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Memristive Stack Machines
Based on retrograde recursivity and distinctive enaction
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Abstract
The idea of a memrsitive STACK machine based on the retrograde 
recursivity of its data structure and on the construct of enaction for 
its operators shall be sketched in a descriptive and semi-formal 
manner.

1. Memristivity and recursivity

1.1. Different approaches to formalize memristivity
Up to now, it seems, that there are five different approaches available 
to deal formally with aspects memristivity in a formal and operative 
manner. 

The focus of this exercise shall be oriented on enactional approach 
with some kenogrammatic features only. Enaction, additionally to the 
retrogradeness of kenomic recursivity, is an interesting new property 
of memristive formalisms to be studied. 

Because the discovery of memristivity in nano-electronics by Leon Chua 
1971 and its realization by the team of Stanley Williams at HP in 2008 is 
very recent and not yet studied formally from a non-electronic and 
system-theoretic point of view, this study remains still in a very experi-
mental and temporary status of reflection and elaboration.

The graphematic possibilities of studying memristivity in formal sys-
tems at hand for now are:
1. the mode of semiotic identity with recursivity, 
2. the mode of contextural comlexity with proemiality,
3. the mode of kenogrammatic similarity with retrogradeness, 
4. the indicational mode of “topology-free constellations of signs” with 
enaction, and 
5. the mode of monomorphic bisimilarity of morphogrammatics with 
bisimulation.

Other modes are possible as further realizations of graphematic styles 
of inscriptions.

Every symbolization system entails its own paradigm of programming 
languages.



The graphematic possibilities of studying memristivity in formal sys-
tems at hand for now are:
1. the mode of semiotic identity with recursivity, 
2. the mode of contextural comlexity with proemiality,
3. the mode of kenogrammatic similarity with retrogradeness, 
4. the indicational mode of “topology-free constellations of signs” with 
enaction, and 
5. the mode of monomorphic bisimilarity of morphogrammatics with 
bisimulation.

Other modes are possible as further realizations of graphematic styles 
of inscriptions.

Every symbolization system entails its own paradigm of programming 
languages.

Properties
Semiotics               a=a, a≠b, a(bc) = (ab)c
The semiotic or symbolic mode of thematization is ideal for atomistic 
binary physical systems as they occur as digital computers. 

Polycontexturality   (ab) = ((ab)c), (ac)(bd) = (ab)(cd)
The contextural or interactional mode of thematization is ideal for 
ambigous complex physical systems as they occurs in distributed and 
interacting digital computer systems.

Kenogrammatics     a=b, (aa) ≠ (ab), (ab) = (ab)|(ac)
The kenogrammatical mode of thematization is ideal for pre-semiotic 
complex behavioural systems as it occurs in memristive physical sys-
tems.

Calculus of Indication    a=a, a≠b, ab = ba
The indicational mode of thematization is ideal for singular decision 
systems as they occur in simple action systems.

Morphogrammatics  a=b, (aa) ≠ (aaa), (aba) = (abba)
The monomorphic mode of thematization is ideal for metamorphic 
systems as they occur in complex memristive actional systems.

Some properties might be collected temporarily in the table:

styles semiotic contextural kenogrammatic indicational monomorphic
recursive + + + + +

retrograde - + + - +

enaction - - - + +

metamorph - + - - +

super - add - + + - +

Recursive functions are memory intensive. It might be possible to re-
design the mechanisms of recursivity in comutational systems with the 
help of a memristive thematization of the very basic properties of 
recursivity.
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Recursive functions are memory intensive. It might be possible to re-
design the mechanisms of recursivity in comutational systems with the 
help of a memristive thematization of the very basic properties of 
recursivity.

Further characterizations
In analogy to the operation LIST on objects:
LIST: a, b, c ö (abc)
LIST: (ab), a, b, c ö ((ab)abc))
we shall define a general thematization function or operation THEMATH 
which is interpreting a proposed ”set” or “agglomeration” of objects as 
semiotical, contextural, kenogrammatical, indicational or 
monomorphical:
THEMATH: a, a, b,

c ö  

LIST Ja, a, b, cN ö Ja a b cN
CONTEXTURE Ja, a, b, cN ö JJJa Ñ aNˇ dN Jcˇ e Nˇ f N
KENOS Ja, a, b, cN ö Ba b cF
INDIC Ja, a, b, cN ö Za b^

MORPHIC Ja, a, b, cN ö BBa aF BbF B cFF

CONTEXTURE Ja, b, c, dN ö JJJa Ñ bNˇ dN Jcˇ e Nˇ f N :

a ˇ b ˇ d
- c ˇ e -
- - f - -

= JJa b dN Jc eN fN

CONTEXTURE Ja, a, b, cN ö JJJa Ñ aNˇ dN Jcˇ e Nˇ f N :

a Ñ - ˇ d
a c ˇ e -
- - f - -

= JJJa a dN Jc eN fN
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1.2. CI and stacks
Following Wolfram’s statement, according to M. Schreiber: 
"A kind of form is all you need to compute. A system can emulate rule 
110 if it can distinguish: More than one is one but one inside one is 
none. 
Simple distinctions can be configured into forms which are able to 
perform universal computations.” 

Applied to one of the simplest models of computing, the STACK, we get 
a distinctional stack model. This observation corresponds properly with 
Wolfram/Schreiber’s statement.

What is still missing are the memristive properties. Memristivity enters 
the game with an enactional interpretation of the operation “Pop”. But 
this makes sense only in the framework of a disseminated, i.e. polycon-
textural stack model 
Applied to the simplest model of computing, the STACK, we get a dis-
tinctional stack model.

What is still missing are the memristive properties.
Memristivity enters the game with an enactional interpretation of the 
operation “pop”.
But this makes sense only in the framework of a disseminated, i.e. 
polycontextural stack model.

‘Keller’ machines which are remembering  their ‘kellert’ (cancelled) 
states. Or: Register machines which are registering their cancelled 
states.

Connection with the Calculus of Indication (CI):
Interpretation

" More than one is one” : : > : > : >
" one inside one is none” : :: >> ø,

" is " :
Stack operations

J1 : :>ö:> :> : ï push, JdupN
J2 : ::>>öØ : ï pop, JdropN

Basic operations for STACK
push H a - | aa L
pop H a |- L

Distinction model of STACK
push 8 < Ø 8 < 8 <
pop 88 << Ø ø

Memristic STACK
push 8 < i Ø 8 < i 8 < i
pop 98 < i.i= i.i ö

Ø i.i
8 < i.i+1

Morphic STACK
push 8 < i Ø 8 < i 8 < i » 8 < i 8 < i+1
pop 98 < i.i= i.i ö

Ø i.i
8 < i.i+1
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Basic operations for STACK
push H a - | aa L
pop H a |- L

Distinction model of STACK
push 8 < Ø 8 < 8 <
pop 88 << Ø ø

Memristic STACK
push 8 < i Ø 8 < i 8 < i
pop 98 < i.i= i.i ö

Ø i.i
8 < i.i+1

Morphic STACK
push 8 < i Ø 8 < i 8 < i » 8 < i 8 < i+1
pop 98 < i.i= i.i ö

Ø i.i
8 < i.i+1

With pop a memristic function shall be implemented with the applica-
tion of the enaction operator:

pop ( a ~ ø )  fl pop( a1.1 ö 
ø 1.1
a 1.2

).

This pop operation is emptying the stack “q1.1” from its symbol “a1.1” 
and is pushing, at the same time, the symbol a1.1 onto another reflec-
tional stack “q1.2” as the symbol “a1.2”. 
Hence, enaction is a composition of an elimination step (popping, 
emptying, reading) and a transitional step of pushing (writing) the data 
onto another neighboring stack system.

With “ ” for “{ }" we get:

pop (   ~ ø) = (  1.1  1.1 ö ø),  

(  1.1  1.1 ~ ø) ö ( 
Ø 1.1

 1.2
) . 

Retrogradeness of “push"
The case of a Morphic STACK with a retrograde definition of the push 
operation is not considered at this place. Retrogradeness is involved 
with additional operations, say ADD, but not yet for “push”. A system 
with enactional “pop” and retrograde “push” is defined for the mix of 
indicational and kenomic formalisms. The operation “push” belongs to 
the repeatability of events and is therefore involved with retrograde 
recursivity. Hence the concatenational “push” with “push (a | aa)" 
becomes “push: X = (a) ö Xa | Xb".
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Retrogradeness of “push"
The case of a Morphic STACK with a retrograde definition of the push 
operation is not considered at this place. Retrogradeness is involved 
with additional operations, say ADD, but not yet for “push”. A system 
with enactional “pop” and retrograde “push” is defined for the mix of 
indicational and kenomic formalisms. The operation “push” belongs to 
the repeatability of events and is therefore involved with retrograde 
recursivity. Hence the concatenational “push” with “push (a | aa)" 
becomes “push: X = (a) ö Xa | Xb".

Why stack machines?
What happens with a tabular organization of a stack? The tabular 
matrix is supporting the distribution of contextural and morphogram-
matic-based distributions of stack machines.

"In computer science, a stack machine is a model of computation in 
which the computer's memory takes the form of one or more stacks.” 
(WiKi) 

A similar exercise with LISP will be published soon.

1.3. Computational Stack
1.3.1. Concept of a STACK

STACK as a category:
Following Axel Poigné (LNCS 240, 1985, p. 107):

"Let T be the category of terms TSTACK generated by the signature

sig STACK is
sorts nat, stack
ops oönat, suc : nat önat

empty : ö stack
push : stack nat ö stack
pop : stacköstack
top : stack ö nat

There are two atomic predicates
eq nat : nat x nat, eq stack : stack x stack.

The axioms are specified in the usual logical notation :
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The axioms are specified in the usual logical notation :

tt ¢eq nat  J0, 0N, tt ¢eq stack Jempty, emptyN
eq nat  Jm, nN ¢eq nat  Jsuc JmN, suc JnNN
eq stack  Jx, yN Ôeq nat  Jm, nN ¢eq stack  Jpush Jx, mN, push Jy, nNN
eq stack  Jx, xN Ôeq nat  Jm, mN ¢eq stack  Jpop Jpush Jx, mNN, xN
eq stack  Jx, xN Ôeq nat  Jm, mN ¢eq nat  Jtop Jpush Jx, mNN, mN •

For example, the basic Forth stack operators are described as:

       ( before -- after )
dup  ( a -- a a )
drop ( a -- )
swap ( a b -- b a )
over ( a b -- a b a )
rot  ( a b c -- b c a )

The main operations of a stack machine are PUSH and POP, also called 
DUP and DROP for FORTH.

"The two operations applicable to all stacks are:
• a push operation, in which a data item is placed at the loca-

tion pointed to by the stack  pointer, and the address in the stack 
pointer is adjusted by the size of the data item;

• a pop or pull operation: a data item at the current location 
pointed to by the stack pointer is removed, and the stack pointer is 
adjusted by the size of the data item.”

Article Title  7



1.3.2. Stack machine

http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html 
 http://www.dcs.gla.ac.uk/~marks/thesis.pdf 

Morphogrammatic interpretation
DATA/RETURN STACK: 
The data of a memristive stack machines are in fact morphograms. A 
distinction-theoretic option with an application of the Calculus of Indica-
tion is preferable for reaons of introduction.

ALU: Morhogrammatics
The arithmetical and logical operations for a memristive stack are 
defined accoring the struture of memristive objects. Hence, retrograde 
recursivenes and enaction of morphograms has to become the guiding 
paradigm for a memristive stack machine.

CONTROL LOGIC: Polycontexturality
The control logic for polycontextural memristive stack machines is 
ruled, certainly, by a polycontextural logic which is surpassing the 
limits of non-distributed classical logics. Hence, any contextural place 
of a memrsitive stack gets its own logic, and arithmetics too.

Hence, because of its polycontextural definition, a memrsitive stack 
machine is not simply a kind of a multi-stack machine but a system of 
mediation of stack machines.

Instructions
Some typical stack instructions for the classical case of a stack 
machine (and Forth).

Instruction     Data Stack     Function
           input   -> output
 !        N1 ADDR ->            Store N1 at location ADDR in program memory
 +        N1 N2   -> N3         Add N1 and N2, giving sum N3
 -        N1 N2   -> N3         Subtract N2 from N1, giving difference N3
 >R      N1       ->              Push N1 onto the return stack
 @       ADDR    -> N1         Fetch the value at location  ADDR in program 
memory, returning N1
 AND    N1 N2   -> N3         Perform a bitwise AND on N1 and N2, giving 
result N3
 DROP  N1      ->                Drop N1 from the stack
 DUP    N1      -> N1 N1      Duplicate N1, returning a second copy of it 
on the stack
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Instructions
Some typical stack instructions for the classical case of a stack 
machine (and Forth).

Instruction     Data Stack     Function
           input   -> output
 !        N1 ADDR ->            Store N1 at location ADDR in program memory
 +        N1 N2   -> N3         Add N1 and N2, giving sum N3
 -        N1 N2   -> N3         Subtract N2 from N1, giving difference N3
 >R      N1       ->              Push N1 onto the return stack
 @       ADDR    -> N1         Fetch the value at location  ADDR in program 
memory, returning N1
 AND    N1 N2   -> N3         Perform a bitwise AND on N1 and N2, giving 
result N3
 DROP  N1      ->                Drop N1 from the stack
 DUP    N1      -> N1 N1      Duplicate N1, returning a second copy of it 
on the stack

Example
Input    Operation        Stack
-          stack               ¶
1          Push operand    1
2          Push operand    2, 1
4          Push operand    4, 2, 1
*          Multiply            8, 1
+          Add                 9
3          Push operand    3, 9
3          Pop operand     9  
9          Pop operand     ¶ .    
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1.4. Simple Enactional STACK
1.4.1. Reflectional enaction 

Preconditions
Retrograde recursivity of kenogrammatics and its laws of sameness of 
morphograms.
Enactional meristivity of reflectional and interactional operations in 
polycontextural configurations.

Strategy for the design of a memristive stack concept:
POP:   enactional memristics, i.e. the operation POP is at once destruc-
tive and conservative.
PUSH: concatenation memristics (retrograde recursivity), i.e. the con-
catenational aspect of PUSH is reflecting its morphogrammatic design 
which is not atomistic but holistic. 
Enactional POP

Reflectional enaction

 i.j  i.j
« i.j

 i.j+1

Iteration

pop  i.j ö
« i.j

 i.j+1
:

pop  i.j ö  i.j  i.j ö
« i.j

 i.j+1

pop1.2 pop1.1  1  1 ö pop1.2 
« 1.1

 1.2
ö

« 1.1
« 1.2

 1.3
Parallelism
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popJ2N :
pop1.1 :  1.1 ö K « 1.1

 1.2
O

pop2.2 :  2.2 ö K « 2.2

 2.3
O

Matrix model

popJ2N :

O 1 O 2 O 3

M 1  1.1  1.1 - -

M 2 -  2.2  2.2 -

M 3 - - -

O 1 O 2 O 3

M 1 Ø 1.1 - -

M 2  1.2 Ø 2.2 -

M 3 -  2.3 -

Mathematical definition

Enactional STACK J3, 3N

sig STACK J3,3N is

sorts J3,3N nat J3,3N, stack J3,3N

ops J3,3N  o J3,3Nö nat J3,3N, suc J3,3N : nat J3,3N önat J3,3N

empty J3,3N : ö stack J3,3N

push J3,3N : stack J3,3N nat J3,3N ö stack J3,3N

pop J3,3N : stack J3,3Nöstack J3,3N

top J3,3N : stack J3,3N ö nat J3,3N

Semantics

tt J3,3N ¢eq nat  J0, 0N J3,3N, tt J3,3N ¢eq stack Jempty, emptyN J3,3N

eq nat  Jm, nN ¢eq nat  JsucJmN, sucJnNN
eq stack  Jx, yN Ôeq nat  Jm, nN ¢eq stack  JpushJx, mN, pushJy, nNN

eq stack  Jx, xN Ôeq nat  Jm, mN ¢eq stack  JpopJpushJx, mNN, xN
eq stack  Jx, xN Ôeq nat  Jm, mN ¢eq nat  JtopJpushJx, mNN, mN •

Enactional " pop " :

Article Title  11



pop :
stack i ö J stack i, stack i+1N
nat i ö J empty i, nat i+1N

:

pop i.j 
J3,3N : JJstack j.iN ö Jnil j.iN N ö BJnil j.i N; Jstack j.i+1NF

pop i .1 J3,3N : JJstack 
i .1
N ö Jnil 

i .1
N Nö BJnil 

i .1
N; Jstack i .2NF, i = 1, 2, 3

pop i .2 J3,3N : JJstack i .2N ö Jnil i .2N Nö BJnil 
i .2
N; Jstack i .3NF

pop i .3 J3,3N : JJstack i .3N ö Jnil 
i .3
N Nö BJnil i .3N; Jstack i .4NF •

tt J3,3N : Jtt 1, tt 2,  tt 3N = Jt 1ö f  1 ª t 2ö f  2 t 3 ö f  3N

eq stack  Jx, xN
i.j

J3, 3N
 Ôeq nat  Jm, mN

i.j

J3, 3N
¢

eq stack  popi.j

J3, 3N
 pushi.j

J3, 3NJx, mN , x

Model

stack 1.1 stack 2.1 stack 3.1
stack 1.2 stack 2.2 stack 3.2
stack 1.3 stack 2.3 stack 3.3

nat 1.1 nat 2.1 nat 3.1
nat 1.2 nat 2.2 nat 3.2
nat 1.3 nat 2.3 nat 3.3
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Examples

J1N pop i .1 J3,3N : JJstack 
i .1
N ö Jnil 

i .1
N Nö BJnil 

i .1
N; Jstack i .2NF :

pop1.1

J3, 3N BJ   1.1   1.1N ; Jnil  1.2N ;

Jnil  1.3NF ö BJnil 1.1N ; J   1.2   1.2N ; Jnil  1.3 NF.

pop1.1

J3, 3N
:

J    N 1.1 stack 2.1 stack 3.1

Jnil  1.2N stack 2.2 stack 3.2

Jnil  1.3N stack 2.3 stack 3.3

Jnil 1.1N stack 2.1 stack 3.1

J   N 1.2 stack 2.2 stack 3.2

Jnil  1.3 N stack 2.3 stack 3.3

J2N  eq stack  Jx, xN Ôeq nat  Jm, mN ¢eq stack  JpopJpushJx, mNN, xN

popi.j

J3, 3N
 pushi.j

J3, 3NJx, mN , x :

with

x = BJ nil  1.1N ; Jnil  1.2N ; Jnil  1.3NF, m = J   1.1   1.1N
and

pushi.j

J3, 3N
 BJ nil  1.1N ; Jnil  1.2N ; Jnil  1.3NF, J   1.1   1.1N =

push1.1

J3, 3N
 B J   1.1   1.1N ; Jnil  1.2N ; Jnil  1.3NF ,

and

pop1.1

J3, 3N
 BJ   1.1   1.1N ; Jnil  1.2N ; Jnil  1.3NF =

BJnil 1.1 N; J   1.2   1.2N ; Jnil  1.3NF
therefore
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therefore

BJ nil  1.1N ; Jnil  1.2N ;

Jnil  1.3NF ≠ BJnil 1.1 N; J   1.2   1.2N ; Jnil  1.3NF .

eq stack  Jx, xN Ô eq nat  Jm, mN ¢eq stack  popi.j

J3, 3N
 pushi.j

J3, 3NJx, mN , x =

false.

Symmetry/asymmetry of pop and push
Classical case : symmetry of pop and push

¢eq stack  JpopJpushJx, mNN, xN = true

eq stack  JpopJpushJx, mNN, xN ö eq 

stack  JpopJpushJx, mN = Jm, xNN = x, xN = true

Enactional case : asymmetry of pop and push

eq stack  Jpop Jpush Jx, mNN, xN ö eq 

stack  Jpop i.j  Jpush Jx, mNN , xN = false

eq stack  Jpop 1.1 Jpush 1.1 Jx, mN = Jm 1.1, x 1.1NN = J¶ 1.1; m 1.2N, xN = false

1.4.2. Interactional enaction
Complementary to the reflectional

enaction the interactional enation is introduced.

i.j  i.j
« i.j

 i+1. j

1 - -

- 2 -
- - -

ö

« 1.1  2.1 -

- « 2.2  3.2
- - -
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1.4.3. Memristive STACK
In contrast to the destructive definition of POP for the classical STACK, 
we add a memristive definition for POP, which is cancelling the 
addressed state at his address but is simultaneously storing the value of 
the state at its enactional domain.
Hence, the memristive stack concept is destructive in its monocontex-
tural function and at once memristive in its polycontextural behavior.
storing :: "to place or leave in a location (as a warehouse, library, or 
computer memory) for preservation or later use or disposal.” (Webster)

If a parcel drops out from a staple, its vanishing gets registered by the 
memory of that annihilation. Annihilation gets registered.

"After execution, the parameters have been erased and replaced with 
any return values.”

Memristive PUSH
The classical definition of PUSH is atomistic, linear and abstract. In 
contrast, the memristive PUSH has to reflect the retrogradeness of any 
iterability, here, the character of the iteration of the morphogram-
matic PUSH operation of the STACK.  

Input   Operation        Stack              STACK
a1.1     Push operand    a1,1                PUSH(a1.1) ö   a1.1
a1.1     Pop operand    [¶1.1, a1.2]       POP( )        ö   [¶1.1, a1.2]

 A classical STACK maschine is neutral to its data, i.e. any data 
accepted might be dublicated, i.e. droped. This is expressed with 2 
sorts of terms for the category of a STACK: nat and stack.
How are memristive STACK machines defined in respect to PUSH?

Also the data type (nat, indicational,kenomic, morphogrammatic) are 
not crucial to demonstrate the mechanism of the enactional stack, it 
might be interesting as a next step towards a enactional stack machine 
to know how the operation ADD is working in the different settings.

Sign repertoire
sign = { ”;” , "|", ”, “, "(", ")"}, 
operators ={ Pop, Add, Push}, 
terms ={ t, ¶} 

Enactional case:

Input Operation Stack

a 1.1 Push a 1.1
a 1.1 Pop Refl @¶ 1.1, a 1.2D
a 1.1 Pop Inter @¶ 1.1, a 2.1D
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Input Operation Stack

a 1.1 Push a 1.1
a 1.1 Pop Refl @¶ 1.1, a 1.2D
a 1.1 Pop Inter @¶ 1.1, a 2.1D

J1NNatural numbers stack machine example with Push, Pop and Add

Input Operation Stack Rule
1 Push operand 1 1.1
2 Push operand 2 1.1, 1 1.1
4 Push operand 4 1.1, 2 1.1, 1 1.1
* Multiply 1.1 8 1.1, 1 1.1
+ Add 1.1 9 1.1
3 Push operand 3 1.1, 9 1.1
3 Pop operand ¶ 1.1, 9 1.1 ; 3 1.2 EN
9 Pop operand ¶ 1.1 ; 9 1.2, 3 1.2  EN
5 Push operand 5 1.1; 9 1.2, 3 1.2
* Multiply 1.2 5 1.1; 27 1.2 EN
4 Push 1.1; 1.2 4 1.1, 5 1.1; 4 1.2,  27 1.2 PAR, EN

+ Add 1.1 9 1.1; 4 1.2,  27 1.2
+ Add 1.2 9 1.1; 31 1.2 EN
31 Pop 1.2 9 1.1;¶ 1.2; 31 1.3 EN
9 Pop 1.1 ¶ 1.1; 9 1.2; 31 1.3 EN

Register shifts
How to move the content of one register to neighbor register?

Say, J1 1.1, 1 1.1, 1 1.1N to J1 1.2, 1 1.2, 1 1.2N?
Input Operation Stack Rule
1 Push operand 1 1.1; ¶ 1.2

1 Push operand 1 1.1, 1 1.1 ; ¶ 1.2

1 Push operand 1 1.1, 1 1.1, 1 1.1 ; ¶ 1.2

1 Pop operand 1 1.1, 1 1.1; 1 1.2
1 Pop operand 1 1.1; 1 1.2, 1 1.2
1 Pop operand ¶ 1.1; 1 1.2, 1 1.2, 1 1.2•

J2N Indicational stack machine example with Push, Pop and Add

Input Operation Stack

 1.1 Push  1.1
 1.1 Push  1.1,  1.1

+ J1 1.1 Add 1.1 J  1.1  1.1N
J  1.1  1.1N Pop 1.1 ¶ 1.1 ; J   1.2   1.2 N

  1.2 Push 1.2 ¶ 1.1 ;   1.2, J   1.2   1.2N
  1.1 Push 1.1   1.1;   1.2, J   1.2   1.2N
  1.2 Push 1.2   1.1;   1.2,   1.2, J   1.2   1.2N
  1.1 Push 1.1   1.1,   1.1;   1.2,   1.2 , J   1.2   1.2N

+ J1 1.1 Add 1.1 J   1.1   1.1N ;   1.2,   1.2 , J   1.2   1.2N
+ J1 1.2 Add 1.2 J   1.1   1.1N ; J   1.2   1.2N , J   1.2   1.2N
J   1.1   1.1 N Pop 1.1 ¶ 1.1 ;

J   1.2   1.2N, J   1.2   1.2N , J   1.2   1.2N
J   1.2   1.2N Pop 1.2 ¶  1.1; ¶  2.2 ,

J   1.2   1.2N , J   1.2   1.2N ; J   1.3   1.3N
+J1 1.2 Add 1.2 ¶ 1.1; J   1.2   1.2   1.2   1.2N; J   1.3   1.3N

  1.1,   2.2 Push 1.1, 2.2   1.1;

J   1.2   1.2   1.2   1.2N; J   1.3   1.3N À   2.2•
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J2N Indicational stack machine example with Push, Pop and Add

Input Operation Stack

 1.1 Push  1.1
 1.1 Push  1.1,  1.1

+ J1 1.1 Add 1.1 J  1.1  1.1N
J  1.1  1.1N Pop 1.1 ¶ 1.1 ; J   1.2   1.2 N

  1.2 Push 1.2 ¶ 1.1 ;   1.2, J   1.2   1.2N
  1.1 Push 1.1   1.1;   1.2, J   1.2   1.2N
  1.2 Push 1.2   1.1;   1.2,   1.2, J   1.2   1.2N
  1.1 Push 1.1   1.1,   1.1;   1.2,   1.2 , J   1.2   1.2N

+ J1 1.1 Add 1.1 J   1.1   1.1N ;   1.2,   1.2 , J   1.2   1.2N
+ J1 1.2 Add 1.2 J   1.1   1.1N ; J   1.2   1.2N , J   1.2   1.2N
J   1.1   1.1 N Pop 1.1 ¶ 1.1 ;

J   1.2   1.2N, J   1.2   1.2N , J   1.2   1.2N
J   1.2   1.2N Pop 1.2 ¶  1.1; ¶  2.2 ,

J   1.2   1.2N , J   1.2   1.2N ; J   1.3   1.3N
+J1 1.2 Add 1.2 ¶ 1.1; J   1.2   1.2   1.2   1.2N; J   1.3   1.3N

  1.1,   2.2 Push 1.1, 2.2   1.1;

J   1.2   1.2   1.2   1.2N; J   1.3   1.3N À   2.2•

Additions

ADD i.i J  i.i,  i.iN = J  i.i  i.iN = J N i.i : iteratiive addition

ADD i.j J  i.i,  i.j+1N = J  i.i  i.j+1N : reflectiive addition JomittedN

Modell : iteration

  1.1 Push 1.1   1.1,   1.1;   1.2,   1.2 , J   1.2   1.2N

 1.1 - -

 1.2,  1.2, J   1.2   1.2N - -

- - -

ï

 1.1,  1.1 - -

 1.2,  1.2, J   1.2   1.2N - -

- - -

+ J1 1.1 Add 1.1 J   1.1   1.1N ;   1.2,   1.2 , J   1.2   1.2N

 1.1,  1.1 - -

 1.2,  1.2, J   1.2   1.2N - -

- - -

ï

J  1.1  1.1 N - -

 1.2,  1.2, J   1.2   1.2N - -

- - -

+ J1 1.2 Add 1.2 J   1.1   1.1N ; J   1.2   1.2N , J   1.2   1.2N

J  1.1  1.1 N - -

 1.2,  1.2, J   1.2   1.2N - -

- - -

ï

J  1.1  1.1 N - -

J  1.2  1.2N, J   1.2   1.2N - -

- - -

J   1.1   1.1 N Pop 1.1 ¶ 1.1 ; J   1.2   1.2N, J   1.2   1.2N , J   1.2   1.2N

J  1.1  1.1 N - -

J  1.2  1.2N, J   1.2   1.2N - -

- - -

ï

¶ 1.1 - -

J  1.2  1.2N, J   1.2   1.2N - -

- - -

B ...F

  1.1,   2.2 Push 1.1, 2.2 ¶ 1.1; J   1.2   1.2   1.2   1.2N; J   1.3   1.3N À   2.2

¶ 1.1 - -

J  1.2   1.2   1.2   1.2N - -

J   1.3   1.3N - -

ï

  1.1 - -

J    N 1.2   2.2 -

J   N 1.3 - -
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Modell : iteration

  1.1 Push 1.1   1.1,   1.1;   1.2,   1.2 , J   1.2   1.2N

 1.1 - -

 1.2,  1.2, J   1.2   1.2N - -

- - -

ï

 1.1,  1.1 - -

 1.2,  1.2, J   1.2   1.2N - -

- - -

+ J1 1.1 Add 1.1 J   1.1   1.1N ;   1.2,   1.2 , J   1.2   1.2N

 1.1,  1.1 - -

 1.2,  1.2, J   1.2   1.2N - -

- - -

ï

J  1.1  1.1 N - -

 1.2,  1.2, J   1.2   1.2N - -

- - -

+ J1 1.2 Add 1.2 J   1.1   1.1N ; J   1.2   1.2N , J   1.2   1.2N

J  1.1  1.1 N - -

 1.2,  1.2, J   1.2   1.2N - -

- - -

ï

J  1.1  1.1 N - -

J  1.2  1.2N, J   1.2   1.2N - -

- - -

J   1.1   1.1 N Pop 1.1 ¶ 1.1 ; J   1.2   1.2N, J   1.2   1.2N , J   1.2   1.2N

J  1.1  1.1 N - -

J  1.2  1.2N, J   1.2   1.2N - -

- - -

ï

¶ 1.1 - -

J  1.2  1.2N, J   1.2   1.2N - -

- - -

B ...F

  1.1,   2.2 Push 1.1, 2.2 ¶ 1.1; J   1.2   1.2   1.2   1.2N; J   1.3   1.3N À   2.2

¶ 1.1 - -

J  1.2   1.2   1.2   1.2N - -

J   1.3   1.3N - -

ï

  1.1 - -

J    N 1.2   2.2 -

J   N 1.3 - -

J3NKenomic stack machine example with Push, Pop and Add

a 1.1 Push J aN 1.1
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a 1.1 Push JaN 1.1 , JaN 1.1
+MG1 Add 1.1 Ja aN 1.1µ .1 À JabN 1.1µ .2 : Branching

a 1.1µ .1 Pop JaN 1.1µ .1 À JabN 1.1µ .2

a 1.1µ .1 Pop ¶ 1.1µ .1 À JabN 1.1µ .2 ; JaN  1.2µ .1

a  1.1µ .2Push JabN 1.1µ .2 ; JaaN  1.1µ .2, JabN 1.2µ .1

a  1.1µ .1 Push 1.1 JaN 1.1µ .1, JabN  1.1µ .1 ; JaaN  1.2, JabN 1.2
a  1.2 Push 1.2 JabaN  1.1µ .1 ; JaaaN  1.2, JabN 1.2
a  1.2 Pop 1.2 JabaN  1.1; JaaN  1.2, JabN 1.2
a 1.1 Pop 1.1 JabN  1.1; JaaN  1.2, JabN 1.2
a 1.1 Pop 1.1 JaN  1.1; JaaN  1.2, JabN 1.2
a  1.1 Pop 1.1 ¶  1.1; JaN 1.2, JaaN  1.2, JabN 1.2
+ ADD 1.2 ¶  1.1; JaaaN 1.2µ .1 À JaabN 1.2µ .2, JabN 1.2
Branching

a 1.1 Push JaN 1.1
a 1.1 Push JaN 1.1 , JaN 1.1
+ Add 1.1 Ja aN 1.1µ .1 À JabN 1.1µ .2 : Branching,

a  1.1 1 Pop 1.1µ .1 J¶ N 1.1µ .1 À JabN 1.1µ .2; JaN  1.2µ .1

a 1.2µ .1 Pop 1.2µ .1 J¶ N 1.1µ .1 À JabN 1.1µ .2; J¶ N 1.2µ .1; JaN  1.3µ .2

a 1.3µ .1 Pop 1.3µ .1 J¶ N 1.1µ .1 À JabN 1.1µ .2;

J¶ N 1.2µ .1; J¶ N 1.3µ .2; JaN  1.4µ .1

Null

J4NMonomorphic stack machine example with Push, Pop and Add

start : ... JaaN  1.1; J abN 1.2
Jaa N 1.1 Pop 1.1 ¶  1.1; J a aN 1.2, J abN 1.2
J aa N 1.2 Pop 1.2 ¶  1.1; JabN 1.2; J aaN 1.3

J abN 1.2 Pop 1.2 ¶  1.1; ¶  1.2, ¶  1.2; JabN 1.3, J aaN  1.3
 1.2 Pop 1.2 ¶ ; ¶ ; ,
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J abN 1.2 Pop 1.2 ¶  1.1; ¶  1.2, ¶  1.2; JabN 1.3, J aaN  1.3
J abN 1.2 Pop 1.2 ¶  1.1; ¶  1.2; JabN 1.3, J aaN  1.3 NORM

JaN 1.3 Pop 1.3 ¶  1.1; ¶  1.2; JaN 1.3, J aaN  1.3; JaN 1.4
JaN 1.3  Pop 1.3 ¶  1.1; ¶  1.2; J aaN  1.3; JaN  1.4, JaN 1.4
JaaN 1.3 Pop 1.3 ¶  1.1; ¶  1.2; ¶  1.3; JaaN 1.4, JaN  1.4, JaN 1.4
JaaN 1.4 Pop 1.4 ¶  1.1; ¶  1.2; ¶  1.3; JaN  1.4; JaaN 1.5
JaN 1.4 Pop 1.4 ¶  1.1; ¶  1.2; ¶  1.3;¶ 1.4 ; JaN  1.5, JaaN 1.5

1.4.4. Enactional stacks in the framework of polycontexturality
Superoperator had been introduced to deal with polycontextural formal-
isms for logics and programming languages.
In this light, enaction is connected with the superoperation of replica-
tion and bifurcation. Reflectional enaction is replication with cancel-
ling and interactional enaction is bifurcation with cancelling. 

Superoperators 

sops: { ID, PERM, RED, REPL, BIF}

STACK Identity
ID(a1.1) ö (a1.1)

STACK Replication
Rep(a1.1;¶1.2) ö  ( a1.1; a1.2)

Reflectional enaction
RepEN(a1.1) ö  (¶1.1; a1.2)

STACK Permutation
Perm(a1.1; a2.2) ö ( a2.2; a1.1)

STACK Reduction
Red1.1(a1.1; a 2.2 ) ö ( a1.1; a1.1)

STACK Bifurcation
Bif(a1.1; ¶2.1; ¶3.1) ö ( a1.1; a2.1; a3.1)

Interactional enaction
BifEN(a1.1; ¶2.1; ¶3.1) ö ( ¶1.1; a2.1; a3.1)
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STACK Identity
ID(a1.1) ö (a1.1)

STACK Replication
Rep(a1.1;¶1.2) ö  ( a1.1; a1.2)

Reflectional enaction
RepEN(a1.1) ö  (¶1.1; a1.2)

STACK Permutation
Perm(a1.1; a2.2) ö ( a2.2; a1.1)

STACK Reduction
Red1.1(a1.1; a 2.2 ) ö ( a1.1; a1.1)

STACK Bifurcation
Bif(a1.1; ¶2.1; ¶3.1) ö ( a1.1; a2.1; a3.1)

Interactional enaction
BifEN(a1.1; ¶2.1; ¶3.1) ö ( ¶1.1; a2.1; a3.1)

1.4.5. Memristive operators
Operators with memristive properties are: enaction and retrograde 
recursivity. This paper is focused on the memristivity of enaction. 
Other aspects are studied elsewhere. 

"Memristance is a property of an electronic component. If charge 
flows in one direction through a circuit, the resistance of that 
component of the circuit will increase and if charge flows in the 
opposite direction in the circuit, the resistance will decrease. If 
the flow of charge is stopped by turning off the applied voltage, 
the component will ‘remember’ the last resistance that it had, and 
when the flow of charge starts again the resistance of the circut
will be what it was last active.”
"In other words, a memristor is ‘a device which bookkeeps the 
charge passing its own port'" (Stanley Williams)

A new operator, inverse to DROP shall be GET. This operator is defined 
to restore the cancelled state out of the cancellation by a reverse 
reconstruction of the result of enaction.

DROP or Push, in its memristive definition, is representing the action of 
‘stopping’ the flow and keeping the state in a different mode, while 
GET is “remembering’ the last resistance” by getting the restored state 
from POP back into its domain. This is not any kind of creatio ex nihilo, 
or a crude double bookkeeping, but an interplay on different levels of 
realization of states; states as produced and states as remembered.

Both together, DROP and GET, are managing the “bookkeeping” of the 
memristive device.
Cancelling, while keeping (with POP), and keeping, while cancelling 
(with GET). There is obviously a nice chiasm in the game.

Interplay of erasing and restoring
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Memristive enaction

POP Jt i.jN : Bt i.jF ö B J¶ N i.j
t i.j+1

F

GET J¶ i.j N : B t i.j+1

J¶ N i.j
F ö Bt i.jF

Example

NR. Input Operation Stack Rule

J0N J aa N 1.2 POP 1.2 ¶  1.1; ¶  1.2, JabN 1.2; J aaN 1.3 J0, POPN
J1N J¶ N 1.2 GET 1.2 JabN 1.1; ¶  1.2; J aaN 1.3 J1, GETN
J2N J abN 1.1 POP 1.1 ¶  1.1; JabN 1.2; J aaN  1.3 J2, POPN

Properties of memristive enaction
One amazing property of memristive enaction is its 'stability' or 
'pemanence’, i.e. its persistence . 

Persistence: 
To all enactional cancellation of a complexion there always remains at 
least one last enacted state. There might be an interpretation of the 
abstract persistence and the endurance of a state in a physical memris-
tive system.
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1.5. Tabular memristive stacks
1.5.1. Polycontextural matrix

To understand the new concept of a memristive stack we have to con-
sider its polycontexturality and, at least, is properties of reflectional 
and interactional operations.

These two features are enabling the stack-theoretic distinction of reflec-
tional and interactional enaction for stack operations. Especially the 
POP-operation has 3 stack-specific modi of action: 
1) classical cancelling (annihilation) of a state, 
2) reflectional and 
3) interactional enaction.
Enaction is the double operation of cancelling (eliminating) and storing 
the eliminated state as a memorized state, or as a recorded/archived 
state in another domain.
These enactional operations are enabling the stack to behave as a 
memristive system.

Enactional stacks are based on a special poly-stack construction, i.e. 
data type.

Hence, memristive stacks are defining memristive data structures or 
even data paradigms, which are demanding for corresponding program-
ming paradigms, logics and arithmetics.

A tabular stack is the data structure for a memristive enactional stack 
machine.

Hence, the core model for memristive stacks is the well known 
“kenomic matrix” of polycontextural logic.

The basic structure of a enactional matrix is its bifunctorial interchange-
ability of its properties and features.

1.5.2. Quadralectic memristive stacks
From a distinction-theoretical point of view, the single-distinction 
approach is not even half the option. Thematization, as an explication 
of “understanding and acting” gets a first formalization and operational-
ization with the paradigm of a quadralectic stack.
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quadralectic STACK =
J STACK N

j

5 J STACK N
k

4

J STACK N
l

4 J STACK N
m

3
.

STACK Jm, nN = Jsorts, ops, sopsN
sorts = Jstack, sign >
ops = :pop, push, top, ADDN .

sops = :id, perm, repl, red, bif>
Null

form for quadralectics

qj
n =

J N
j

n-1 J N
k

n-2

J N
l

n-2 J N
m

n-3

enactional forms for  quadralectics

qj
n =

 i.j

« i.j+1 j

n-1
i.j 

« i+1. j k

n-2

« i.j

 i+1. j l

n-2
« i.j

 i.j+1 m

n-3

Hence, the " data typ " of a quadralectic stack is a 4 -

tupel of discontextural distinctions.
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Interchangeability of quadralectic enaction

 i.j

« i.j+1 j

n-1

ˇ 1.2

« i.j

 i+1. j l

n-2

JÎ 1.2 N

i.j 

« i+1. j k

n-2

ˇ 1.2

« i.j

 i.j+1 m

n-3

 i.j

« i.j+1 j

n-1

Î1.0

i.j 

« i+1. j k

n-2

ˇ 1.2

« i.j

 i+1. j l

n-2

Î0.2 J « i.j
 i.j+1

N
m

n-3
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