. On the level of classical 
atomistic elements, say numbers or symbols, the merits of memristivity as a 
possibility to go beyond classical computing are not yet accessible.
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The ‘history'-oriented approach gets its development with the application of 
patterns, i.e. morphograms, that have to be calculated. On the level of classical 
atomistic elements, say numbers or symbols, the merits of memristivity as a 
possibility to go beyond classical computing are not yet accessible.

In other words, memristivity leads into a new paradigm of computation if 
applied on patterns of constellations. Hence memristics is surpassing the possibili-
ties of isolated memristors if it comes as patterns of activity instead of a system 
of single memristors.

Early papers
http://www.thinkartlab.com/pkl/lola/Memristics/Memristics:Memristors, 
again.pdf
http://www.thinkartlab.com/pkl/lola/Memristics/Part-II/Memristics-crossbar.pdf
http://memristors.memristics.com/Why-Not/Why-Not.html

3. Recursivity and memristive memory
Memristive recursivity continues where it ended without the require of a separated 
memory devise, a stack or pile, for the continuation of the recursion.

Memristive recursivity depends on the memristance of the memristive system and 
not on a separated memory.

Memristance is an intrinsic property of memristive systems. Thus it has not to be 
added from the outside. There is no glue included.

Because of the chiastic interplay of distributed and mediated computation and mem-
ory the separation of both is arbitrary for memristive systems.

Victor Erokhin, 2012

"Given the property of memristance, it seems more interesting to design new 
systems using these new functional properties e.g. the capability to memo-
rize the history of inputs to the device. In this respect, the output will be not 
a simple binary decision, but some intermediate value, that depends on the 
duration of the inputs. Such processing is to some degree similar to a brain-
like logical decision making process: an answer (YES / NO) depends not only 
on the configuration of external stimuli, but also on past experience.”

http://arxiv.org/pdf/1212.3425v1.pdf

4. Memristive electronic devices

J. Joshua Yang, Dmitri B. Strukov and Duncan R. Stewart, Memristive devices for 
computing

"Memristive devices are electrical resistance switches that can retain a state 
of internal resistance based on the history of applied voltage and current. 
These devices can store and process information, and offer several key perfor-
mance characteristics that exceed conventional integrated circuit technology.

"Here, we focus on the chemical and physical mechanisms of memristive 
devices, and try to identify the key issues that impede the commercialization 
of memristors as computer memory and logic."
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"Here, we focus on the chemical and physical mechanisms of memristive 
devices, and try to identify the key issues that impede the commercialization 
of memristors as computer memory and logic."

  https://www.ece.ucsb.edu/~strukov/papers/2013/NatNano2013.pdf

http://www.cse.unt.edu/~smohanty/Publications_Journals/2013/Mohanty_IEEE-
Potentials_2013May_Memristor.pdf
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