

 Summer-Edition 2017

— vordenker-archive —

Rudolf Kaehr

(1942-2016)

Title

Memristive Stack Machines

Based on retrograde recursivity and distinctive enaction

Archive-Number / Categories

3_03 / K11

Publication Date

2011

Keywords

TOPICS: Memristivity and recursivity – Different approaches to formalize memristivity – CI and stacks –
Computational Stack – Simple Enactional STACK – Tabular memristive stacks / Polycontextural
matrix / Quadralectic memristive stacks

Disciplines

Cybernetics, Computer Sciences, Artificial Intelligence and Robotics, Systems

Architecture and Theory and Algorithms, Memristive Systems

Abstract

The idea of a memristive STACK machine based on the retrograde recursivity of its

data structure and on the construct of enaction for its operators shall be sketched in a

descriptive and semi-formal manner.

Citation Information / How to cite

Rudolf Kaehr: "Memristive Stack Machines", www.vordenker.de (Sommer Edition, 2017) J. Paul (Ed.),

URL: http://www.vordenker.de/rk/rk_Memristive-Stack-Machines_2011.pdf

Categories of the RK-Archive
K01 Gotthard Günther Studies

K02 Scientific Essays

K03 Polycontexturality – Second-Order-Cybernetics

K04 Diamond Theory

K05 Interactivity

K06 Diamond Strategies

K07 Contextural Programming Paradigm

K08 Formal Systems in Polycontextural Constellations

K09 Morphogrammatics

K10 The Chinese Challenge or A Challenge for China

K11 Memristics Memristors Computation

K12 Cellular Automata

K13 RK and friends

http://www.vordenker.de/index.html
http://www.vordenker.de/index.html
http://www.vordenker.de/navigation.htm
https://de.wikipedia.org/wiki/Rudolf_Kaehr
http://www.vordenker.de/rk/rk_Memristive-Stack-Machines_2011.pdf
http://www.vordenker.de/rk/rk_Memristive-Stack-Machines_2011.pdf

Memristive Stack Machines
Based on retrograde recursivity and distinctive enaction

Rudolf Kaehr Dr.phil „

«

Copyright ThinkArt Lab ISSN 2041-4358

Abstract
The idea of a memrsitive STACK machine based on the retrograde
recursivity of its data structure and on the construct of enaction for
its operators shall be sketched in a descriptive and semi-formal
manner.

1. Memristivity and recursivity

1.1. Different approaches to formalize memristivity
Up to now, it seems, that there are five different approaches available
to deal formally with aspects memristivity in a formal and operative
manner.

The focus of this exercise shall be oriented on enactional approach
with some kenogrammatic features only. Enaction, additionally to the
retrogradeness of kenomic recursivity, is an interesting new property
of memristive formalisms to be studied.

Because the discovery of memristivity in nano-electronics by Leon Chua
1971 and its realization by the team of Stanley Williams at HP in 2008 is
very recent and not yet studied formally from a non-electronic and
system-theoretic point of view, this study remains still in a very experi-
mental and temporary status of reflection and elaboration.

The graphematic possibilities of studying memristivity in formal sys-
tems at hand for now are:
1. the mode of semiotic identity with recursivity,
2. the mode of contextural comlexity with proemiality,
3. the mode of kenogrammatic similarity with retrogradeness,
4. the indicational mode of “topology-free constellations of signs” with
enaction, and
5. the mode of monomorphic bisimilarity of morphogrammatics with
bisimulation.

Other modes are possible as further realizations of graphematic styles
of inscriptions.

Every symbolization system entails its own paradigm of programming
languages.

The graphematic possibilities of studying memristivity in formal sys-
tems at hand for now are:
1. the mode of semiotic identity with recursivity,
2. the mode of contextural comlexity with proemiality,
3. the mode of kenogrammatic similarity with retrogradeness,
4. the indicational mode of “topology-free constellations of signs” with
enaction, and
5. the mode of monomorphic bisimilarity of morphogrammatics with
bisimulation.

Other modes are possible as further realizations of graphematic styles
of inscriptions.

Every symbolization system entails its own paradigm of programming
languages.

Properties
Semiotics a=a, a≠b, a(bc) = (ab)c
The semiotic or symbolic mode of thematization is ideal for atomistic
binary physical systems as they occur as digital computers.

Polycontexturality (ab) = ((ab)c), (ac)(bd) = (ab)(cd)
The contextural or interactional mode of thematization is ideal for
ambigous complex physical systems as they occurs in distributed and
interacting digital computer systems.

Kenogrammatics a=b, (aa) ≠ (ab), (ab) = (ab)|(ac)
The kenogrammatical mode of thematization is ideal for pre-semiotic
complex behavioural systems as it occurs in memristive physical sys-
tems.

Calculus of Indication a=a, a≠b, ab = ba
The indicational mode of thematization is ideal for singular decision
systems as they occur in simple action systems.

Morphogrammatics a=b, (aa) ≠ (aaa), (aba) = (abba)
The monomorphic mode of thematization is ideal for metamorphic
systems as they occur in complex memristive actional systems.

Some properties might be collected temporarily in the table:

styles semiotic contextural kenogrammatic indicational monomorphic
recursive + + + + +

retrograde - + + - +

enaction - - - + +

metamorph - + - - +

super - add - + + - +

Recursive functions are memory intensive. It might be possible to re-
design the mechanisms of recursivity in comutational systems with the
help of a memristive thematization of the very basic properties of
recursivity.

2 Author Name

Recursive functions are memory intensive. It might be possible to re-
design the mechanisms of recursivity in comutational systems with the
help of a memristive thematization of the very basic properties of
recursivity.

Further characterizations
In analogy to the operation LIST on objects:
LIST: a, b, c ö (abc)
LIST: (ab), a, b, c ö ((ab)abc))
we shall define a general thematization function or operation THEMATH
which is interpreting a proposed ”set” or “agglomeration” of objects as
semiotical, contextural, kenogrammatical, indicational or
monomorphical:
THEMATH: a, a, b,

c ö

LIST Ja, a, b, cN ö Ja a b cN
CONTEXTURE Ja, a, b, cN ö JJJa Ñ aNˇ dN Jcˇ e Nˇ f N
KENOS Ja, a, b, cN ö Ba b cF
INDIC Ja, a, b, cN ö Za b^

MORPHIC Ja, a, b, cN ö BBa aF BbF B cFF

CONTEXTURE Ja, b, c, dN ö JJJa Ñ bNˇ dN Jcˇ e Nˇ f N :

a ˇ b ˇ d
- c ˇ e -
- - f - -

= JJa b dN Jc eN fN

CONTEXTURE Ja, a, b, cN ö JJJa Ñ aNˇ dN Jcˇ e Nˇ f N :

a Ñ - ˇ d
a c ˇ e -
- - f - -

= JJJa a dN Jc eN fN

Article Title 3

1.2. CI and stacks
Following Wolfram’s statement, according to M. Schreiber:
"A kind of form is all you need to compute. A system can emulate rule
110 if it can distinguish: More than one is one but one inside one is
none.
Simple distinctions can be configured into forms which are able to
perform universal computations.”

Applied to one of the simplest models of computing, the STACK, we get
a distinctional stack model. This observation corresponds properly with
Wolfram/Schreiber’s statement.

What is still missing are the memristive properties. Memristivity enters
the game with an enactional interpretation of the operation “Pop”. But
this makes sense only in the framework of a disseminated, i.e. polycon-
textural stack model
Applied to the simplest model of computing, the STACK, we get a dis-
tinctional stack model.

What is still missing are the memristive properties.
Memristivity enters the game with an enactional interpretation of the
operation “pop”.
But this makes sense only in the framework of a disseminated, i.e.
polycontextural stack model.

‘Keller’ machines which are remembering their ‘kellert’ (cancelled)
states. Or: Register machines which are registering their cancelled
states.

Connection with the Calculus of Indication (CI):
Interpretation

" More than one is one” : : > : > : >
" one inside one is none” : :: >> ø,

" is " :
Stack operations

J1 : :>ö:> :> : ï push, JdupN
J2 : ::>>öØ : ï pop, JdropN

Basic operations for STACK
push H a - | aa L
pop H a |- L

Distinction model of STACK
push 8 < Ø 8 < 8 <
pop 88 << Ø ø

Memristic STACK
push 8 < i Ø 8 < i 8 < i
pop 98 < i.i= i.i ö

Ø i.i
8 < i.i+1

Morphic STACK
push 8 < i Ø 8 < i 8 < i » 8 < i 8 < i+1
pop 98 < i.i= i.i ö

Ø i.i
8 < i.i+1

4 Author Name

Basic operations for STACK
push H a - | aa L
pop H a |- L

Distinction model of STACK
push 8 < Ø 8 < 8 <
pop 88 << Ø ø

Memristic STACK
push 8 < i Ø 8 < i 8 < i
pop 98 < i.i= i.i ö

Ø i.i
8 < i.i+1

Morphic STACK
push 8 < i Ø 8 < i 8 < i » 8 < i 8 < i+1
pop 98 < i.i= i.i ö

Ø i.i
8 < i.i+1

With pop a memristic function shall be implemented with the applica-
tion of the enaction operator:

pop (a ~ ø) fl pop(a1.1 ö
ø 1.1
a 1.2

).

This pop operation is emptying the stack “q1.1” from its symbol “a1.1”
and is pushing, at the same time, the symbol a1.1 onto another reflec-
tional stack “q1.2” as the symbol “a1.2”.
Hence, enaction is a composition of an elimination step (popping,
emptying, reading) and a transitional step of pushing (writing) the data
onto another neighboring stack system.

With “ ” for “{ }" we get:

pop (~ ø) = (1.1 1.1 ö ø),

(1.1 1.1 ~ ø) ö (
Ø 1.1

 1.2
) .

Retrogradeness of “push"
The case of a Morphic STACK with a retrograde definition of the push
operation is not considered at this place. Retrogradeness is involved
with additional operations, say ADD, but not yet for “push”. A system
with enactional “pop” and retrograde “push” is defined for the mix of
indicational and kenomic formalisms. The operation “push” belongs to
the repeatability of events and is therefore involved with retrograde
recursivity. Hence the concatenational “push” with “push (a | aa)"
becomes “push: X = (a) ö Xa | Xb".

Article Title 5

Retrogradeness of “push"
The case of a Morphic STACK with a retrograde definition of the push
operation is not considered at this place. Retrogradeness is involved
with additional operations, say ADD, but not yet for “push”. A system
with enactional “pop” and retrograde “push” is defined for the mix of
indicational and kenomic formalisms. The operation “push” belongs to
the repeatability of events and is therefore involved with retrograde
recursivity. Hence the concatenational “push” with “push (a | aa)"
becomes “push: X = (a) ö Xa | Xb".

Why stack machines?
What happens with a tabular organization of a stack? The tabular
matrix is supporting the distribution of contextural and morphogram-
matic-based distributions of stack machines.

"In computer science, a stack machine is a model of computation in
which the computer's memory takes the form of one or more stacks.”
(WiKi)

A similar exercise with LISP will be published soon.

1.3. Computational Stack
1.3.1. Concept of a STACK

STACK as a category:
Following Axel Poigné (LNCS 240, 1985, p. 107):

"Let T be the category of terms TSTACK generated by the signature

sig STACK is
sorts nat, stack
ops oönat, suc : nat önat

empty : ö stack
push : stack nat ö stack
pop : stacköstack
top : stack ö nat

There are two atomic predicates
eq nat : nat x nat, eq stack : stack x stack.

The axioms are specified in the usual logical notation :

6 Author Name

The axioms are specified in the usual logical notation :

tt ¢eq nat J0, 0N, tt ¢eq stack Jempty, emptyN
eq nat Jm, nN ¢eq nat Jsuc JmN, suc JnNN
eq stack Jx, yN Ôeq nat Jm, nN ¢eq stack Jpush Jx, mN, push Jy, nNN
eq stack Jx, xN Ôeq nat Jm, mN ¢eq stack Jpop Jpush Jx, mNN, xN
eq stack Jx, xN Ôeq nat Jm, mN ¢eq nat Jtop Jpush Jx, mNN, mN •

For example, the basic Forth stack operators are described as:

 (before -- after)
dup (a -- a a)
drop (a --)
swap (a b -- b a)
over (a b -- a b a)
rot (a b c -- b c a)

The main operations of a stack machine are PUSH and POP, also called
DUP and DROP for FORTH.

"The two operations applicable to all stacks are:
• a push operation, in which a data item is placed at the loca-

tion pointed to by the stack pointer, and the address in the stack
pointer is adjusted by the size of the data item;

• a pop or pull operation: a data item at the current location
pointed to by the stack pointer is removed, and the stack pointer is
adjusted by the size of the data item.”

Article Title 7

1.3.2. Stack machine

http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
 http://www.dcs.gla.ac.uk/~marks/thesis.pdf

Morphogrammatic interpretation
DATA/RETURN STACK:
The data of a memristive stack machines are in fact morphograms. A
distinction-theoretic option with an application of the Calculus of Indica-
tion is preferable for reaons of introduction.

ALU: Morhogrammatics
The arithmetical and logical operations for a memristive stack are
defined accoring the struture of memristive objects. Hence, retrograde
recursivenes and enaction of morphograms has to become the guiding
paradigm for a memristive stack machine.

CONTROL LOGIC: Polycontexturality
The control logic for polycontextural memristive stack machines is
ruled, certainly, by a polycontextural logic which is surpassing the
limits of non-distributed classical logics. Hence, any contextural place
of a memrsitive stack gets its own logic, and arithmetics too.

Hence, because of its polycontextural definition, a memrsitive stack
machine is not simply a kind of a multi-stack machine but a system of
mediation of stack machines.

Instructions
Some typical stack instructions for the classical case of a stack
machine (and Forth).

Instruction Data Stack Function
 input -> output
 ! N1 ADDR -> Store N1 at location ADDR in program memory
 + N1 N2 -> N3 Add N1 and N2, giving sum N3
 - N1 N2 -> N3 Subtract N2 from N1, giving difference N3
 >R N1 -> Push N1 onto the return stack
 @ ADDR -> N1 Fetch the value at location ADDR in program
memory, returning N1
 AND N1 N2 -> N3 Perform a bitwise AND on N1 and N2, giving
result N3
 DROP N1 -> Drop N1 from the stack
 DUP N1 -> N1 N1 Duplicate N1, returning a second copy of it
on the stack

8 Author Name

http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.dcs.gla.ac.uk/~marks/thesis.pdf

Instructions
Some typical stack instructions for the classical case of a stack
machine (and Forth).

Instruction Data Stack Function
 input -> output
 ! N1 ADDR -> Store N1 at location ADDR in program memory
 + N1 N2 -> N3 Add N1 and N2, giving sum N3
 - N1 N2 -> N3 Subtract N2 from N1, giving difference N3
 >R N1 -> Push N1 onto the return stack
 @ ADDR -> N1 Fetch the value at location ADDR in program
memory, returning N1
 AND N1 N2 -> N3 Perform a bitwise AND on N1 and N2, giving
result N3
 DROP N1 -> Drop N1 from the stack
 DUP N1 -> N1 N1 Duplicate N1, returning a second copy of it
on the stack

Example
Input Operation Stack
- stack ¶
1 Push operand 1
2 Push operand 2, 1
4 Push operand 4, 2, 1
* Multiply 8, 1
+ Add 9
3 Push operand 3, 9
3 Pop operand 9
9 Pop operand ¶ .

Article Title 9

1.4. Simple Enactional STACK
1.4.1. Reflectional enaction

Preconditions
Retrograde recursivity of kenogrammatics and its laws of sameness of
morphograms.
Enactional meristivity of reflectional and interactional operations in
polycontextural configurations.

Strategy for the design of a memristive stack concept:
POP: enactional memristics, i.e. the operation POP is at once destruc-
tive and conservative.
PUSH: concatenation memristics (retrograde recursivity), i.e. the con-
catenational aspect of PUSH is reflecting its morphogrammatic design
which is not atomistic but holistic.
Enactional POP

Reflectional enaction

 i.j i.j
« i.j

 i.j+1

Iteration

pop i.j ö
« i.j

 i.j+1
:

pop i.j ö i.j i.j ö
« i.j

 i.j+1

pop1.2 pop1.1 1 1 ö pop1.2
« 1.1

 1.2
ö

« 1.1
« 1.2

 1.3
Parallelism

10 Author Name

popJ2N :
pop1.1 : 1.1 ö K « 1.1

 1.2
O

pop2.2 : 2.2 ö K « 2.2

 2.3
O

Matrix model

popJ2N :

O 1 O 2 O 3

M 1 1.1 1.1 - -

M 2 - 2.2 2.2 -

M 3 - - -

O 1 O 2 O 3

M 1 Ø 1.1 - -

M 2 1.2 Ø 2.2 -

M 3 - 2.3 -

Mathematical definition

Enactional STACK J3, 3N

sig STACK J3,3N is

sorts J3,3N nat J3,3N, stack J3,3N

ops J3,3N o J3,3Nö nat J3,3N, suc J3,3N : nat J3,3N önat J3,3N

empty J3,3N : ö stack J3,3N

push J3,3N : stack J3,3N nat J3,3N ö stack J3,3N

pop J3,3N : stack J3,3Nöstack J3,3N

top J3,3N : stack J3,3N ö nat J3,3N

Semantics

tt J3,3N ¢eq nat J0, 0N J3,3N, tt J3,3N ¢eq stack Jempty, emptyN J3,3N

eq nat Jm, nN ¢eq nat JsucJmN, sucJnNN
eq stack Jx, yN Ôeq nat Jm, nN ¢eq stack JpushJx, mN, pushJy, nNN

eq stack Jx, xN Ôeq nat Jm, mN ¢eq stack JpopJpushJx, mNN, xN
eq stack Jx, xN Ôeq nat Jm, mN ¢eq nat JtopJpushJx, mNN, mN •

Enactional " pop " :

Article Title 11

pop :
stack i ö J stack i, stack i+1N
nat i ö J empty i, nat i+1N

:

pop i.j
J3,3N : JJstack j.iN ö Jnil j.iN N ö BJnil j.i N; Jstack j.i+1NF

pop i .1 J3,3N : JJstack
i .1
N ö Jnil

i .1
N Nö BJnil

i .1
N; Jstack i .2NF, i = 1, 2, 3

pop i .2 J3,3N : JJstack i .2N ö Jnil i .2N Nö BJnil
i .2
N; Jstack i .3NF

pop i .3 J3,3N : JJstack i .3N ö Jnil
i .3
N Nö BJnil i .3N; Jstack i .4NF •

tt J3,3N : Jtt 1, tt 2, tt 3N = Jt 1ö f 1 ª t 2ö f 2 t 3 ö f 3N

eq stack Jx, xN
i.j

J3, 3N
 Ôeq nat Jm, mN

i.j

J3, 3N
¢

eq stack popi.j

J3, 3N
 pushi.j

J3, 3NJx, mN , x

Model

stack 1.1 stack 2.1 stack 3.1
stack 1.2 stack 2.2 stack 3.2
stack 1.3 stack 2.3 stack 3.3

nat 1.1 nat 2.1 nat 3.1
nat 1.2 nat 2.2 nat 3.2
nat 1.3 nat 2.3 nat 3.3

12 Author Name

Examples

J1N pop i .1 J3,3N : JJstack
i .1
N ö Jnil

i .1
N Nö BJnil

i .1
N; Jstack i .2NF :

pop1.1

J3, 3N BJ 1.1 1.1N ; Jnil 1.2N ;

Jnil 1.3NF ö BJnil 1.1N ; J 1.2 1.2N ; Jnil 1.3 NF.

pop1.1

J3, 3N
:

J N 1.1 stack 2.1 stack 3.1

Jnil 1.2N stack 2.2 stack 3.2

Jnil 1.3N stack 2.3 stack 3.3

Jnil 1.1N stack 2.1 stack 3.1

J N 1.2 stack 2.2 stack 3.2

Jnil 1.3 N stack 2.3 stack 3.3

J2N eq stack Jx, xN Ôeq nat Jm, mN ¢eq stack JpopJpushJx, mNN, xN

popi.j

J3, 3N
 pushi.j

J3, 3NJx, mN , x :

with

x = BJ nil 1.1N ; Jnil 1.2N ; Jnil 1.3NF, m = J 1.1 1.1N
and

pushi.j

J3, 3N
 BJ nil 1.1N ; Jnil 1.2N ; Jnil 1.3NF, J 1.1 1.1N =

push1.1

J3, 3N
 B J 1.1 1.1N ; Jnil 1.2N ; Jnil 1.3NF ,

and

pop1.1

J3, 3N
 BJ 1.1 1.1N ; Jnil 1.2N ; Jnil 1.3NF =

BJnil 1.1 N; J 1.2 1.2N ; Jnil 1.3NF
therefore

Article Title 13

therefore

BJ nil 1.1N ; Jnil 1.2N ;

Jnil 1.3NF ≠ BJnil 1.1 N; J 1.2 1.2N ; Jnil 1.3NF .

eq stack Jx, xN Ô eq nat Jm, mN ¢eq stack popi.j

J3, 3N
 pushi.j

J3, 3NJx, mN , x =

false.

Symmetry/asymmetry of pop and push
Classical case : symmetry of pop and push

¢eq stack JpopJpushJx, mNN, xN = true

eq stack JpopJpushJx, mNN, xN ö eq

stack JpopJpushJx, mN = Jm, xNN = x, xN = true

Enactional case : asymmetry of pop and push

eq stack Jpop Jpush Jx, mNN, xN ö eq

stack Jpop i.j Jpush Jx, mNN , xN = false

eq stack Jpop 1.1 Jpush 1.1 Jx, mN = Jm 1.1, x 1.1NN = J¶ 1.1; m 1.2N, xN = false

1.4.2. Interactional enaction
Complementary to the reflectional

enaction the interactional enation is introduced.

i.j i.j
« i.j

 i+1. j

1 - -

- 2 -
- - -

ö

« 1.1 2.1 -

- « 2.2 3.2
- - -

14 Author Name

1.4.3. Memristive STACK
In contrast to the destructive definition of POP for the classical STACK,
we add a memristive definition for POP, which is cancelling the
addressed state at his address but is simultaneously storing the value of
the state at its enactional domain.
Hence, the memristive stack concept is destructive in its monocontex-
tural function and at once memristive in its polycontextural behavior.
storing :: "to place or leave in a location (as a warehouse, library, or
computer memory) for preservation or later use or disposal.” (Webster)

If a parcel drops out from a staple, its vanishing gets registered by the
memory of that annihilation. Annihilation gets registered.

"After execution, the parameters have been erased and replaced with
any return values.”

Memristive PUSH
The classical definition of PUSH is atomistic, linear and abstract. In
contrast, the memristive PUSH has to reflect the retrogradeness of any
iterability, here, the character of the iteration of the morphogram-
matic PUSH operation of the STACK.

Input Operation Stack STACK
a1.1 Push operand a1,1 PUSH(a1.1) ö a1.1
a1.1 Pop operand [¶1.1, a1.2] POP() ö [¶1.1, a1.2]

 A classical STACK maschine is neutral to its data, i.e. any data
accepted might be dublicated, i.e. droped. This is expressed with 2
sorts of terms for the category of a STACK: nat and stack.
How are memristive STACK machines defined in respect to PUSH?

Also the data type (nat, indicational,kenomic, morphogrammatic) are
not crucial to demonstrate the mechanism of the enactional stack, it
might be interesting as a next step towards a enactional stack machine
to know how the operation ADD is working in the different settings.

Sign repertoire
sign = { ”;” , "|", ”, “, "(", ")"},
operators ={ Pop, Add, Push},
terms ={ t, ¶}

Enactional case:

Input Operation Stack

a 1.1 Push a 1.1
a 1.1 Pop Refl @¶ 1.1, a 1.2D
a 1.1 Pop Inter @¶ 1.1, a 2.1D

Article Title 15

Input Operation Stack

a 1.1 Push a 1.1
a 1.1 Pop Refl @¶ 1.1, a 1.2D
a 1.1 Pop Inter @¶ 1.1, a 2.1D

J1NNatural numbers stack machine example with Push, Pop and Add

Input Operation Stack Rule
1 Push operand 1 1.1
2 Push operand 2 1.1, 1 1.1
4 Push operand 4 1.1, 2 1.1, 1 1.1
* Multiply 1.1 8 1.1, 1 1.1
+ Add 1.1 9 1.1
3 Push operand 3 1.1, 9 1.1
3 Pop operand ¶ 1.1, 9 1.1 ; 3 1.2 EN
9 Pop operand ¶ 1.1 ; 9 1.2, 3 1.2 EN
5 Push operand 5 1.1; 9 1.2, 3 1.2
* Multiply 1.2 5 1.1; 27 1.2 EN
4 Push 1.1; 1.2 4 1.1, 5 1.1; 4 1.2, 27 1.2 PAR, EN

+ Add 1.1 9 1.1; 4 1.2, 27 1.2
+ Add 1.2 9 1.1; 31 1.2 EN
31 Pop 1.2 9 1.1;¶ 1.2; 31 1.3 EN
9 Pop 1.1 ¶ 1.1; 9 1.2; 31 1.3 EN

Register shifts
How to move the content of one register to neighbor register?

Say, J1 1.1, 1 1.1, 1 1.1N to J1 1.2, 1 1.2, 1 1.2N?
Input Operation Stack Rule
1 Push operand 1 1.1; ¶ 1.2

1 Push operand 1 1.1, 1 1.1 ; ¶ 1.2

1 Push operand 1 1.1, 1 1.1, 1 1.1 ; ¶ 1.2

1 Pop operand 1 1.1, 1 1.1; 1 1.2
1 Pop operand 1 1.1; 1 1.2, 1 1.2
1 Pop operand ¶ 1.1; 1 1.2, 1 1.2, 1 1.2•

J2N Indicational stack machine example with Push, Pop and Add

Input Operation Stack

 1.1 Push 1.1
 1.1 Push 1.1, 1.1

+ J1 1.1 Add 1.1 J 1.1 1.1N
J 1.1 1.1N Pop 1.1 ¶ 1.1 ; J 1.2 1.2 N

 1.2 Push 1.2 ¶ 1.1 ; 1.2, J 1.2 1.2N
 1.1 Push 1.1 1.1; 1.2, J 1.2 1.2N
 1.2 Push 1.2 1.1; 1.2, 1.2, J 1.2 1.2N
 1.1 Push 1.1 1.1, 1.1; 1.2, 1.2 , J 1.2 1.2N

+ J1 1.1 Add 1.1 J 1.1 1.1N ; 1.2, 1.2 , J 1.2 1.2N
+ J1 1.2 Add 1.2 J 1.1 1.1N ; J 1.2 1.2N , J 1.2 1.2N
J 1.1 1.1 N Pop 1.1 ¶ 1.1 ;

J 1.2 1.2N, J 1.2 1.2N , J 1.2 1.2N
J 1.2 1.2N Pop 1.2 ¶ 1.1; ¶ 2.2 ,

J 1.2 1.2N , J 1.2 1.2N ; J 1.3 1.3N
+J1 1.2 Add 1.2 ¶ 1.1; J 1.2 1.2 1.2 1.2N; J 1.3 1.3N

 1.1, 2.2 Push 1.1, 2.2 1.1;

J 1.2 1.2 1.2 1.2N; J 1.3 1.3N À 2.2•

16 Author Name

J2N Indicational stack machine example with Push, Pop and Add

Input Operation Stack

 1.1 Push 1.1
 1.1 Push 1.1, 1.1

+ J1 1.1 Add 1.1 J 1.1 1.1N
J 1.1 1.1N Pop 1.1 ¶ 1.1 ; J 1.2 1.2 N

 1.2 Push 1.2 ¶ 1.1 ; 1.2, J 1.2 1.2N
 1.1 Push 1.1 1.1; 1.2, J 1.2 1.2N
 1.2 Push 1.2 1.1; 1.2, 1.2, J 1.2 1.2N
 1.1 Push 1.1 1.1, 1.1; 1.2, 1.2 , J 1.2 1.2N

+ J1 1.1 Add 1.1 J 1.1 1.1N ; 1.2, 1.2 , J 1.2 1.2N
+ J1 1.2 Add 1.2 J 1.1 1.1N ; J 1.2 1.2N , J 1.2 1.2N
J 1.1 1.1 N Pop 1.1 ¶ 1.1 ;

J 1.2 1.2N, J 1.2 1.2N , J 1.2 1.2N
J 1.2 1.2N Pop 1.2 ¶ 1.1; ¶ 2.2 ,

J 1.2 1.2N , J 1.2 1.2N ; J 1.3 1.3N
+J1 1.2 Add 1.2 ¶ 1.1; J 1.2 1.2 1.2 1.2N; J 1.3 1.3N

 1.1, 2.2 Push 1.1, 2.2 1.1;

J 1.2 1.2 1.2 1.2N; J 1.3 1.3N À 2.2•

Additions

ADD i.i J i.i, i.iN = J i.i i.iN = J N i.i : iteratiive addition

ADD i.j J i.i, i.j+1N = J i.i i.j+1N : reflectiive addition JomittedN

Modell : iteration

 1.1 Push 1.1 1.1, 1.1; 1.2, 1.2 , J 1.2 1.2N

 1.1 - -

 1.2, 1.2, J 1.2 1.2N - -

- - -

ï

 1.1, 1.1 - -

 1.2, 1.2, J 1.2 1.2N - -

- - -

+ J1 1.1 Add 1.1 J 1.1 1.1N ; 1.2, 1.2 , J 1.2 1.2N

 1.1, 1.1 - -

 1.2, 1.2, J 1.2 1.2N - -

- - -

ï

J 1.1 1.1 N - -

 1.2, 1.2, J 1.2 1.2N - -

- - -

+ J1 1.2 Add 1.2 J 1.1 1.1N ; J 1.2 1.2N , J 1.2 1.2N

J 1.1 1.1 N - -

 1.2, 1.2, J 1.2 1.2N - -

- - -

ï

J 1.1 1.1 N - -

J 1.2 1.2N, J 1.2 1.2N - -

- - -

J 1.1 1.1 N Pop 1.1 ¶ 1.1 ; J 1.2 1.2N, J 1.2 1.2N , J 1.2 1.2N

J 1.1 1.1 N - -

J 1.2 1.2N, J 1.2 1.2N - -

- - -

ï

¶ 1.1 - -

J 1.2 1.2N, J 1.2 1.2N - -

- - -

B ...F

 1.1, 2.2 Push 1.1, 2.2 ¶ 1.1; J 1.2 1.2 1.2 1.2N; J 1.3 1.3N À 2.2

¶ 1.1 - -

J 1.2 1.2 1.2 1.2N - -

J 1.3 1.3N - -

ï

 1.1 - -

J N 1.2 2.2 -

J N 1.3 - -

Article Title 17

Modell : iteration

 1.1 Push 1.1 1.1, 1.1; 1.2, 1.2 , J 1.2 1.2N

 1.1 - -

 1.2, 1.2, J 1.2 1.2N - -

- - -

ï

 1.1, 1.1 - -

 1.2, 1.2, J 1.2 1.2N - -

- - -

+ J1 1.1 Add 1.1 J 1.1 1.1N ; 1.2, 1.2 , J 1.2 1.2N

 1.1, 1.1 - -

 1.2, 1.2, J 1.2 1.2N - -

- - -

ï

J 1.1 1.1 N - -

 1.2, 1.2, J 1.2 1.2N - -

- - -

+ J1 1.2 Add 1.2 J 1.1 1.1N ; J 1.2 1.2N , J 1.2 1.2N

J 1.1 1.1 N - -

 1.2, 1.2, J 1.2 1.2N - -

- - -

ï

J 1.1 1.1 N - -

J 1.2 1.2N, J 1.2 1.2N - -

- - -

J 1.1 1.1 N Pop 1.1 ¶ 1.1 ; J 1.2 1.2N, J 1.2 1.2N , J 1.2 1.2N

J 1.1 1.1 N - -

J 1.2 1.2N, J 1.2 1.2N - -

- - -

ï

¶ 1.1 - -

J 1.2 1.2N, J 1.2 1.2N - -

- - -

B ...F

 1.1, 2.2 Push 1.1, 2.2 ¶ 1.1; J 1.2 1.2 1.2 1.2N; J 1.3 1.3N À 2.2

¶ 1.1 - -

J 1.2 1.2 1.2 1.2N - -

J 1.3 1.3N - -

ï

 1.1 - -

J N 1.2 2.2 -

J N 1.3 - -

J3NKenomic stack machine example with Push, Pop and Add

a 1.1 Push J aN 1.1

18 Author Name

a 1.1 Push JaN 1.1 , JaN 1.1
+MG1 Add 1.1 Ja aN 1.1µ .1 À JabN 1.1µ .2 : Branching

a 1.1µ .1 Pop JaN 1.1µ .1 À JabN 1.1µ .2

a 1.1µ .1 Pop ¶ 1.1µ .1 À JabN 1.1µ .2 ; JaN 1.2µ .1

a 1.1µ .2Push JabN 1.1µ .2 ; JaaN 1.1µ .2, JabN 1.2µ .1

a 1.1µ .1 Push 1.1 JaN 1.1µ .1, JabN 1.1µ .1 ; JaaN 1.2, JabN 1.2
a 1.2 Push 1.2 JabaN 1.1µ .1 ; JaaaN 1.2, JabN 1.2
a 1.2 Pop 1.2 JabaN 1.1; JaaN 1.2, JabN 1.2
a 1.1 Pop 1.1 JabN 1.1; JaaN 1.2, JabN 1.2
a 1.1 Pop 1.1 JaN 1.1; JaaN 1.2, JabN 1.2
a 1.1 Pop 1.1 ¶ 1.1; JaN 1.2, JaaN 1.2, JabN 1.2
+ ADD 1.2 ¶ 1.1; JaaaN 1.2µ .1 À JaabN 1.2µ .2, JabN 1.2
Branching

a 1.1 Push JaN 1.1
a 1.1 Push JaN 1.1 , JaN 1.1
+ Add 1.1 Ja aN 1.1µ .1 À JabN 1.1µ .2 : Branching,

a 1.1 1 Pop 1.1µ .1 J¶ N 1.1µ .1 À JabN 1.1µ .2; JaN 1.2µ .1

a 1.2µ .1 Pop 1.2µ .1 J¶ N 1.1µ .1 À JabN 1.1µ .2; J¶ N 1.2µ .1; JaN 1.3µ .2

a 1.3µ .1 Pop 1.3µ .1 J¶ N 1.1µ .1 À JabN 1.1µ .2;

J¶ N 1.2µ .1; J¶ N 1.3µ .2; JaN 1.4µ .1

Null

J4NMonomorphic stack machine example with Push, Pop and Add

start : ... JaaN 1.1; J abN 1.2
Jaa N 1.1 Pop 1.1 ¶ 1.1; J a aN 1.2, J abN 1.2
J aa N 1.2 Pop 1.2 ¶ 1.1; JabN 1.2; J aaN 1.3

J abN 1.2 Pop 1.2 ¶ 1.1; ¶ 1.2, ¶ 1.2; JabN 1.3, J aaN 1.3
 1.2 Pop 1.2 ¶ ; ¶ ; ,

Article Title 19

J abN 1.2 Pop 1.2 ¶ 1.1; ¶ 1.2, ¶ 1.2; JabN 1.3, J aaN 1.3
J abN 1.2 Pop 1.2 ¶ 1.1; ¶ 1.2; JabN 1.3, J aaN 1.3 NORM

JaN 1.3 Pop 1.3 ¶ 1.1; ¶ 1.2; JaN 1.3, J aaN 1.3; JaN 1.4
JaN 1.3 Pop 1.3 ¶ 1.1; ¶ 1.2; J aaN 1.3; JaN 1.4, JaN 1.4
JaaN 1.3 Pop 1.3 ¶ 1.1; ¶ 1.2; ¶ 1.3; JaaN 1.4, JaN 1.4, JaN 1.4
JaaN 1.4 Pop 1.4 ¶ 1.1; ¶ 1.2; ¶ 1.3; JaN 1.4; JaaN 1.5
JaN 1.4 Pop 1.4 ¶ 1.1; ¶ 1.2; ¶ 1.3;¶ 1.4 ; JaN 1.5, JaaN 1.5

1.4.4. Enactional stacks in the framework of polycontexturality
Superoperator had been introduced to deal with polycontextural formal-
isms for logics and programming languages.
In this light, enaction is connected with the superoperation of replica-
tion and bifurcation. Reflectional enaction is replication with cancel-
ling and interactional enaction is bifurcation with cancelling.

Superoperators

sops: { ID, PERM, RED, REPL, BIF}

STACK Identity
ID(a1.1) ö (a1.1)

STACK Replication
Rep(a1.1;¶1.2) ö (a1.1; a1.2)

Reflectional enaction
RepEN(a1.1) ö (¶1.1; a1.2)

STACK Permutation
Perm(a1.1; a2.2) ö (a2.2; a1.1)

STACK Reduction
Red1.1(a1.1; a 2.2) ö (a1.1; a1.1)

STACK Bifurcation
Bif(a1.1; ¶2.1; ¶3.1) ö (a1.1; a2.1; a3.1)

Interactional enaction
BifEN(a1.1; ¶2.1; ¶3.1) ö (¶1.1; a2.1; a3.1)

20 Author Name

STACK Identity
ID(a1.1) ö (a1.1)

STACK Replication
Rep(a1.1;¶1.2) ö (a1.1; a1.2)

Reflectional enaction
RepEN(a1.1) ö (¶1.1; a1.2)

STACK Permutation
Perm(a1.1; a2.2) ö (a2.2; a1.1)

STACK Reduction
Red1.1(a1.1; a 2.2) ö (a1.1; a1.1)

STACK Bifurcation
Bif(a1.1; ¶2.1; ¶3.1) ö (a1.1; a2.1; a3.1)

Interactional enaction
BifEN(a1.1; ¶2.1; ¶3.1) ö (¶1.1; a2.1; a3.1)

1.4.5. Memristive operators
Operators with memristive properties are: enaction and retrograde
recursivity. This paper is focused on the memristivity of enaction.
Other aspects are studied elsewhere.

"Memristance is a property of an electronic component. If charge
flows in one direction through a circuit, the resistance of that
component of the circuit will increase and if charge flows in the
opposite direction in the circuit, the resistance will decrease. If
the flow of charge is stopped by turning off the applied voltage,
the component will ‘remember’ the last resistance that it had, and
when the flow of charge starts again the resistance of the circut
will be what it was last active.”
"In other words, a memristor is ‘a device which bookkeeps the
charge passing its own port'" (Stanley Williams)

A new operator, inverse to DROP shall be GET. This operator is defined
to restore the cancelled state out of the cancellation by a reverse
reconstruction of the result of enaction.

DROP or Push, in its memristive definition, is representing the action of
‘stopping’ the flow and keeping the state in a different mode, while
GET is “remembering’ the last resistance” by getting the restored state
from POP back into its domain. This is not any kind of creatio ex nihilo,
or a crude double bookkeeping, but an interplay on different levels of
realization of states; states as produced and states as remembered.

Both together, DROP and GET, are managing the “bookkeeping” of the
memristive device.
Cancelling, while keeping (with POP), and keeping, while cancelling
(with GET). There is obviously a nice chiasm in the game.

Interplay of erasing and restoring

Article Title 21

Memristive enaction

POP Jt i.jN : Bt i.jF ö B J¶ N i.j
t i.j+1

F

GET J¶ i.j N : B t i.j+1

J¶ N i.j
F ö Bt i.jF

Example

NR. Input Operation Stack Rule

J0N J aa N 1.2 POP 1.2 ¶ 1.1; ¶ 1.2, JabN 1.2; J aaN 1.3 J0, POPN
J1N J¶ N 1.2 GET 1.2 JabN 1.1; ¶ 1.2; J aaN 1.3 J1, GETN
J2N J abN 1.1 POP 1.1 ¶ 1.1; JabN 1.2; J aaN 1.3 J2, POPN

Properties of memristive enaction
One amazing property of memristive enaction is its 'stability' or
'pemanence’, i.e. its persistence .

Persistence:
To all enactional cancellation of a complexion there always remains at
least one last enacted state. There might be an interpretation of the
abstract persistence and the endurance of a state in a physical memris-
tive system.

22 Author Name

1.5. Tabular memristive stacks
1.5.1. Polycontextural matrix

To understand the new concept of a memristive stack we have to con-
sider its polycontexturality and, at least, is properties of reflectional
and interactional operations.

These two features are enabling the stack-theoretic distinction of reflec-
tional and interactional enaction for stack operations. Especially the
POP-operation has 3 stack-specific modi of action:
1) classical cancelling (annihilation) of a state,
2) reflectional and
3) interactional enaction.
Enaction is the double operation of cancelling (eliminating) and storing
the eliminated state as a memorized state, or as a recorded/archived
state in another domain.
These enactional operations are enabling the stack to behave as a
memristive system.

Enactional stacks are based on a special poly-stack construction, i.e.
data type.

Hence, memristive stacks are defining memristive data structures or
even data paradigms, which are demanding for corresponding program-
ming paradigms, logics and arithmetics.

A tabular stack is the data structure for a memristive enactional stack
machine.

Hence, the core model for memristive stacks is the well known
“kenomic matrix” of polycontextural logic.

The basic structure of a enactional matrix is its bifunctorial interchange-
ability of its properties and features.

1.5.2. Quadralectic memristive stacks
From a distinction-theoretical point of view, the single-distinction
approach is not even half the option. Thematization, as an explication
of “understanding and acting” gets a first formalization and operational-
ization with the paradigm of a quadralectic stack.

Article Title 23

quadralectic STACK =
J STACK N

j

5 J STACK N
k

4

J STACK N
l

4 J STACK N
m

3
.

STACK Jm, nN = Jsorts, ops, sopsN
sorts = Jstack, sign >
ops = :pop, push, top, ADDN .

sops = :id, perm, repl, red, bif>
Null

form for quadralectics

qj
n =

J N
j

n-1 J N
k

n-2

J N
l

n-2 J N
m

n-3

enactional forms for quadralectics

qj
n =

 i.j

« i.j+1 j

n-1
i.j

« i+1. j k

n-2

« i.j

 i+1. j l

n-2
« i.j

 i.j+1 m

n-3

Hence, the " data typ " of a quadralectic stack is a 4 -

tupel of discontextural distinctions.

24 Author Name

Interchangeability of quadralectic enaction

 i.j

« i.j+1 j

n-1

ˇ 1.2

« i.j

 i+1. j l

n-2

JÎ 1.2 N

i.j

« i+1. j k

n-2

ˇ 1.2

« i.j

 i.j+1 m

n-3

 i.j

« i.j+1 j

n-1

Î1.0

i.j

« i+1. j k

n-2

ˇ 1.2

« i.j

 i+1. j l

n-2

Î0.2 J « i.j
 i.j+1

N
m

n-3

Article Title 25

