

 Summer-Edition 2017

— vordenker-archive —

Rudolf Kaehr

(1942-2016)

Title

Notes on semi-Thue systems in a Context of Morphogrammatics

Further explanations of the formal notions behind morphic cellular automata

Archive-Number / Categories

3_07 / K12, K09, K11

Publication Date

2011

Keywords

TOPICS: Semi-Thue Systems: Production systems; Semi-Thue Systems; Kenomic semi-Thue systems —

Finite State Automata: Classical FSA; Kenomic FSA. — Conditions for concatenation and
substitution: Types of compositions; Category theory and rewriting systems

Disciplines

Cybernetics, Computer Sciences, Artificial Intelligence and Robotics, Systems Architecture and

Theory and Algorithms, Memristive Systems/Memristics

Abstract

The main differences between symbolic and morphic formal systems:

Instead of the Kleene star for the symbolic universes, morphic universes are generated by the Stirling

cross. Symbolic substitution and concatenation is preserving production concatenation. Morphic

substitution/concatenation is opening up a system of interactive complexions of derivations.

Comparison of substitution based production systems (Thue, Post, Markov) with Hausser’s systems of
“possible continuations” of Left-Associative languages is sketched.

Citation Information / How to cite

Rudolf Kaehr: "Notes on semi-Thue systems in a Context of Morphogrammatics", www.vordenker.de (Sommer Edition,
2017) J. Paul (Ed.),

URL: http://www.vordenker.de/rk/rk_Notes-on-semi-Thue-systems-in-a-Context-of-Morphogrammatics_2011.pdf

Categories of the RK-Archive
K01 Gotthard Günther Studies

K02 Scientific Essays

K03 Polycontexturality – Second-Order-Cybernetics

K04 Diamond Theory

K05 Interactivity

K06 Diamond Strategies

K07 Contextural Programming Paradigm

K08 Formal Systems in Polycontextural Constellations

K09 Morphogrammatics

K10 The Chinese Challenge or A Challenge for China

K11 Memristics Memristors Computation

K12 Cellular Automata

K13 RK and friends

http://www.vordenker.de/index.html
http://www.vordenker.de/index.html
http://www.vordenker.de/navigation.htm
https://de.wikipedia.org/wiki/Rudolf_Kaehr
http://www.vordenker.de/rk/rk_Notes-on-semi-Thue-systems-in-a-Context-of-Morphogrammatics_2011.pdf
http://www.vordenker.de/rk/rk_Notes-on-semi-Thue-systems-in-a-Context-of-Morphogrammatics_2011.pdf

Notes on semi-Thue Systems in
a Context of Morphogrammatics
Further explanations of the formal notions behind mor-
phic cellular automata

Rudolf Kaehr Dr.phil „

«

Copyright ThinkArt Lab ISSN 2041-4358

Abstract
The main differences between symbolic and morphic formal systems: Instead of the
Kleene star for the symbolic universes, morphic universes are generated by the Stirling
cross. Symbolic substitution and concatenation is preserving production concatenation.
Morphic substitution/concatenation is opening up a system of interactive complexions of
derivations. Comparison of substitution based production systems (Thue, Post, Markov)
with Hausser’s systems of “possible continuations” of Left-Associative languages is
sketched.

1. Semi-Thue Systems

1.1. Production systems
1.1.1. Deconstruction remarks

”It is a gross simplification to view languages as sets of strings.
The idea that they can be defined by means of formal processes did not
become apparent until the 1930s. The idea of formalizing rules for
transforming strings was first formulated by Axel Thue (1914). The
observation that languages (in his case formal languages) could be seen
as generated from semi Thue systems, is due to Emil Post. Also, he has
invented independently what is now known as the Turing machine and
has shown that this machine does nothing but string transformations.
[...] The idea was picked up by Noam Chomsky and he defined the
hierarchy which is now named after him (see for example (Chomsky,
1959), but the ideas have been circulating earlier)." Marcus Kracht
2003, The Mathematics of Language, Rewriting Systems, p. 53

"In formal language theory, languages are sets of strings over some
alphabet. We assume throughout that an alphabet is a finite,
nonempty set, usually called A. It has no further structure, it only
defines the material of primitive letters.” (ibd, p. 16)
http://www.lix.polytechnique.fr/~bournez/MPRI/formal.pdf

http://www.lix.polytechnique.fr/~bournez/MPRI/formal.pdf

"In formal language theory, languages are sets of strings over some
alphabet. We assume throughout that an alphabet is a finite,
nonempty set, usually called A. It has no further structure, it only
defines the material of primitive letters.” (ibd, p. 16)
http://www.lix.polytechnique.fr/~bournez/MPRI/formal.pdf

A deconstruction of “sign”, “string” and “set” is necessary to understand
morphogrammatics and morphogrammatic semi-Thue systems, morphic
finite state machines and morphic cellular automata as introduced in
recent papers. A further deconstruction has to go into the topics of finite-
ness and infiniteness of alphabets and strings. It also has to be seen that
the term “sign” is understood as a purely syntactical mark, letter or charac-
ter and is not involved in any serious semiotical distinctions.

The kernel of formal language considerations is the monoid,  = (M, Î, 1)
and the Kleene (star) production A*.

A monoid is a triple  = (M, Î, 1) where : “Î” is a binary operation on M
and 1 an element such that for all x, y, z œ M
the following holds.
 x Î 1 = x (Idempotence)
1 Î x = x (Idempotence)
(x Î y) Î z = x Î (y Î z) (Associativity).

Hence, a deconstruction of a monoid  has firstly to deconstruct the
binary operation (composition) “Î” and then, secondly, more or less as a
consequence of it, a deconstruction of the elements of .

A deconstruction of the concept of set-theoretical elements has led to the
introduction of a new ‘data-type’, the kenogrammatic and morphogram-
matic data patterns used in kenomic and morphic cellular automata con-
structions.

Criticism: Just an abstraction more?
At a first glance it seems that such a deconstruction which leads from the
Kleene product to a Stirling distribution might simply be an abstraction
over the set of values producing an equivalence class as it is well known.
Hence, Stirling K* = S*/eq. There are some academic publications insisting

on such profound insight. Furthermore it is trivial to conclude that the
same abstraction holds for the introduction of kenomic cellular automata:
kenoCA = ECA/eq. In such a view the kenomic rules are just an abstraction

of the CA rules. If we consider the situation for ECAH3,2L with the complete

rule set 23= 8 and a complete rule range of 22 3
= 256 and the correspond-

ing kenoCAH3,2Lwith an incomplete rule set of StirlingSn2(3, 2) = 4 and an

incomplete rule range of StirlingSn2(23, 2) = 128, then results look quite

trivially as an abstraction from 23 to 23í2= 4 and 22 3
 to 22 3

/2 = 128. Unfor-

tunately, the complete rule set for the elementary kenoCAH3,4L is StirlingS-
n2(4, 4) = 15 and not 8. As a consequence of this asymmetry between
complete rule sets, different kinds of rules, methods and features are
surpassing the classical definitions of CAs without the Stirling approach
those new constellations wouldn’t be accessible. •

There is not much chance to achieve such a transformation of the concept
and functioning of an elementary operation like the composition "Î” in a
monoid.

Nevertheless, there are some still recent but well elaborated and tested
approaches to recognize. The diamondization of composition has been
demonstrated in my papers to a Diamond Category Theory.

2 Author Name

http://www.lix.polytechnique.fr/~bournez/MPRI/formal.pdf

A deconstruction of the concept of set-theoretical elements has led to the
introduction of a new ‘data-type’, the kenogrammatic and morphogram-
matic data patterns used in kenomic and morphic cellular automata con-
structions.

Criticism: Just an abstraction more?
At a first glance it seems that such a deconstruction which leads from the
Kleene product to a Stirling distribution might simply be an abstraction
over the set of values producing an equivalence class as it is well known.
Hence, Stirling K* = S*/eq. There are some academic publications insisting

on such profound insight. Furthermore it is trivial to conclude that the
same abstraction holds for the introduction of kenomic cellular automata:
kenoCA = ECA/eq. In such a view the kenomic rules are just an abstraction

of the CA rules. If we consider the situation for ECAH3,2L with the complete

rule set 23= 8 and a complete rule range of 22 3
= 256 and the correspond-

ing kenoCAH3,2Lwith an incomplete rule set of StirlingSn2(3, 2) = 4 and an

incomplete rule range of StirlingSn2(23, 2) = 128, then results look quite

trivially as an abstraction from 23 to 23í2= 4 and 22 3
 to 22 3

/2 = 128. Unfor-

tunately, the complete rule set for the elementary kenoCAH3,4L is StirlingS-
n2(4, 4) = 15 and not 8. As a consequence of this asymmetry between
complete rule sets, different kinds of rules, methods and features are
surpassing the classical definitions of CAs without the Stirling approach
those new constellations wouldn’t be accessible. •

There is not much chance to achieve such a transformation of the concept
and functioning of an elementary operation like the composition "Î” in a
monoid.

Nevertheless, there are some still recent but well elaborated and tested
approaches to recognize. The diamondization of composition has been
demonstrated in my papers to a Diamond Category Theory.

With “ x Î 1 = x” and “1 Î x = x” it follows that the equation “x Î 1 = x = 1
Î x” holds. This is not surprising and has its rock solid foundations in first-
order logic and category theory and their epistemologies.

Does it hold for morphogrammatics? Obviously not! The equation might be
interpreted as the equality of right- and left-oriented self-identity of the
object “x” of a morphism.

JX Î 1N x= X x JDiamond idempotenceN

J1Î XN x= x X JDiamond idempotenceN

f X Î f id
Xœ Iter

Xœ Accr
http://www.thinkartlab.com/pkl/lola/Semiotics-in-Diamonds/Semiotics-in-Diamond-
s.html

Hence, even the simplest presumbtion, namly that X = X has to be decon-
structed.
As a consequence, the obvious symmetry of A = B iff B = A is not obvious
anymore.

A deconstruction of associativity of composition follows, at first, quite
automatically:
The context-independent associativity "(x Î y) Î z = x Î (y Î z)" becomes the
contextualized associativity
"(X Î Y)|(x; y) Î Z | z = X | x Î (Y Î Z)|(y; z)".

Article Title 3

http://www.thinkartlab.com/pkl/lola/Semiotics-in-Diamonds/Semiotics-in-Diamond-s

http://www.thinkartlab.com/pkl/lola/Semiotics-in-Diamonds/Semiotics-in-Diamond-
s.html

Hence, even the simplest presumbtion, namly that X = X has to be decon-
structed.
As a consequence, the obvious symmetry of A = B iff B = A is not obvious
anymore.

A deconstruction of associativity of composition follows, at first, quite
automatically:
The context-independent associativity "(x Î y) Î z = x Î (y Î z)" becomes the
contextualized associativity
"(X Î Y)|(x; y) Î Z | z = X | x Î (Y Î Z)|(y; z)".

Diamondization of associativity of composition

" x, y, z : Jx Î yN Î z= SEM xÎ Jy Î zN

"X, Y, Z ; " x, y, z, u : JJX Î YN Jx; yN Î Z zN u= DIAM JX x Î JYÎ ZN Jy

This has consequences for any introductory rule like R0: ö X.
There is no simple beginning in a diamond world. Setting a beginning is
always multiple, at least double: a beginning as an iterative or an accre-
tive beginning. The act of beginning happens in a context of a beginning
and has its own notion in a calculus of beginnings.

Hence, R0: ö X becomes diamond R0: ö X | x.

Therefore, the statement of a beginning kenogram [kg] of kenogrammatic
sequences in a trito-universe TU as in TU = ([1] Tsucc) of a recursive for-
mula is just a beginning of the process of deconstruction of the notions and
terms of keno- and morphogrammatics and not an end at all.

Nevertheless, diamond-theoretic thematizations had been, more or less,
omitted in the proposals on kenomic and morphic cellular automata, finite-
state machines and semi-Thue systems.

And just the Stirling effect is in focus that is affecting the rules of the
morphogrammatic game of semi-Thue systems and cellular automata decon-
struction.

Hence, the universe of trito-structural kenogram sequences, kgs, TU,
remains defined without its diamond environment as
TU = [[1] Tsucc], with x + 0 = 0 + x = x.

Further deconstructions of the concept of ‘beginnings’ in formal systems
at:
“Quadralectic Diamonds: Four-foldness of beginnings”,
http://www.thinkartlab.com/pkl/lola/Quadralectic%20Diamonds/Quadralectic%20Diamon
ds.pdf

4 Author Name

http://www.thinkartlab.com/pkl/lola/Quadralectic%20Diamonds/Quadralectic%20Diamon

Therefore, the statement of a beginning kenogram [kg] of kenogrammatic
sequences in a trito-universe TU as in TU = ([1] Tsucc) of a recursive for-
mula is just a beginning of the process of deconstruction of the notions and
terms of keno- and morphogrammatics and not an end at all.

Nevertheless, diamond-theoretic thematizations had been, more or less,
omitted in the proposals on kenomic and morphic cellular automata, finite-
state machines and semi-Thue systems.

And just the Stirling effect is in focus that is affecting the rules of the
morphogrammatic game of semi-Thue systems and cellular automata decon-
struction.

Hence, the universe of trito-structural kenogram sequences, kgs, TU,
remains defined without its diamond environment as
TU = [[1] Tsucc], with x + 0 = 0 + x = x.

Further deconstructions of the concept of ‘beginnings’ in formal systems
at:
“Quadralectic Diamonds: Four-foldness of beginnings”,
http://www.thinkartlab.com/pkl/lola/Quadralectic%20Diamonds/Quadralectic%20Diamon
ds.pdf

1.1.2. Langtonʼs rules for simple linear growth
A classical example of a production system is introduced by Langton‘s L-
system.

"Here is an example of the simplest kind of L-system. The rules are
context free, meaning that the context in which a particular part is
situated is not considered when altering it. There must be only one
rule per part if the system is to be deterministic.

The rules: (the “recursive description” of a GTYPE)
1) A ö CB
2) B ö A
3) C ö DA
4) D ö C

When applied to the initial seed structure “A,” the following struc-
tural history develops (each successive line is a successive time step):
 time structure rules applied (L to R)

 1. A : start
 
 2. CB : rule1 on 1.
 áä
 3. DA A : rule3 on 2. C, rule2 on 2. B
 á  ä
 4. C CB CB : rule4 on 3. D, rule1 on 3. A, rule1 on 3. A

 Christopher Langton, Artificial Life, 1989, p. 26

.l 1 2 3 4 5 6 7 8 9 rule= rule1 .2 .3 .4
0 Ñ Ñ Ñ Ñ A Ñ Ñ Ñ Ñ 0L initial " seed "
1 Ñ Ñ Ñ C - B Ñ Ñ Ñ 1L rule 1 replaces A with CB
2 Ñ Ñ D - A Ñ A Ñ Ñ 2L rule 3 : C with DA, rule 2 : B with A
3 Ñ C Ñ C - B C - B 3L rule 4 : D with C; rule 1 : AA with CB' s
4 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ stop

Atomic elements are substituted by unary and binary elements. Binary
elements are seen as a concatenation of 2 identical unary elements.
Because of this atomism or elementarism a kenomic abstraction is empty,
i.e. all unary elements are kenomically equivalent.
Because rewritting systems are substitutional systems the point of substitu-
tion in this case is atomistic.

Article Title 5

http://www.thinkartlab.com/pkl/lola/Quadralectic%20Diamonds/Quadralectic%20Diamon

Atomic elements are substituted by unary and binary elements. Binary
elements are seen as a concatenation of 2 identical unary elements.
Because of this atomism or elementarism a kenomic abstraction is empty,
i.e. all unary elements are kenomically equivalent.
Because rewritting systems are substitutional systems the point of substitu-
tion in this case is atomistic.

kenoCAH2L rule set

R1
‡ ‡ ‡

- ‡ -
R2

‡ ‡ ·

- ‡ -
R3

‡ · ‡

- ‡ -
R4

‡ · ·

- ‡ -

R6
‡ ‡ ‡

- · -
R7

‡ ‡ ·

- · -
R8

‡ · ‡

- · -
R9

‡ · ·

- · -

Example for kenoCA rules of the form: [axb] ö y
rule1: [AAA] ö A
rule7: [AAB] ö B
rule8: [ABA] ö B
rule4: [ABB] ö A

Nr.l 1 2 3 4 5 6 7 8 9 rule= rule1 .7 .8 .4
0 Ñ Ñ Ñ x A x Ñ Ñ Ñ 0L A initial " seed " H0; 5L
1 Ñ Ñ x B B A x Ñ Ñ R7H0; 3, 4, 5L : BBA B, R8H0; 4, 5, 6L : ABA B, R4H0; 5, 6, 7L : ABB A

2 Ñ x A A B B A x Ñ R1H1; 2, 3, 4L, r1H1; 3, 4, 5L : BBB A, R7H1; 4, 5, 6L : BBA B,
R8H1; 5, 6, 7L : ABA B, R4H1; 6, 7, 8L : ABA B

kenoCA
Nr.l 1 2 3 4 5 6 7 8 9 rule= rule1 .7 .8 .4
1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ R7H1; 3, 4, 5L, R8H1; 4, 5, 6L, R4 H1; 5, 6, 7L
2 Ñ Ñ Ñ x x ‡ Ñ Ñ Ñ 1, 1, 7, 8, 4
3 Ñ Ñ ‡ ‡ x x ‡ Ñ Ñ 7, 4, 7, 4, 7, 8, 4
4 Ñ x ‡ x ‡ x x ‡ Ñ 1, 7, 8, 8, 8, 4, 7, 8, 4
5 ‡ x x x x ‡ x x ‡ stop

1.1.3. Introducing kenogrammatic rules
Technical alphabet, standard normal form of kenograms: {A, B, C}.
Rules: rule1, rule2, rule3.

One trito-equivalence of the calculus, not applicable to the technical,
meta-linguistic alphabet:
A = KGC:

PKG = [mode=KG; {A, B, C}, rule1, rule2, rule3]
rule1: ö A
rule2: A ö AB
rule3: AB ö C

A, AB, C, AB, C, AB, ...: chiastic interchange between A(2) and C(3).

6 Author Name

Technical alphabet, standard normal form of kenograms: {A, B, C}.
Rules: rule1, rule2, rule3.

One trito-equivalence of the calculus, not applicable to the technical,
meta-linguistic alphabet:
A = KGC:

PKG = [mode=KG; {A, B, C}, rule1, rule2, rule3]
rule1: ö A
rule2: A ö AB
rule3: AB ö C

A, AB, C, AB, C, AB, ...: chiastic interchange between A(2) and C(3).

The term A(1) as operator is set, C(3) as operand of the operator AB (3)
becomes the operator A(2). Hence, A(2) is involved in the chiasm of opera-
tor and operand, playing both roles at once. Considering the roles of C, the
same holds for a B in place of C.

Différance and memristivity
Strictly speaking, we encouter with this tiny PKG- system a situation where
both, the halt and the continuation of the production, happens at once.
The chiastic interplay of the situation “A” and the situation “C” is playing
the différance of the difference of “A” and “C” and its defer of change
from ”C” to “A”. Jaques Derrida’s différance, which is neither a word nor
a term, and is phoneticlly indistinguishable from “différence”, plays on the
fact that the French word différer means both "to defer" and "to differ."
"Différance as temporization, différance as spacing. How are they to be
joined?” (J. Derrida)
Jacques Derrida, Différance, http://www.stanford.edu/class/history34q/read-

ings/Derrida/Differance.html

This mechanism of a chiastic interchange between A and C invites to inter-
pret it as a memristive mechanism and probably as the smallest model of
non-destructive self-referentiality in/of a formal system. The self-referen-
tiality of the production scheme seems to be obvious. What isn’t obvious
at a first glance is its memristivity. Memristivity is involved with the chi-
asm between ‘operand’ C and ‘operator’ A. The property of re-entry and
sameness has to be remembered during the substitution. In a classical
setting, nothing of this kind has to be reached because it is presumed and
installed from the ‘outside’ by an external designer/user of the rules that
the re-entry ’port’ is not missed and that the object has not changed in
the process of substitution from one identity (A/C) to another identity
(C/A).

For the kenomic calculus, the technical alphabet is build by distinctive
letters, characters, elements, but inside the kenomic game and its rules,
all occurrences of monadic elements are kenomically equal.

The substitution of C from rule3 to rule2 as A has the choice to decide for
a kenomic or for a symbolic interpretation of the substitution. With a sym-
bolic interpretation the calculus stops here because the application is
refused. For a kenomic interpretation rule2 holds, and the game goes on.
Hence, with A ≠SEM C, the semiotic rule system is terminating with C, and
with A =KG C the production goes on with C =KG A.

Hence, the general decision problem gets confronted with an as yet
unknown situation of a rewriting system having properly a state and at
once not having that state in the calculus.

Consequences for the concepts and constructions of replication, cloning
and self-production/production of a self (autopoiesis) have at first to decon-
struct the underlying concepts of iterability in their concepts of recursion.

Decidability and non-decidability, therefore, is not focussed on the identifi-
cation or non-identification of an object, i.e. a state, with decidable or
non-decidable properties but on the interaction between applications
inside and between formal systems.

Article Title 7

http://www.stanford.edu/class/history34q/read-ings/

For the kenomic calculus, the technical alphabet is build by distinctive
letters, characters, elements, but inside the kenomic game and its rules,
all occurrences of monadic elements are kenomically equal.

The substitution of C from rule3 to rule2 as A has the choice to decide for
a kenomic or for a symbolic interpretation of the substitution. With a sym-
bolic interpretation the calculus stops here because the application is
refused. For a kenomic interpretation rule2 holds, and the game goes on.
Hence, with A ≠SEM C, the semiotic rule system is terminating with C, and
with A =KG C the production goes on with C =KG A.

Hence, the general decision problem gets confronted with an as yet
unknown situation of a rewriting system having properly a state and at
once not having that state in the calculus.

Consequences for the concepts and constructions of replication, cloning
and self-production/production of a self (autopoiesis) have at first to decon-
struct the underlying concepts of iterability in their concepts of recursion.

Decidability and non-decidability, therefore, is not focussed on the identifi-
cation or non-identification of an object, i.e. a state, with decidable or
non-decidable properties but on the interaction between applications
inside and between formal systems.

Further examples
PID = [mode=ID; {A, B, C}, rule1, rule2, rule3]
rule1: ö A
rule2: A ö AB
rule3: AB ö C

A, AB, C.

Production systems are based on substitution. Kenomic and morphic substi-
tutions are context-dependent.

Chiastic rule applications are not to be confused with the identity systems
with A(1) = A(2) in a (self-referential) circular rule system:

PID = [mode=ID; {A, B}, rule1, rule2]
Alphabet = {A, B}
Rules (Id):
rule1: A ö AB
rule2: AB ö A.

A, AB, A, AB, ... : non-terminating

Logic, Copies and DNA Replication
"In logic there is a level beyond the simple copying of symbols that
contains a non-trivial description of self-replication. The schema is as
follows: There is a universal building machine B that can accept a text
or description x (the program) and build what the text describes. We
let lowercase x denote the description and uppercase X denote that
which is described. Thus B with x will build X. In fact, for bookkeeping
purposes we also produce an extra copy of the text x. This is appended
to the production X as X, x. Thus B, when supplied with a description
x, produces that which x describes, with a copy of its description
attached. Schematically we have the process shown below.
 B, x ö B, x; X, x
Self-replication is an immediate consequence of this concept of a uni-
versal building machine. Let b denote the text or program for the
universal building machine. Apply B to its own description.
 B, b ö B, b; B, b
The universal building machine reproduces itself. Each copy is a univer-
sal building machine with its own description appended. Each copy will
proceed to reproduce itself in an unending tree of duplications. In
practice this duplication will continue until all available resources are
used up, or until someone removes the programs or energy sources
from the proliferating machines."

8 Author Name

Logic, Copies and DNA Replication
"In logic there is a level beyond the simple copying of symbols that
contains a non-trivial description of self-replication. The schema is as
follows: There is a universal building machine B that can accept a text
or description x (the program) and build what the text describes. We
let lowercase x denote the description and uppercase X denote that
which is described. Thus B with x will build X. In fact, for bookkeeping
purposes we also produce an extra copy of the text x. This is appended
to the production X as X, x. Thus B, when supplied with a description
x, produces that which x describes, with a copy of its description
attached. Schematically we have the process shown below.
 B, x ö B, x; X, x
Self-replication is an immediate consequence of this concept of a uni-
versal building machine. Let b denote the text or program for the
universal building machine. Apply B to its own description.
 B, b ö B, b; B, b
The universal building machine reproduces itself. Each copy is a univer-
sal building machine with its own description appended. Each copy will
proceed to reproduce itself in an unending tree of duplications. In
practice this duplication will continue until all available resources are
used up, or until someone removes the programs or energy sources
from the proliferating machines."

Louis H. Kauffman, Biologic
http://arxiv.org/pdf/quant-ph/0204007

Chiastic self-reference with 2 trito-equivalences: A = KG C and AB = KG BA

PKG = [mode=KG, {A, B, C}, rule1, rule2, rule3]
Alphabet = {A, B, C}
rule1: ö A
rule2: A ö AB
rule3 : BA ö C

(1): A, AB, A, AB, A, ...

(2): A, AB, C, AB, C, ...

Also they differ as resulting productions semiotically, both production
chains are kenogrammatically equivalent: (1) =KG (2).

Polycontextural productions
Further interesting results are obtained by polycontextural production
systems. In this context of polycontexturality it is obvious to state “The
same is different”.

PPCL
H3L = (P1ˇ P2) ˇ P3= [mode=PolyKH3L, {A, B, C}H3L, (rule1, rule2,

rule3)H3L], ˇ: mediation

Alphabet = {A, B, C}H3L:

Alph = {A, B, C}1 Alph = {A, B, C}2 Alph = {A, B, C}3

rule1.1 : ö A rule1.2 : ö A rule1.3 : ö A
rule2.1 : A ö AB rule2.2 : A ö AB rule2.3 : A ö AB
rule3.1 : AB ö A rule3.2 : AB ö A rule3.3 : AB ö A

A1, AB1, A1= A2, (AB)2, A2 = A1, (AB)1, ...

Article Title 9

http://arxiv.org/pdf/quant-ph/0204007

Polycontextural productions
Further interesting results are obtained by polycontextural production
systems. In this context of polycontexturality it is obvious to state “The
same is different”.

PPCL
H3L = (P1ˇ P2) ˇ P3= [mode=PolyKH3L, {A, B, C}H3L, (rule1, rule2,

rule3)H3L], ˇ: mediation

Alphabet = {A, B, C}H3L:

Alph = {A, B, C}1 Alph = {A, B, C}2 Alph = {A, B, C}3

rule1.1 : ö A rule1.2 : ö A rule1.3 : ö A
rule2.1 : A ö AB rule2.2 : A ö AB rule2.3 : A ö AB
rule3.1 : AB ö A rule3.2 : AB ö A rule3.3 : AB ö A

A1, AB1, A1= A2, (AB)2, A2 = A1, (AB)1, ...

The substitution process distributed between P1and P2 might be reflected

from the third position of P3 from which it is reasonable to state that there

is no classical circular production with (A1= A2/A2 = A1) but a chiastic self-
referentiality between the two mediated contexturally different produc-

tion systems P1and P2 albeit both are using the “same” alphabets and the
“same” rules.

The questions of termination of programs, calculations, productions and
the Halting problem are one side of the classical constellations. The other
side is that a non-terminating program has different meanings in the new
constellation. Computation as an interactive media is not problem solving
and is therefore ‘beyond’ the classical questions of termination and non-
termination. Media of computation don’t have a start or an initial configura-
tion nor do they have a terminal goal. Non-termination in polycontextural
and morphic systems is not the same as empty repetition, infinite loop or
endless iteration in the classical framework.

This hint or metaphoric construction is not excluding the conservation of
the classical situations and their results ‘inside’ the different contextures.

Hence, non-termination is not anymore a bad property of ‘algorithmic’
systems but the intrinsic character of inter-medial activity.

Some further entertainment from “Nick Haflinger”:
For a more philosophical intervention, go to “Nancy: Destruktion als Erin-
nerung der Struktion oder Techné” at:
http://player.vimeo.com/video/2846627?title=0&byline=0&portrait=0
Or you might prefer: “Slickaphonics - Procrastination (Wow Bag - 1983)" at:
http://www.youtube.com/watch?v=k2F7eWtYwkc
The real thing? Peter Wegner, Interactive Computation
http://www.cse.uconn.edu/~dqg/inter_book.html

10 Author Name

http://player.vimeo.com/video/2846627?title=0&byline=0&portrait=0
http://www.youtube.com/watch?v=k2F7eWtYwkc
http://www.cse.uconn.edu/~dqg/inter_book.html

Some further entertainment from “Nick Haflinger”:
For a more philosophical intervention, go to “Nancy: Destruktion als Erin-
nerung der Struktion oder Techné” at:
http://player.vimeo.com/video/2846627?title=0&byline=0&portrait=0
Or you might prefer: “Slickaphonics - Procrastination (Wow Bag - 1983)" at:
http://www.youtube.com/watch?v=k2F7eWtYwkc
The real thing? Peter Wegner, Interactive Computation
http://www.cse.uconn.edu/~dqg/inter_book.html

1.2. Semi-Thue Systems
1.2.1. Definitions for semi-Thue systems

Following PlanetMath we get a helpful definition of a semi-Thue system.
http://planetmath.org/encyclopedia/GenerableByASemiThueSystem.html

"A semi-Thue system  is a pair (S, P) where S is an alphabet and P is a
non-empty finite binary relation on S* , the Kleene star of S .

Elements of P are variously called defining relations, productions, or
rewrite rules, and  itself is also known as a rewriting system. If (x, y)œ P,
we call x the antecedent, and y the consequent.
Instead of writing (x, y)œ P or xPy , we usually write
 x ö y.

Let  = (S, P) be a semi-Thue system.
Given a word u over S, we say that a word v over S is immediately deriv-
able from u if there is a defining relation
x ö y such that
 u = rxs and v = rys,
for some words r, s (which may be empty) over S.

If v is immediately derivable from u, we write
 u fl v.
Let P’ be the set of all pairs (u, v)œ S• x S* such that u fl v.
Then PŒ P’, and

If u fl v, then wu fl wv and uw fl vw for any word w.”

If u fi v, then uw fi vw and wu fi wv for any word wœS *.

Example
"Let  be a semi-Thue system over the alphabet S = {a,b,c} , with the set
of defining relations given by

P = {ab ö bc, bc ö cb} . Then words ac3b , a2c2b and as bc4 are all deriv-

able from a2bc2 :

a2bc2 fl a(bc)c2 fl ac(bc)c fl ac2(cb) = ac3b ,

a2bc2 fl a2(cb)c fl a2c(cb) = a2c2b , and

a2bc2 fl a(bc)c2 fl (bc)cc2 = bc4.” (PlanetMath)

"Under  , we see that if v is derivable from u , then they have the same
length: |u| = |v| . Furthermore, if we denote |a|u the number of occur-
rences of letter a in a word u , then |a|v § |a|u , |c|v § |c|u , and |b|v =
|b|u . Also, in order for a word u to have a non-trivial word v (non-trivial
in the sense that u ≠ v) derivable from it, u must have either ab or bc as a

subword. Therefore, words like a3 or c3b4a2 have no non-trivial derived
words from them.” (PlanetMath)

Article Title 11

http://player.vimeo.com/video/2846627?title=0&byline=0&portrait=0
http://www.youtube.com/watch?v=k2F7eWtYwkc
http://www.cse.uconn.edu/~dqg/inter_book.html
http://planetmath.org/encyclopedia/GenerableByASemiThueSystem.html

Example
"Let  be a semi-Thue system over the alphabet S = {a,b,c} , with the set
of defining relations given by

P = {ab ö bc, bc ö cb} . Then words ac3b , a2c2b and as bc4 are all deriv-

able from a2bc2 :

a2bc2 fl a(bc)c2 fl ac(bc)c fl ac2(cb) = ac3b ,

a2bc2 fl a2(cb)c fl a2c(cb) = a2c2b , and

a2bc2 fl a(bc)c2 fl (bc)cc2 = bc4.” (PlanetMath)

"Under  , we see that if v is derivable from u , then they have the same
length: |u| = |v| . Furthermore, if we denote |a|u the number of occur-
rences of letter a in a word u , then |a|v § |a|u , |c|v § |c|u , and |b|v =
|b|u . Also, in order for a word u to have a non-trivial word v (non-trivial
in the sense that u ≠ v) derivable from it, u must have either ab or bc as a

subword. Therefore, words like a3 or c3b4a2 have no non-trivial derived
words from them.” (PlanetMath)

1.2.2. Discussion of the presuppositions
Each repetition of the rules rule1= ab ö bc and rule2 = bc ö cb is realiz-
ing an identification of the result (operand)of the substitution with the
initial word of the applied rule in the mode of identity.

1. aabc2 fl a(bc)c2 : by rule1 = ab ö bc
2. a(bc)c2 fl ac(bc)c : by rule2 = bc ö cb

Rules: ab ö bc/bc ö cb

Rule1 recognizes in the mode of identity the left-most substring “ab” of
the word and substitutes it at the place of its occurrence in that word with
“bc”.
The second step recognizes “bc”, now as an antecedent for the rule2 and
replaces it at the place of its occurrence with the succedent of the rule2
“cb".

This procedure is highly obvious. We are used to it. And such an explicit
description I tried to give is quite superfluous, except we want to explain
the procedure to a robot or to an alien. At least I need it to understand my
own aversion against the frozenness of the whole paradigm of mathemati-
cal formalization.

But this game is presuming several “intuitions” which are not obvious at all.

It is not necessarily obvious that the whole procedure is supported by the
principle of identity. A reuse of a word or a string, like “bc” in the
antecedent of the rule1 and as a precedent in the rule2, has to match the
matching conditions of iterability in the mode of identity. If the two occur-
rences of “bc” differ in the process of application, the substitution fails.
Hence, the letters of the word are taken in a strictly atomistic and essen-
tialistic sense to guarantee identity independently of their use and their
role in the game. The use of the signs is not changing the signs.

12 Author Name

Rule1 recognizes in the mode of identity the left-most substring “ab” of
the word and substitutes it at the place of its occurrence in that word with
“bc”.
The second step recognizes “bc”, now as an antecedent for the rule2 and
replaces it at the place of its occurrence with the succedent of the rule2
“cb".

This procedure is highly obvious. We are used to it. And such an explicit
description I tried to give is quite superfluous, except we want to explain
the procedure to a robot or to an alien. At least I need it to understand my
own aversion against the frozenness of the whole paradigm of mathemati-
cal formalization.

But this game is presuming several “intuitions” which are not obvious at all.

It is not necessarily obvious that the whole procedure is supported by the
principle of identity. A reuse of a word or a string, like “bc” in the
antecedent of the rule1 and as a precedent in the rule2, has to match the
matching conditions of iterability in the mode of identity. If the two occur-
rences of “bc” differ in the process of application, the substitution fails.
Hence, the letters of the word are taken in a strictly atomistic and essen-
tialistic sense to guarantee identity independently of their use and their
role in the game. The use of the signs is not changing the signs.

Matching conditions
Matching conditions for the composition of the rules r1 and r2:

r1= ab ö bc, r2 = bc ö cb,
cod(r1) ª dom(r2) fl r1 Î r2

As shown in earlier papers, a reflection of the matching conditions is
enabling the possibility of an antidromic formalization by saltatories. Salta-
tories are complementary constructions to categories.

Morphogrammatic turn
For the application of the rules there is no need to know the internal struc-
ture of the words u , v and w.

With the morphogrammatic turn things are getting slightly more dynamic.
A new kind of interplay between identification and application opens up
first chances to avoid the frozenness of operative formalisms.

The presumption of identity in the substitution process gets some interest-
ing deliberation and generalization.
If the substitution rule holds for “any word” under identity, a first attempt
to liberalize its application happens with the understanding of a word (w)
as a kenomic word [w].
Hence, for w = (ab), any keno-word of the form (ab) is applicable: [w] =
{ab} = [bc] = ... = [&, #]. Both, (w) and [a] are of the same morphogram-
matic structure and are of the same ‘length’.

A more radical generalization is achieved with the abstraction of bisimilar-
ity: Two words (morphograms) [w1], [w2] are equal iff the have the same
behavior. Hence, the length of [w1] and [w2] is not anymore defining same-
ness of morphograms.

Additional to identity and equality, some more kinds of thematizations
enter the game of symbolic or ’mathematical’ writing: equivalence, simula-
rity, bisimularity and different types of metamorphosis.

Definitions, theorems, methods, applications to recall the state of the art
approach to formal language theory, look at:
John M. Abela , ETS Learning of Kernel Languages, 2002
http://www.cs.unb.ca/~goldfarb/Theses/John's_Thesis.pdf

Article Title 13

http://www.cs.unb.ca/~goldfarb/Theses/John's_Thesis.pdf

Morphogrammatic turn
For the application of the rules there is no need to know the internal struc-
ture of the words u , v and w.

With the morphogrammatic turn things are getting slightly more dynamic.
A new kind of interplay between identification and application opens up
first chances to avoid the frozenness of operative formalisms.

The presumption of identity in the substitution process gets some interest-
ing deliberation and generalization.
If the substitution rule holds for “any word” under identity, a first attempt
to liberalize its application happens with the understanding of a word (w)
as a kenomic word [w].
Hence, for w = (ab), any keno-word of the form (ab) is applicable: [w] =
{ab} = [bc] = ... = [&, #]. Both, (w) and [a] are of the same morphogram-
matic structure and are of the same ‘length’.

A more radical generalization is achieved with the abstraction of bisimilar-
ity: Two words (morphograms) [w1], [w2] are equal iff the have the same
behavior. Hence, the length of [w1] and [w2] is not anymore defining same-
ness of morphograms.

Additional to identity and equality, some more kinds of thematizations
enter the game of symbolic or ’mathematical’ writing: equivalence, simula-
rity, bisimularity and different types of metamorphosis.

Definitions, theorems, methods, applications to recall the state of the art
approach to formal language theory, look at:
John M. Abela , ETS Learning of Kernel Languages, 2002
http://www.cs.unb.ca/~goldfarb/Theses/John's_Thesis.pdf

1.3. Kenomic semi-Thue systems
1.3.1. Semiotics

S* denotes the set of all finite strings of symbols from S. This statement of
semiotics becomes in morphogrammatics:

Sn2(S, *L denotes the universe of all finite tritograms of monomorphies
from Sn2(S).

Sn2(S, *L is the trito-universe of keno-sequences “ks”. (Morphogrammatik,
p. 77)

Sets in the trito-universe of keno-sequences are not sets in a definitorial
sense, they might be called collections.
The objects (elements) of a collection are tritograms (ks-sequences) and
are not defined by the set-theoretical rules of elements and ensemble
(sets) which are based on identical concepts of first-order logic.

S = {a, b, c}
S* = {a, b, c, aa, bb, cc, ab, ac, bc, aaa, bbb, ccc, ...}

StirlingSn2(S*) = {a, aa, ab, aaa, aab, aba, abb, abc, aaaa, ...}

nfirstq(n, seq):

- nfirstq (3, TU) = {a, aa, ab, aaa, aab, aba, abb, abc}

Kenosequence: length (states) and technical signs (a, b, c)

kseq (3):

{[aaa], [aab], [aba], abb], [abc]}.

J
1µ 2µ 3

a a a
N

Sn2(3, 3) = 1+2+1= 5

An element of the alphabet is a sequence of length 1: [a] = J 1
a
N.

[a] = J 1
a
N, [b] = J 1

b
N: [a] =KG [b]

Semiotically there are n unary elements in an alphabet:

(a) = J 1
a
N, (b) = J 1

b
N.

(a), (b) œ Alph: (a) ≠SEM (b) fl
1
áä

a b

sum(Sn2(1,1)) = 1

14 Author Name

http://www.cs.unb.ca/~goldfarb/Theses/John's_Thesis.pdf

Sn2(3, 3) = 1+2+1= 5

An element of the alphabet is a sequence of length 1: [a] = J 1
a
N.

[a] = J 1
a
N, [b] = J 1

b
N: [a] =KG [b]

Semiotically there are n unary elements in an alphabet:

(a) = J 1
a
N, (b) = J 1

b
N.

(a), (b) œ Alph: (a) ≠SEM (b) fl
1
áä

a b

sum(Sn2(1,1)) = 1

Like semiotic sign sequences are defined by their length and their alpha-
bet, kenogrammatic sequences kseq are defined by their positions and the
realization of the positions, i.e. by their interaction of place and inscrip-
tion.
Semiotic sequences are therefore defined by their Cartesian product

|sign| length and keno-sequences are defined by their Stirling distribution(-
partition) of places and kenograms: Sn2(place, kenos).

A morphogrammatic turn which is focused on monomorphies instead of
kenograms is changing the presupposition of equal length for the equiva-
lence (sameness) of morphograms, too. Two morphograms are the same iff
their behavior is not distinguishable. That is, two morphograms are bisimi-
lar if they have equal behavior. The abstraction of bisimilarity takes the
fact into account that there are different fundamental morphogrammatic
operations and therefore an abstraction over the operators instead of the
morphograms as ‘objects’ is applied.

Hence, for semiotics the star or Kleene closure is

S* = ‹
i=0

•
 Si = S1‹ S2 ‹ S3 ‹ ... ‹ Sn ,

the kenogrammatic universe TU instead is defined by

TU = ([1], Tsucc).

Sn2(S, n)
nfirstq(n, seq)

Article Title 15

TU = ([1], Tsucc).

Sn2(S, n)
nfirstq(n, seq)

nfirstq(3, seq):
[aaa], [aab], [aba], [abb], [abc].

monomorphic TU = ([1], monomorphy(Tsucc)).

morph(nfirstq(3, seq)):
{[aaa], [aa][b], [a][b][a], [a][bb], [a][b][c]}.

Contextual repetition of monomorphies.

A =MG B iff EN(A) = EN(B)

Two words are kenogrammatically equivalent iff they have the identical
EN-structure.

1.3.2. Tectonics
A calculus is defined by 2 alphabets and a set of rules (Paul Lorenzen,
Haskell Curry):
1. the alphabet of signs
2. the alphabet of variables.

Two semiotic words are semiotically equal iff they are of the same length
and all the occurrences in the words are equal (equiform) at the same
places (positions) of the words (string).
Concatenation of words and star product of words, the empty word.

An introduction of a kenogrammatic calculus is applying the EN-abstraction
on the objects of the calculus, i.e. on the words of the sign-alphabet and
not yet on the meta-objects, i.e. the alphabet of the variables.

The rules of the calculus are applied to the signs of the alphabet with the
help of variables which are not elements of the set of signs.

Second-order rules
Rules for morphogrammatics are not fully defined by the concept of con-
stant, i.e. elements from a pre-given alphabet, and variables over the
alphabet.

Additionally to the classic requisites of constant and variable, the rules
have to be calculated, i.e. produced by rules on a different may be meta-
level. Hence, the notions of constant, variable and rules together are
determining the rules of a morphogrammatic calculus. Prolongation, contin-
uation, concatenation etc. are ruled by rules of rules, therefore the rules
of morphogrammatic operations, like iteration and accretion, are second-
order rules.

iteration: MG ö MGx, xœ AG(MG)
accretion: MG ö MGx, xœ AG(MG)+1

AG(MG) is the operation (rule) to calculate the constants of the continua-
tion operation (rule) applied to the encountered morphogram.

In fact, there are no first-order constants, like elements from an alphabet,
in the game. Morphogrammatic ‘constants’ are calculated, i.e. produced,
hence variables or second-order constants. In this sense, they are not
constants but variables determined by the preceding kenograms of the
morphogram. The first-order constants are the elements of a semiotic
alphabet which is involved technically by supporting the notational systems
of morphogrammatics.

Nor are there any variable as stable containers of previous productions in
the game of kenomic calculi and algorithms.
An application of a rule depends 1. on its definition and 2. on the structure
of the previous productions represented by the variables. Therefore, as it
is explained before, a concatenation is always depending on the
‘conctenat’ too. That is the crucial difference between atomistic and
kenomic production rules.

16 Author Name

Second-order rules
Rules for morphogrammatics are not fully defined by the concept of con-
stant, i.e. elements from a pre-given alphabet, and variables over the
alphabet.

Additionally to the classic requisites of constant and variable, the rules
have to be calculated, i.e. produced by rules on a different may be meta-
level. Hence, the notions of constant, variable and rules together are
determining the rules of a morphogrammatic calculus. Prolongation, contin-
uation, concatenation etc. are ruled by rules of rules, therefore the rules
of morphogrammatic operations, like iteration and accretion, are second-
order rules.

iteration: MG ö MGx, xœ AG(MG)
accretion: MG ö MGx, xœ AG(MG)+1

AG(MG) is the operation (rule) to calculate the constants of the continua-
tion operation (rule) applied to the encountered morphogram.

In fact, there are no first-order constants, like elements from an alphabet,
in the game. Morphogrammatic ‘constants’ are calculated, i.e. produced,
hence variables or second-order constants. In this sense, they are not
constants but variables determined by the preceding kenograms of the
morphogram. The first-order constants are the elements of a semiotic
alphabet which is involved technically by supporting the notational systems
of morphogrammatics.

Nor are there any variable as stable containers of previous productions in
the game of kenomic calculi and algorithms.
An application of a rule depends 1. on its definition and 2. on the structure
of the previous productions represented by the variables. Therefore, as it
is explained before, a concatenation is always depending on the
‘conctenat’ too. That is the crucial difference between atomistic and
kenomic production rules.

Calculi
Stroke calculus (Lorenzen, 1950/60s)
Atom : {|}
Variable : {n}
Rules : {R0, R1}
R0: ö |
R1: n ö n|

(R2: R1 œ iteration)

Production: |, ||, |||, ||||,

Kenomic calculus (Kaehr 1970s)
Atom : {[kg]} :(= kenomic constant)
Variable : {[mg]} :(= kenomic variable)
Rules : {R0, R1}
R0: ö [kg]
R1: [mg] ö [mg][kg] :(= conckeno([mg], [kg]))

(R2: R1 œ iteration, accretionL

Article Title 17

Calculi
Stroke calculus (Lorenzen, 1950/60s)
Atom : {|}
Variable : {n}
Rules : {R0, R1}
R0: ö |
R1: n ö n|

(R2: R1 œ iteration)

Production: |, ||, |||, ||||,

Kenomic calculus (Kaehr 1970s)
Atom : {[kg]} :(= kenomic constant)
Variable : {[mg]} :(= kenomic variable)
Rules : {R0, R1}
R0: ö [kg]
R1: [mg] ö [mg][kg] :(= conckeno([mg], [kg]))

(R2: R1 œ iteration, accretionL

Example
Atom : {[a]}
Variable : {[mg]}
Rules : {R0, R1}
R0: ö [a]
R1.1: mg = [a] ö conckeno(mg = [a], kg = [a]) = {[aa],
[ab]}œ iteration, accretion
R1.2: mg = [aa] ö conckeno(mg = [aa], kg = [a]) = {[aaa, [aab]}
 mg = [ab] ö conckeno(mg = [ab], kg = [a]) = {[aba, [abb], [abc]}.

short:
Atom : {[a]}
Variable : {[mg]}
Rules : {R0, R1}
R0 : ö [a]
R1: [mg] ö [mg]^[a]:

R1.1: [a] ö [a][a]) = {[a]^[a], [a]^[b]} = {[aa], [ab]}
R1.2: [aa] ö [aa][a]) = {[aa]^[a], [aa]^[b]} = {[aaa], [aab]}
 [ab] ö [ab][a]) = {[ab]^[a], [ab]^[b], [ab]^[c]}.

Production (out of [a]): [a], [aa], [ab], [aaa], [aab], [aba], [abb], [abc]...

This example, again, shows clearly the dependence of the alphabet from
the applications of the rules and surely, the dependence of the rules from
the generated alphabet. The classical definition is constructed over an
alphabet S by a binary relation (x, y) œ S* x S*, while the kenomic case is
constructed out of a ‘beginning' [a] generating ‘words’ by binary rules of
the Stirling universe
(x, y) œ (StirlingSn2(S, *) x StirlingSn2(S, *)) = (x, y) œ K• x K• .

For notational reasons we have to add to the start alphabet of the Stirling
universe of a calculus an alphabet, i.e. a technical sign repertoire, of
technical letters, characters like brackets, dots etc.
Because the definition of binary relations depends on a Cartesian product
and the kenomic ‘binary relation’ on a Stirling distribution, kenomic rela-
tions are in fact technically not binary relations at all.

Quite obviously, Lorenzen calculi are alphabet-stable, they are defined
over a pre-given alphabet. Therefore, their tectonics is hierarchical.
Kenomic calculi are alphabet-variable. The alphabet is part of the produc-
tion, and the production depends solely on the precedent productions and
not on an abstract application of rules over an alphabet. Hence, their
tectonics is not hierarchical but heterarchical and is defining a retro-grade
recursivity. This little difference is in fundamental conflict with the main
statement of computation (Gurevich):“The vocabulary does not change
during that evolution.”

18 Author Name

For notational reasons we have to add to the start alphabet of the Stirling
universe of a calculus an alphabet, i.e. a technical sign repertoire, of
technical letters, characters like brackets, dots etc.
Because the definition of binary relations depends on a Cartesian product
and the kenomic ‘binary relation’ on a Stirling distribution, kenomic rela-
tions are in fact technically not binary relations at all.

Quite obviously, Lorenzen calculi are alphabet-stable, they are defined
over a pre-given alphabet. Therefore, their tectonics is hierarchical.
Kenomic calculi are alphabet-variable. The alphabet is part of the produc-
tion, and the production depends solely on the precedent productions and
not on an abstract application of rules over an alphabet. Hence, their
tectonics is not hierarchical but heterarchical and is defining a retro-grade
recursivity. This little difference is in fundamental conflict with the main
statement of computation (Gurevich):“The vocabulary does not change
during that evolution.”

Stable base set vs. self-modifying media
"The choice of the vocabulary is dictated by the chosen abstraction
level. In a proper formalization, the vocabulary reflects only truly
invariant features of the algorithm rather than details of a particular
state. In particular, the vocabulary does not change during the computa-
tion. One may think about a computation as an evolution of the initial
state. The vocabulary does not change during that evolution.
Is it reasonable to insist that the vocabulary does not change during
that evolution?

"There are also so-called self-modifying or “non-von-Neumann” algo-
rithms which change their programs during the computation. For such
an algorithm, the so-called program is just a part of the data. The real
program changes that part of the data, and the real program does not
change.

"While the base set can change from one initial state to another, it
does not change during the computation. All states of a given run have
the same base set. Is this plausible? There are, for example, graph
algorithms which require new vertices to be added to the current
graph. But where do the new vertices come from? We can formalize a
piece of the outside world and stipulate that the initial state contains
an infinite naked set, the reserve. The new vertices come from the
reserve, and thus the base set does not change during the evolution.
Who does the job of getting elements from the reserve? The environ-
ment.

"Formalizing this, we can use a special external function to fish out an
element from the reserve. It is external in the sense that it is con-
trolled by the environment.” (Gurevich)
Yuri Gurevich, Sequential Abstract State Machines Capture Sequential
Algorithms
ACM Transactions on Computational Logic, vol. 1, no. 1 (July 2000),
pages 77–111.
http://research.microsoft.com/en-us/um/people/gurevich/Opera/141.pdf

Article Title 19

http://research.microsoft.com/en-us/um/people/gurevich/Opera/141.pdf

Stable base set vs. self-modifying media
"The choice of the vocabulary is dictated by the chosen abstraction
level. In a proper formalization, the vocabulary reflects only truly
invariant features of the algorithm rather than details of a particular
state. In particular, the vocabulary does not change during the computa-
tion. One may think about a computation as an evolution of the initial
state. The vocabulary does not change during that evolution.
Is it reasonable to insist that the vocabulary does not change during
that evolution?

"There are also so-called self-modifying or “non-von-Neumann” algo-
rithms which change their programs during the computation. For such
an algorithm, the so-called program is just a part of the data. The real
program changes that part of the data, and the real program does not
change.

"While the base set can change from one initial state to another, it
does not change during the computation. All states of a given run have
the same base set. Is this plausible? There are, for example, graph
algorithms which require new vertices to be added to the current
graph. But where do the new vertices come from? We can formalize a
piece of the outside world and stipulate that the initial state contains
an infinite naked set, the reserve. The new vertices come from the
reserve, and thus the base set does not change during the evolution.
Who does the job of getting elements from the reserve? The environ-
ment.

"Formalizing this, we can use a special external function to fish out an
element from the reserve. It is external in the sense that it is con-
trolled by the environment.” (Gurevich)
Yuri Gurevich, Sequential Abstract State Machines Capture Sequential
Algorithms
ACM Transactions on Computational Logic, vol. 1, no. 1 (July 2000),
pages 77–111.
http://research.microsoft.com/en-us/um/people/gurevich/Opera/141.pdf

Comparison between “Calculuses and Formal Systems” by Haskell B. Curry,
Dialectica 47/48, pp. 249-271, 1958

A new challenge for polycontextural designs of formal languages, gram-
mars, rewriting systems and calculi occurs with the chiastification of the
object- and meta-system, i.e. the chiasm of objects (alphabets, signs,
keno- and morphograms) and variables (schemes, frames,)

Same length morphograms
Encountered morphogram MG2 = [abbcdd]. How can it be produced by
which rules from “axiom” MG1=[aabaac]?
Both morphograms are correctly produced by the rules of the morphogram-
matic system. Both are of the same length, therefore they cannot be equiv-
alent. Hence, there is no derivation in the morphogrammatic calculus from
MG1to MG2.

 [a]
 áä
 [aa] [ab]
 á Ø ä
 [aba][abb][abc]
 á  ä
 [abba] [abbb] [abbc]
 á  ä
 [abbca][abbcc][abbcd]
 á Ø ä
 [abbcda] [abbcdd] [abbcdb] [abbcdc][abbcde]
 [a]
 áä
 [aa] [ab]
 áä
 [aaa] [aab]
 á ä
 [aaaa] [aaba] [aabb]
 ä
 [aabaa]
 ä
 [aabaac].

20 Author Name

http://research.microsoft.com/en-us/um/people/gurevich/Opera/141.pdf

 [a]
 áä
 [aa] [ab]
 á Ø ä
 [aba][abb][abc]
 á  ä
 [abba] [abbb] [abbc]
 á  ä
 [abbca][abbcc][abbcd]
 á Ø ä
 [abbcda] [abbcdd] [abbcdb] [abbcdc][abbcde]
 [a]
 áä
 [aa] [ab]
 áä
 [aaa] [aab]
 á ä
 [aaaa] [aaba] [aabb]
 ä
 [aabaa]
 ä
 [aabaac].

Both produced morphograms are of the same ‘length’, hence there is no
evolving production rule which is generating a ‘word’ of the same ‘length’
with a different pattern and the same path.
Therefore, the rules of differentiation, called emanation, shall be intro-
duced to transform morphograms of the same complexity into each other
of the same length.

1.3.3. Semi-Thue systems with morphograms
A keno-string rewriting system or keno-semi-Thue system is a tuple (S, R)
where tnf(S) is an alphabet, usually assumed finite. The elements of the
set Sn2(S *) (* is the Kleene star here, Sn2(S *) is the Stirling distribution)
are finite (possibly empty) keno-strings on tnf(S), sometimes called keno-
sequences or morphograms in formal writing systems; we will simply call
them keno-strings here.

Two keno-strings A and B are equivalent iff EN(A) = EN(B),

A behavioral or actional approach is contemplating on the behavior of
kenograms and not on the semio-ontological question of what is a
kenogram.
Therefore a mix of different definitions of sign-use is possible: EN, TNF,
SEMiotic, MONomorphy, etc.

Example
Semiotic alphabet: SSEM = {a, b}
Kenomic words over the semiotic alphabet SSEM of length 3:
Sn2(S*, 3) = {a, aa, ab, aaa, aab, aba, abb}

Sn2(S*)ª K*
K* is the trito-universe TU.

Monomorphies of K*
Monomorphies in kenomic systems are a kind of an analogy to a “sub-
string” in a word or string production system.

For SSEM = {a, b}, length(K*) = 3:
Monomorphies of K*(3) are m(K*, 3) = {[a], [aa], [aaa],[aa][b], [a][b][a],
[a][bb]}.

Hence, m(K*) = {[a], [aa], [aaa]}.

Article Title 21

Monomorphies of K*
Monomorphies in kenomic systems are a kind of an analogy to a “sub-
string” in a word or string production system.

For SSEM = {a, b}, length(K*) = 3:
Monomorphies of K*(3) are m(K*, 3) = {[a], [aa], [aaa],[aa][b], [a][b][a],
[a][bb]}.

Hence, m(K*) = {[a], [aa], [aaa]}.

1.3.4. Monomorphies
Monomorphic notation
Monomorphies in morphograms are playing a similar role as atomic signs in
sign sequences.
The monomorphies of the morphogram MG = [abbcaa] are writen in a table
with the distinctions locus, monomorphy and kenogram as follows.
Monomorphies are produced by the monomorphic decomposition Dec of the
morphogram MG: Dec(MG) = (mg1, mg2, mg3, mg1) wit the kenograms {a, b,
c} for mg1= [a], mg2 = [bb], mg3 = [c].

a bb c aa =

MG loc1 loc2 loc3 loc 4

Dec mg1 mg2 mg3 mg1
Ken a b c a

ø b ø a

MG 1.2 .3 .1 loc1 loc2 loc3 loc4

MG 1.0 .3 .0

MG 0.2 .0 .0

MG 0.0 .0 .1

mg 1 - mg 3 -

- mg 2 - -

- - - mg 1

morphogram = kenoms
locus

BmgF

BabbcaaF = J11
1, 22

2, 13
3, 24

1N

Systematics of mor-
phograms
Positionality of morphograms : < Position, Locality, Place > .
Position of themorphogram in a

morphogrammatic system defined by emanation and evolution.
Locality of themonomorphies in amorphogram;
loci are offering place for different monomorphies.
Monomorphiesmight be reduced to homogeneous
patterns or theymight keep some structuration.

Place of a kenom in amonomorphy depending on the length of themonomorphy.

PositionMGJm, nN

MGJmN locus

DecKMGJmN
O monomorphy

KenKMGJmN
O kenom

B

morphogrammatics

B

morphogram

B

monomorphy

B

locus

B
place
@kenomD

F
F
F
F
F

22 Author Name

PositionMGJm, nN

MGJmN locus

DecKMGJmN
O monomorphy

KenKMGJmN
O kenom

B

morphogrammatics

B

morphogram

B

monomorphy

B

locus

B
place
@kenomD

F
F
F
F
F

Decomposition of morphograms into monomorphies (Gunther)
Given a morphogram [aabc] how to decompose it into its monomorphies?

1. [a]
2. [aa] [ab]
3. [aaa] [aab] [aba] [abb] [abc]
4. [aaaa] [aaab] [aabc] ...[abcd]

Dec([aabc]) = ([aab]; [aa], [ab]; [a])

[aabc] ö [aab]|[a] ö [aa]|[ab] ö [a].

Production of [aabc]: [a] öiter [aa] öaccr [aab] öaccr [aabc].

In contrary to the semiotic case, composition and decomposition of mor-
phograms are not symmetric.

The decomposition Dec([aabc]) is ”over-complete”, according to Gunther’s
classification of complexity into incomplete (I), complete (C)and over-
complete(O) because it decomposes into two monomorphies of the same
length, [aa] and [ab]. Nevertheless, the morphogram [ab] decomposes
finally into the monomorphy [a]. Hence, the remaining basic monomor-
phies of [aabc] are [a] and [aa]. The monomorphy [aa] is not decompos-
able into smaller monomorphies, say [a], because it is a morphogram with-
out differentiation which would be necessary for a decomposition of the
morphogram.

Decomposition for MGH4L

Dec([aaaa]) = [aaaa] aaaa

Dec([aaab]) = [aaa], [a] aaa b

Dec([aaba]) = [aa] |[ab], [a] aa b a

Dec([aabb]) = [aa] aa bb

Dec([aabc]) = [aab], [aa]|[ab], [a] aa b c

Dec([abaa]) = [ab] |[aa], [a] a b aa

Dec([abab]) = [aba], [ab], [a] a b a b

Dec([abac]) = [aba], [ab], [a] a b a c

Dec([abba]) = [abb], [aa], [ab], [a] a b b a

Dec([abbb]) = [a], [aaa] a bbb

Dec([abbc]) = [a], [aa], [ab], [a] a b b c

Dec([abca]) = [ab, [aa]|[ab], [a] a b c a

Dec([abcb]) = [aab, [aa]|[ab], [a] a b c b

Dec([abcd]) = [abc], [ab], [a]. a b c d

Article Title 23

Decomposition for MGH4L

Dec([aaaa]) = [aaaa] aaaa

Dec([aaab]) = [aaa], [a] aaa b

Dec([aaba]) = [aa] |[ab], [a] aa b a

Dec([aabb]) = [aa] aa bb

Dec([aabc]) = [aab], [aa]|[ab], [a] aa b c

Dec([abaa]) = [ab] |[aa], [a] a b aa

Dec([abab]) = [aba], [ab], [a] a b a b

Dec([abac]) = [aba], [ab], [a] a b a c

Dec([abba]) = [abb], [aa], [ab], [a] a b b a

Dec([abbb]) = [a], [aaa] a bbb

Dec([abbc]) = [a], [aa], [ab], [a] a b b c

Dec([abca]) = [ab, [aa]|[ab], [a] a b c a

Dec([abcb]) = [aab, [aa]|[ab], [a] a b c b

Dec([abcd]) = [abc], [ab], [a]. a b c d

Decomposition of [abbcaa]
Dec([abbcaa]) = ([abbc], [aab]|[abb], [aa]|[ab], [a]).

 StirlingSn2(m, n), m = n = 1 to 6
1. [a] : 1
2. [aa] [ab] : 2
3. [aaa] [aab] [aba] [abb] [abc] : 5
4. [aaaa] [aaab][abbc] ... [abcd] :15
5. [aaaaa] [aaaab][abcde] : 52
6. [aaaaaa] ... [a bb c aa] ... [abcdef] : 203

24 Author Name

Decomposition of [abbcaa]
Dec([abbcaa]) = ([abbc], [aab]|[abb], [aa]|[ab], [a]).

 StirlingSn2(m, n), m = n = 1 to 6
1. [a] : 1
2. [aa] [ab] : 2
3. [aaa] [aab] [aba] [abb] [abc] : 5
4. [aaaa] [aaab][abbc] ... [abcd] :15
5. [aaaaa] [aaaab][abcde] : 52
6. [aaaaaa] ... [a bb c aa] ... [abcdef] : 203

1.3.5. Morphogrammatic rewriting rules
P œ Sn2(K*, K*)
(u, v) œ Sn2(K*, K*) such that u fl v.
Then P Œ P’, and
If u fl v, then uw fl vw and wu fl wv for any monomorphy w.

u fl v iff there exists a context C and (u, v) œ P such that u = C(x) and v =
C(y).

"Definition 1.34 A context is a pair C = <y, z> of strings.
The substitution of x into C, in symbols C(x), is defined to be the string
y^x^z.
We say that x occurs in v in the context C if v = C(x).
Every occurrence of x in a string v is uniquely defined by its context.
We call C a substring occurrence of x in v.” (Kracht)

Contexts and contextures
Cid(x), Cequi(x), Csim(x), Cbisim(x), Cmorph(x).

Example
(aa) fl (aaa), then (aa)w1 fl (aaa)w2, w3(aa) fl w4(aaa); Cid(wi , w j)

and wi = w j, i, j = 1,2,3,4

1.3.6. The Fibonacci word exercise
”Fibonacci words are easily defined by iterating a morphism. In fact,
the Fibonacci morphism is among the absolute simplest (more precisely
shortest) conceivable morphism: discard the one letter alphabet, and
try to define a non trivial short morphism on two letters. It suffices,
for this, that the image of one letter has length two, and you already
get Fibonacci’s morphism.” (Jean Berstel, Fibonacci Words - A survey,
in: G. Rozenberg, A. Salomaa, The Book of L, 1985, pp. 13 - 27)

Production of Fibonacci words
A = {a, b}
e: A* ö A*, A* is the Kleene product of signs, e is a morphism from A* to
A* .
e(a) = ab
e(b) = a

Iteration of this morphism defines the Fibonacci words.
f0= a, f1= ab
fn+2= fn+1fn

f0 = a
f1 = ab
f2 = aba 1.0
f3 = abaab 2.1
f4 = abaababa 3.2
f4 = abaababaabaaba 4.3

Article Title 25

Production of Fibonacci words
A = {a, b}
e: A* ö A*, A* is the Kleene product of signs, e is a morphism from A* to
A* .
e(a) = ab
e(b) = a

Iteration of this morphism defines the Fibonacci words.
f0= a, f1= ab
fn+2= fn+1fn

f0 = a
f1 = ab
f2 = aba 1.0
f3 = abaab 2.1
f4 = abaababa 3.2
f4 = abaababaabaaba 4.3

Kenogrammatic analogon to Fibonacci words

A = {a, b}
{a, b} Œ A: (a) ≠SEM (b)
eKG: K* ö K*, K* is the Stirling distribution of kenogram sequences.
{a, b} Œ K* : [a] =KG [b]
eKG([a]) =KG [ab]
eKG([b]) =KG [a]

f0 = [a], f1= [ab]
fn+2= fn+1Hfn)KENO

Kenogrammatic composition with iteration and accretion.

f n+2 = f n+1

fn
iter

ˇ

fn
acc

A= 8a, b< is the alphabet of the kenomic Fibonacci
example. Also atomic " signs " are kenomically equal,

i.e. HaL = KG HbL, the signs of the alphabet are used here as technical
signs in a kenomic standard notation form HtnfL. Therefore,

at least two different games have to be distinguished in
the definition of the kenomic Fibonacci word system :

1. The ' semiotics' of the head of the formal language,
i.e. the sign repertoire HalphabetL and
2. the definition of the behavior of the standard signs in the calculus,
i.e. as kenograms of kenomically defined operations HrecursionL f n.

Fibonacci derivations FIBHmL
KG(a, ab):

f0 = a
f1 = ab
f2 = aba; abb; abc 1.0
f3 =
aba’ab, aba’ba, aba’ac, aba’bc, aba’ca, aba’cb, aba’cd; 2.1
abb’ab, abb’ba, abb’ac, abb’bc, abb’ca, abb’cb, abb’cd;
abc’ab, abc’ba, abc’ac, abc’bc, abc’ca, abc’cb, abc’cd.

1, 1, 3, 21, 85, ...

f2 = f1(f0) = ˇ(aba; abb; abc), i.e. the mediated parallelism

aba
ˇ

abb
ˇ

abc

.

26 Author Name

Fibonacci derivations FIBHmL
KG(a, ab):

f0 = a
f1 = ab
f2 = aba; abb; abc 1.0
f3 =
aba’ab, aba’ba, aba’ac, aba’bc, aba’ca, aba’cb, aba’cd; 2.1
abb’ab, abb’ba, abb’ac, abb’bc, abb’ca, abb’cb, abb’cd;
abc’ab, abc’ba, abc’ac, abc’bc, abc’ca, abc’cb, abc’cd.

1, 1, 3, 21, 85, ...

f2 = f1(f0) = ˇ(aba; abb; abc), i.e. the mediated parallelism

aba
ˇ

abb
ˇ

abc

.

Fibonacci derivations FIB H2L
KG(a, ab):

f0 = a
f1 = ab
f2 = aba; abb 1.0
f3 = aba’ab, aba’ba, 2.1
 abb’ab, abb’ba,

1, 1, 2, 4, ...

f2 = f1(f0) = ˇ(aba; abb), i.e. the mediated parallelism
aba
ˇ

abb
 .

1.3.7. Inversion and equivalence
In a general morphogrammatic word algebra the equality (equivalence,
similarity, bisimilarity) of words has to be defined formally. A simple opera-
tor, the inversion of the order of a word, called reflector(refl) offers some
distinctions between words.

Inverse words produced by the Fibonacci word system might be compared.

For f1 = (ab) we get refl(f1) = (ba). The word (ba) is not a word of the semi-
otic Fibonacci word system.
A kenomic consideration shows that both words (ab) and (ba) are equiva-
lent: (ab) =KG refl(ab).

This holds generally for all symmetrical kenomic words:

H1, 2 œ SYM: H1 =KG H2.

This nice property of kenomic word systems is helping to reduce the work
into half, like duality in category theory is offering “two for one"
(Herrlich).

Article Title 27

In a general morphogrammatic word algebra the equality (equivalence,
similarity, bisimilarity) of words has to be defined formally. A simple opera-
tor, the inversion of the order of a word, called reflector(refl) offers some
distinctions between words.

Inverse words produced by the Fibonacci word system might be compared.

For f1 = (ab) we get refl(f1) = (ba). The word (ba) is not a word of the semi-
otic Fibonacci word system.
A kenomic consideration shows that both words (ab) and (ba) are equiva-
lent: (ab) =KG refl(ab).

This holds generally for all symmetrical kenomic words:

H1, 2 œ SYM: H1 =KG H2.

This nice property of kenomic word systems is helping to reduce the work
into half, like duality in category theory is offering “two for one"
(Herrlich).

2. Finite State Automata

2.1. Classical FSA
2.1.1. Automaton and language

Finite State Machine
"We consider non-deterministic finite state machines with no accepting
states, defined as follows.
A finite state machine (FSM) is a quadruple M = (S, Q, q0, d), where S is
the alphabet of input symbols, Q is the set of states, q0 is the initial state,
and d is the transition function, which maps Q × S to subsets of Q. If every
d(q, a) contains exactly one state, then M is deterministic.
In this case we may write d(q, a) = q’ instead of d(q, a) = {q' }."
http://www.cs.yale.edu/homes/aspnes/papers/lata2011-proceedings.pdf

Binary relation
A binary relation, denoted by Ø, is any subset of the Cartesian product P ×
P .
For any binary relation Ø Õ P × P :
domain(Ø) =def { a | $b, (a, b) œ Ø}, and
range(Ø) =def { b | $a, (a, b) œ Ø}.

Automaton
M = HQ, S, d, q 0, FL
Q : States
S : Alphabet
d : state- transition function
q 0 : initial state
F Œ Q : set of final states

FSM transition function
d:  x S ö ,
rewriting rules: qiak ö qj, with qi, qj are states, akis input symbol

The transition function d : Q × S Ø Q of a DFA can be extended to Q × S* as
follows:
d(q, ε) = q
d(q, wa) = d(d(q, w), a).

Language
L = { w œ S* | q0w fl*qfε, with qf œ F}

28 Author Name

http://www.cs.yale.edu/homes/aspnes/papers/lata2011-proceedings.pdf

FSM transition function
d:  x S ö ,
rewriting rules: qiak ö qj, with qi, qj are states, akis input symbol

The transition function d : Q × S Ø Q of a DFA can be extended to Q × S* as
follows:
d(q, ε) = q
d(q, wa) = d(d(q, w), a).

Language
L = { w œ S* | q0w fl*qfε, with qf œ F}

2.2. Kenomic FSA
2.2.1. Explanations and motivations

This exercise is focusing on the transition rule (function). The conse-
quences for the concepts of the alphabet, the states and the initial state
will be reflected later and will be conceived then as the pre-conditions of
the new understanding of the transition function and the concept of the
kenogrammatic finite state machines (kenoFSM) as such.

Elementary cellular automata are collections of simple finite state
machines.
In a similar sense, morphogrammatic cellular automata are interacting
collections of elementary kenomic ‘finite state automata’. Each term,
‘finite’, 'state’, 'automata’, deserves a proper deconstruction.

In earlier approaches, the strategic order was inverse. The focus was on
the intriguing situation of the ‘non'-alphabet character of kenogrammatics
and its paradoxical consequences. The new approach plays with the fact of
the Stirling character of the kenogram sequences and morphograms and
with a standard representation of the ‘non'-representable alphabet and
kenogrammatic sequences, i.e. the trito-normal form (tnf).

In other words, only the kind of usage of marks defines their role as semi-
otic, kenogrammatic or morphogrammatic in the graphematic game.
Hence, marks in an alphabet are playing in the context of the alphabet
their semiotic role. In the use of a kenomic context, the mark of the alpha-
bet are playing the roles of kenograms. Then as a collection of kenograms,
all elements of an alphabet are kenomically the same.

One of the most elicit analysis of an abstract theory of computation is
given by Gurevich’s Abstract State Machines (ASM). This way of thinking
was reflected in my “Skizze-0.9.5” from 2003. Like with Konrad Zuse,
computation is defined by Gurevitch as a step-wise transition in time,
guided by rules, from an initial to a terminal object, the result of the
computation.
Obviously, the limits of this paradigm are clear: no interactivity. Computa-
tion is conceived as problem-solving and not as a media of interacting
processes, without beginning nor end.

Article Title 29

This exercise is focusing on the transition rule (function). The conse-
quences for the concepts of the alphabet, the states and the initial state
will be reflected later and will be conceived then as the pre-conditions of
the new understanding of the transition function and the concept of the
kenogrammatic finite state machines (kenoFSM) as such.

Elementary cellular automata are collections of simple finite state
machines.
In a similar sense, morphogrammatic cellular automata are interacting
collections of elementary kenomic ‘finite state automata’. Each term,
‘finite’, 'state’, 'automata’, deserves a proper deconstruction.

In earlier approaches, the strategic order was inverse. The focus was on
the intriguing situation of the ‘non'-alphabet character of kenogrammatics
and its paradoxical consequences. The new approach plays with the fact of
the Stirling character of the kenogram sequences and morphograms and
with a standard representation of the ‘non'-representable alphabet and
kenogrammatic sequences, i.e. the trito-normal form (tnf).

In other words, only the kind of usage of marks defines their role as semi-
otic, kenogrammatic or morphogrammatic in the graphematic game.
Hence, marks in an alphabet are playing in the context of the alphabet
their semiotic role. In the use of a kenomic context, the mark of the alpha-
bet are playing the roles of kenograms. Then as a collection of kenograms,
all elements of an alphabet are kenomically the same.

One of the most elicit analysis of an abstract theory of computation is
given by Gurevich’s Abstract State Machines (ASM). This way of thinking
was reflected in my “Skizze-0.9.5” from 2003. Like with Konrad Zuse,
computation is defined by Gurevitch as a step-wise transition in time,
guided by rules, from an initial to a terminal object, the result of the
computation.
Obviously, the limits of this paradigm are clear: no interactivity. Computa-
tion is conceived as problem-solving and not as a media of interacting
processes, without beginning nor end.

2.2.2. Keno-Languages and -Automata
A deconstruction of FSM and rewriting systems has to start wit a deconstruc-
tion of the underlying basics concepts. One important basic concept is the
binary relation.

A first deconstructive step would have to contextualize the concept of
relationality of the concept of binary relation which is based on relational
logic and the Wiener-Kuratovsky definition of an ordered pair of elements.
A second step has to deconstruct the concept of binarity, P × P, of the
binary relation.

P × P # P x P; Q : contextualization (context-logical decomposition)
P × P # StirlingSn2(P, 2): From sets to distributions.

Binary relation
A kenomic binary relation, denoted by Ø, is any subset of the Stirling
distribution StirlingSn(P, 2) . For any kenomic binary relation Ø Õ StirlingS-
n(P, 2) :
domain(Ø) =def { a | $b, (a, b) œ Ø}, and
range(Ø) =def { b | $a, (a, b) œ Ø}.

A n-ary kenomic relation, denoted Øn, is any subset of the Stirling distribu-
tion StirlingSn(P, n).

kenoFSM-Automaton
M = H@Q D, S, d keno, @q 0D, @FDL
@Q D : States
S : Alphabet, technical
d KENO : keno- state- transition function
@q 0 D : kenomic initial state
@FD Œ @Q D : set of final kenomic states

kenoFSM transition function
d keno : SumHStirling Sn2HQ, SLL

EQ
@Q D

Retro-grade recursion
d keno([q,] ε) = [q]
d keno([q], [w]^[a]) = d keno(d keno([q], [w]), [a]).

rewriting rules: [qi][ak] EQ
 [qjE, with [qi], [qj] as states, [ak] is input

symbol.

30 Author Name

Retro-grade recursion
d keno([q,] ε) = [q]
d keno([q], [w]^[a]) = d keno(d keno([q], [w]), [a]).

rewriting rules: [qi][ak] EQ
 [qjE, with [qi], [qj] as states, [ak] is input

symbol.

Language
L = {w œ K* | [q0] [w] ï

EQ

* @qf]ε, with [qf] œ F}, K* = Sum(StirlingSn2(S, *))

2.2.3. Formal aspects of kenomic cellular automata
Alphabet, language and classical CA
"An alphabet S is a finite nonempty set of symbols. S* denotes the set of all
finite strings of symbols from S. The empty string is denoted l. A language

is any subset of S*. Sk denotes those elements of S* of length k. The sym-
bols in a string s of length n are indexed from 1 to n and s[i] denotes the

ith symbol of s.

"Kari [6] notes that cellular automata have several fundamental properties
of the physical world: they are massively parallel, homogeneous, and
reversible, have only local interactions, and facilitate formulation of conser-
vation laws based on local update rules. We consider one-dimensional
asynchronous reversible cellular automata with insertions and deletions
because they support universal computation.

"A cellular automaton C = (S, d) is composed of an alphabet of symbols S
and a set d transition rules of the form axb ¨ ayb for substitutions or ab ¨
axb for insertions and deletions, where a, b, x, y œ S.
The idea is that the value of a given cell of the automaton may change
only when both its neighbors have specific values.

"For s1, s2 œ S*, s1 can reach s2 in one step of C , denoted s1 ØC s2, if apply-
ing one transition rule to s1 yields s2. And s1 can reach s2 in C if s1 Ø*C s2.
Given an input string s œ S*, a snapshot of C on input s is any string s’ such
that s can reach s’ in C."

2.2.4. Operations on kenoCAs
Union of machines
Examples

A. Classical CAs
1. Q = states
Q = {(r1, r2) | r1œ Q1 and r2œ Q2}

The set is the Cartesian product of sets Q1and Q2 and is written Q1 x Q2.
union HR9, R4L = |head(R9)| x |head(R4)| = 3 x 3 = 9

2. Alphabet: S1 = S2 = {‡, ·}

3. rules
(r1, r2)œ Q, a œ S :
d ((r1, r2), a) = (d1(r1, a), d2(r2, a))

4. initial
q0 = (q1, q2)

Article Title 31

2. Alphabet: S1 = S2 = {‡, ·}

3. rules
(r1, r2)œ Q, a œ S :
d ((r1, r2), a) = (d1(r1, a), d2(r2, a))

4. initial
q0 = (q1, q2)

B. Kenogrammatic CAs
kenogrammatics of union
1. States
Q = {(r1; r2)|r1œ Q1; r2œ Q2}

The set is the Stirling union of sets Q1 and Q2 and is written StirlingSn2(Q1,
Q2).
StirlingSn2(Q1) x StirlingSn2(Q2)≠ StirlingSn2(Q1 x Q2)

addHR9, R4L = StirlingSn2(add(head(R9), head(R4))) = 4

2. Alphabet:
S = S1 = S2:
add(S1, S2) > S
additer(S1, S2) = S
addaccr(S1, S2) = add(S1, Tsucc(S2)) > S

add(S1={‡, ·}, S2 = {‡, ·}) =
S1={‡, ·},
S2 = Tsucc({‡, ·}) = {‡, ·, ‡}.

3. rules
(r1, r2)œ Q, a œ S :
d ((r1, r2), a) = (d1 (r1, a), d2 (Tsucc(r2, a)))

r1= @‡ ‡ ·],
r2 = [‡ · ·]

addHR2, R9L =

R2
‡ ‡ ·

- ‡ -
R9

‡ · ·

- · -

R2
‡ ‡ ·

- ‡ -
R9

· ‡ ‡

- ‡ -

R2
‡ ‡ ·

- ‡ -
R9

‡ ‡ ‡

- ‡ -

R2
‡ ‡ ·

- ‡ -
R9

· ‡ ‡

- ‡ -

32 Author Name

addHR2, R9L =

R2
‡ ‡ ·

- ‡ -
R9

‡ · ·

- · -

R2
‡ ‡ ·

- ‡ -
R9

· ‡ ‡

- ‡ -

R2
‡ ‡ ·

- ‡ -
R9

‡ ‡ ‡

- ‡ -

R2
‡ ‡ ·

- ‡ -
R9

· ‡ ‡

- ‡ -

4. initial
q0 = (q1, q2) fl q0 = add(q1, q2)

Example
q0 = add(q1, q2) = (q1, q2, q3, q4)
q0 = (q1 = {[‡ · D}, q2 = {@·, ‡D}, q3= {[‡ ‡ D}, q4 = {@·, ‡D}

Concatenation of kenomic languages
A =SEM {a, b}, B =SEM {b, c}}
AB =SEM {ab, ac, bb, bc}

A =KENO {1, 2}, B =KENO {1, 2}
kconcat ([1, 2], [1, 2]):
[AB] =KENO {[1212],[1221],[1213],[1231],[1223],[1232],[1234]}.

2.2.5. Symmetric cellular automata and reduction
"Exploiting the symmetry with respect to renaming of q states of cellular
automata allows us to reduce the number of rules to consider. Namely, it
suffices to consider only orbits (equivalence classes) of the rules under q!
permutations forming the group Sq.” Vladimir V. Kornyak, Cellular

Automata with Symmetric Local Rules, 2006

"Definition 3.1. A cellular automaton A = (S, N, d) is said to be symmetric
if
d(s1 , s2 , . . . , s N) = d(ssH1L , ssH2L , . . . , ssH N L),

for every s1 , s2 , . . . , s N œ S and s œ S N (the permutation group of |N

| degree)."
http://www.mtns2004.be/database/papersubmission/upload/341.pdf

Permutations are not in conflict with the concept of identity of their ele-
ments. Identity is of the elements is a precondition for their permutation.
Permutational equivalence is not kenogrammatic sameness. On a kenogram-
matic level, permutational equivalence leads from the trito- to the
deutero-level of structuration. Therefore, the permutational reduction of
CAs is different from a kenomic reduction of CAs.

Article Title 33

http://www.mtns2004.be/database/papersubmission/upload/341.pdf

Permutations are not in conflict with the concept of identity of their ele-
ments. Identity is of the elements is a precondition for their permutation.
Permutational equivalence is not kenogrammatic sameness. On a kenogram-
matic level, permutational equivalence leads from the trito- to the
deutero-level of structuration. Therefore, the permutational reduction of
CAs is different from a kenomic reduction of CAs.

3. Conditions for concatenation and substitution

3.1. Types of compositions
MG H m H m H m H m H m
= MG + + + + + + - - +- +-
= sem + + + - - - - - - -
[+ + + + + + - - Ñ Ñ

type id Ñ eq Ñ sim Ñ bisim Ñ metamorph Ñ
CA CCA Ñ kenoCA Ñ morphCA Ñ bisimCA Ñ metamCA Ñ

3.1.1. Equaity: Concatenation
u fi idv :
ufl MG v, w 1ufl SEMw 2 v and uw 3 fl SEM vw 4and
w 1 = semw 2= semw 3 = semw 4. : @++++D

HTrivially equal : u fi idv : ufl SEM v and w 1 = semw 2 = semw 3 = semw 4.L

u fi idv : ufl MG v, ufl SEM v and w 1,2,3,4œ C ID.

u fi idv
wu fl SEMwv uw fl SEM vw w 1,2,3,4œ C ID

Equality
w œ C ID

u fi
ID

v

w 1u fi
ID

w 2v , uw 3 fi
ID

vw 4

Table

B

Id wx xw w 12 w 34

MG + + + +
SEM + + + +

F = B
Id wx xw w 12 w 34

SEM + + + +
F

34 Author Name

Table

B

Id wx xw w 12 w 34

MG + + + +
SEM + + + +

F = B
Id wx xw w 12 w 34

SEM + + + +
F

Example

u = v = JaabN,

w 1 = semw 2= semw 3 = semw 4 = JccN

JaabN
ID

JaabN

JaabN JccN
ID

JaabN JccN, JccN JaabN
ID

JccN JaabN

Lambda-Example I

Jlw.wwN JJlv.vvN uN : t 0 Jsubst : Jl v tN s N t BvísF IDN

ã é

Jlw.wwN JuuN Jlv.vvN u JJlv.vvN uN : t 1, t 2, u = SEM u

u u JJlv.vvN uN

é ã

uu JuuN : t 1 = ID t 2.

Cellular automata scheme

Article Title 35

CA transition rule

CA = BCA, fF

Bc i - 1 JtN, c i JtN, c i+1 JtNF

f = transition

c i Jt + 1N

Null
3.1.2. Equivalence: Juxtaposition

u fieq v:
w1u flMG w2v, w3u flSEM w4v,
uw1 flMG vw2, uw3 flSEM vw4,

wi œ CEQ, i = 1,...,4:

w1≠sem w2, w1 =MG w2,
w3≠sem w4, w3=MG w4,
w1 =sem w3, w1 =MG w3,
w2=sem w4, w2=MG w4.

Equivalence
w œ C EQ

u
EQ

v

w 1u î
EQ

w 2v , uw 3 î
EQ

vw 4

Table

B

Equ wx xw w 12 w 34 w 13 w 24

MG + + + + + +
SEM - - - - + +

F

Example

u = BaabF, v = BbbaF

36 Author Name

w 1, 2 = BccF, w 3,4 = BddF :

BaabF
EQ

BbbaF

BaabFBccF
EG

BbbaFBddF BccFBaabF
EQ

BddFBbbaF

Lambda-Example-II

Terms = :u, v, w, x, y, z>

subst : Jl v tN s N t BvísF keno

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN x JJlv.vvN xN Jlw.wwN JuuN : t 1, t 2, u = KENO x

xx JJlv.vvN xN

é

xx JxxN = MG uu JuuN : t 1 ≠ SEM t 2, t 1 = KENO t 2

Lambda-Example-III

Terms = :u, v, w, x, y, z>

subst : Jl v tN s N t BvísF keno

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN x JJlv.vvN xN

Jlv.vvN z JJlv.vvN zN
,

Jlw.wwN JuuN

Jlw.wwN JyyN

Article Title 37

xx JJlv.vvN xN

zz JJlv.vvN zN

é ã

xx JxxN

zz JzzN
,

uu JuuN

yy JyyN
: t 1 ≠ SEM t 2, t 1 = KENO t 2

kenoCA transition scheme

kenoCA = BCA, m, fF

Const JtN : Bc i - 1 JtN, c i JtN, c i+1 JtNF

m= ENtoKS JENS Jc i-1 c i c i+1NN

œ :Head JRuleN>

fJmN= rule

Const Jt+ 1N : c i Jt+ 1N : Rule-Result

3.1.3. Similarity: Cooperation

Ju SIM vN
w 1u SIMw 2 v

uw 3 SIM vw 4

wuŸ SEMwv, uwŸ SEM vw
w œC SIM :
w 1≠ semw 2, w 1= MGw 2

w 3≠ semw 4, w 3= MGw 4

w 1≠ semw 3, w 1= MGw 3

w 2≠ semw 4, w 2= MGw 4

38 Author Name

w 2≠ semw 4, w 2= MGw 4

Similarity
w œ C SIM

u
SIM

v

w 1u
SIM

w 2v , uw 3
SIM

vw 4

Table u fl
SIM

 v

B

u fi
SIM

v wx xw w 12 w 34 w 13 w 24

MG + + + + + +
SEM - - - - - -
[+ +

F

Example: u fl
SIM

 v

u = [aab], v = [bba]
u flMG v, u ¬flSEMv
w1 = @cc], w2 = [dd] : w 1 ≠ sem w 2, w 1 = MG w 2

w3 = @ee], w4 = [ff] : w 3 ≠ sem w 4, w 3 = MG w 4

wi œSIM, i=1,2.3.4

length(w1) = length(w2)
w 1 ≠ sem w 2

sem(wi) [sem(u)= ø, i = 1,2

length(w3) = length(w4)
w 3 ≠ sem w 4

sem(wi) [sem(v)= ø, i = 3,4

length(w1) = length(w3)
w 1 ≠ sem w 3

sem(wi) [sem(v)= ø, i = 1, 3

length(w2) = length(w4)
w 2 ≠ sem w 4

sem(wi) [sem(v)= ø, i = 2, 4

Article Title 39

Example: u fl
SIM

 v

u = [aab], v = [bba]
u flMG v, u ¬flSEMv
w1 = @cc], w2 = [dd] : w 1 ≠ sem w 2, w 1 = MG w 2

w3 = @ee], w4 = [ff] : w 3 ≠ sem w 4, w 3 = MG w 4

wi œSIM, i=1,2.3.4

length(w1) = length(w2)
w 1 ≠ sem w 2

sem(wi) [sem(u)= ø, i = 1,2

length(w3) = length(w4)
w 3 ≠ sem w 4

sem(wi) [sem(v)= ø, i = 3,4

length(w1) = length(w3)
w 1 ≠ sem w 3

sem(wi) [sem(v)= ø, i = 1, 3

length(w2) = length(w4)
w 2 ≠ sem w 4

sem(wi) [sem(v)= ø, i = 2, 4

BaabF
SIM

BbbaF

BaabFBccF
SIM

BbbaFBddF, BeeFBaabF
SIM

BffFBbbaF

Example I- SIM

Terms = :u, v, w, x, y, z>

subst : Jl v tN s t BvísF SIM

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN x JJlv.vvN xN Jlw.wwN JuuN : Jbr u-xN, Ja1N; Jbr u-uN : t 1, t 2

xx JJlv.vvN xN : Jbr x-xN, Ja2N : t 1

é

xx JyyN = SIM uu JuuN : Jbr x-yN; Ja1N, Jbr u-uN

: t 1 ≠ SEM t 2, t 1 ≠ keno t 2,
: t 1 = SIM t 2, .

3.1.4. Bisimilarity: Fusion
Bisimilarity
w 1

BIS
w 2 iff

$ w 1 , w 2 : Jw 1 w 2N œ JDec, Vk, Vs, EVk, EVsN

length Jw 1N≠ length Jw 2N :

$ Jx 1, x 2N : EVk JBw 1FN = Jx 1, x 2N

$ Jy 1, y 2N : EVs JBw 2FN = Jy 1, y 2N

IF
Vs Jx 1, x 2N = Bw 2F

Vk Jy 1, y 2N = Bw 1F
THEN w 1

BIS
w 2 .

40 Author Name

Bisimilarity

Vs JEVk Jw 1N N = Vk JEVs Jw 2NN

Table: u î
BIS

 v

B

u î
BIS

v wx xw w 12 w 34 w 13 w 24

MG - - - - + +
SEM - - - - - -
[+ +

length - - - - + +

F

Conditions : u
BIS

v

wuŸ SEMwv, uwŸ SEM vw
w œ C BIS :
w 1≠ semw 2, w 1≠ MGw 2

w 3≠ semw 4, w 3≠ MGw 4

w 1≠ semw 3, w 1= MGw 3

w 2≠ semw 4, w 2= MGw 4

Bisimilarity
w œ C BIS :

u î
BIS

v

w 1u î
BIS

w 2v , uw 3 î
BIS

vw 4

Article Title 41

Example
u

BIS
v, w 1, w 2

For
length Jw 1N≠ length Jw 2N

and
EVk JBw 1FN= JBabF, BabFN

EVs JBw 2FN= JBabF, BabFN

and
Vs JBabF, BabFN= Bw 2F

Vk JBabF, BabFN= Bw 1F
then Vs JEVk Jw 1N N = Vk JEVs Jw 2NN

w 1 u
BIS

w 2 v

Example - BIS

Terms = :u, v, w, x, y, z>

subst : Jl v tN s t BvísF BIS

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvvN y JJlv.vvvN xN Jlw.wwN JuuN : Jbr, xx = BIS vvvN, Ja1N; Jbr v-uN

yyy JJlv.vvvN xN : JbrN, Ja2N : t 1

é

yyy JxxxN = BIS uu JuuN : Jbr v-xN; Ja1N, Jbr w-uN

: t 1 = SIM t 2, .

http://memristors.memristics.com/Church-Rosser%20Morphogrammatics/Church-Ross-
er%20in%20Morphogrammatics.pdf

42 Author Name

http://memristors.memristics.com/Church-Rosser%20Morphogrammatics/Church-Ross-er%

Example - BIS

Terms = :u, v, w, x, y, z>

subst : Jl v tN s t BvísF BIS

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvvN y JJlv.vvvN xN Jlw.wwN JuuN : Jbr, xx = BIS vvvN, Ja1N; Jbr v-uN

yyy JJlv.vvvN xN : JbrN, Ja2N : t 1

é

yyy JxxxN = BIS uu JuuN : Jbr v-xN; Ja1N, Jbr w-uN

: t 1 = SIM t 2, .

http://memristors.memristics.com/Church-Rosser%20Morphogrammatics/Church-Ross-
er%20in%20Morphogrammatics.pdf

Morphic transition rule scheme

Morphic rule CabbG CabG; 2- blending

a b b : trito normal form JtnfN

f : local rule 2 - blending

x x a b x x local result

conflict

x x x a b : target

x x b a x x

fusion

x x x a b x

new configuration : x x b a b x

Transition scheme for morphCA
morphCA = BCA, m, j, fF,

c i JtN : Bc i - 1 JtN, c i JtN, c i+1 JtNF

f= j JmN

c i Jt+ 1N : B c i c' iF Jt + 1N

3.1.5. Metamorphosis of rewriting
Recall, “Elements of P are variously called defining relations, productions,
or rewrite rules, and  itself is also known as a rewriting system. If (x, y)œ
P, we call x the antecedent, and y the consequent.
Instead of writing (x, y)œ P or xPy , we usually write
 x ö y."

Up to now, the transformation rules of rewriting systems had been defined
in a still quite straight forward sense of succession of antecedent and conse-
quent by substitution.

Funny candidates joined this game which was opened up by Thoralf Skolem
with his identity conserving productions. Kenogrammatic rewriting systems
introduced an abstraction on the 'data' transforming sign systems to
kenogrammatic systems. With the idea of overlapping and fusion a mecha-
nism to deal with overdetermined rewriting systems had been opened up as
morphic systems.

Nevertheless, the brave succession and hierarchical order of antecendents
and precedents had been untouched and accepted by this change of the
modi of interaction, and was leading the introduction of the semiotic,
kenomic and morphic concepts of rewriting systems.

A much more intriguing situation is possible with the idea of metamorphic
transformations.

A full fledged involvement of the concept of diamond categorical inter-
changeability of distributed functors allows to introduce the paradox of a
simultaneity of sameness and differentness in the game of interchanging
roles.
Therefore, morphisms are not just changing objects in the mode of equal-
ity, equivalence, similarity and bisimilarity but in the mode of metamor-
phosis too. Metamorphosis is understood in the strict sense of an interplay
of change and pertinence.
Hence, an antecedent is not just producing its precendent by a transition
rule but is at once also keeping itself in the game of change as the antecen-
det of a precendent.

Article Title 43

http://memristors.memristics.com/Church-Rosser%20Morphogrammatics/Church-Ross-er%

Up to now, the transformation rules of rewriting systems had been defined
in a still quite straight forward sense of succession of antecedent and conse-
quent by substitution.

Funny candidates joined this game which was opened up by Thoralf Skolem
with his identity conserving productions. Kenogrammatic rewriting systems
introduced an abstraction on the 'data' transforming sign systems to
kenogrammatic systems. With the idea of overlapping and fusion a mecha-
nism to deal with overdetermined rewriting systems had been opened up as
morphic systems.

Nevertheless, the brave succession and hierarchical order of antecendents
and precedents had been untouched and accepted by this change of the
modi of interaction, and was leading the introduction of the semiotic,
kenomic and morphic concepts of rewriting systems.

A much more intriguing situation is possible with the idea of metamorphic
transformations.

A full fledged involvement of the concept of diamond categorical inter-
changeability of distributed functors allows to introduce the paradox of a
simultaneity of sameness and differentness in the game of interchanging
roles.
Therefore, morphisms are not just changing objects in the mode of equal-
ity, equivalence, similarity and bisimilarity but in the mode of metamor-
phosis too. Metamorphosis is understood in the strict sense of an interplay
of change and pertinence.
Hence, an antecedent is not just producing its precendent by a transition
rule but is at once also keeping itself in the game of change as the antecen-
det of a precendent.

3.1.6. Types of change
1. transition succession :

Antecedent ö Precedent, succession-modi = :id, eq, sim, bisim>

2. transition chiasm :

44 Author Name

Antecedent 1 ö Precedent 1

X

Precedent 2 ô Antecedent 2

The wording here is
Antecedents becomes Precedents and Precedents becomes

Antecedents.

3. transition polycontextural :

Antecedent 1.3 ö Precedent 1

X

Precedent 2.3ô Antecedent 2

The wording here is, "Antecedents becomes Precedents and Precedents
becomes Antecedents. The result is reflected in system3".

4. transition diamond :

Antecedent 1.3ö Precedent 1

X

Precedent 2.3ô Antecedent 2

Jsystem 4N

system 4 : Precedent 4 ô Antecedent 4

"The matching conditions of the chaistic and polycontextural construction
are reflected in the ‘antidromic’ system4.”

5.transitionmetamorphosis:

B

Jsystem 1.1 N ˇ Jsystem 2.2 N

Jsystem 1.1 Ì 2.1N ˇ Jsystem 2.2 Ì 1.2N

Jsystem 1.2 N ˇ Jsystem 2.1 N

Jsystem 1.1 Ì 2.1N ˇ Jsystem 2.2 Ì 1.2N

F

Null

Article Title 45

Jmetaphor : Gregor Samsa JFranz KafkaN

as Gregor in the process of metamorphosisN

Null

6. transition diamond-metamorphosis :

B

Jsystem 1.1 N ˇ Jsystem 2.2 N

Jsystem 1.1 Ì 2.1N ˇ Jsystem 2.2 Ì 1.2N

Jsystem 1.2 N ˇ Jsystem 2.1 N

Jsystem 1.1 Ì 2.1N ˇ Jsystem 2.2 Ì 1.2N

F

system 4:J1.1-2.2N

system 4 :J1.1-2.1; 2.2-1.2N

system 4:J1.2-2.1N

system 4: J1.1-2.1; 22-12N

Jmetaphor : Gregor Samsa in metamorphosis,

reflecting the metamorphosis of his environment N

3.1.7. Type/term model of metamorphosis

"The wording here is not only "types becomes terms and terms becomes
types" but “a type as a term becomes a term" and, at the same time, "a
type as type remains a type". Thus, "a type as a term becomes a term and
as a type it remains a type". And the same round for terms.

Full wording for a chiasmbetween terms and types over two loci
Explicitly, first the green round,
" A types 1.1 as a termM 2.1 becomes a termM 2.1

and as a types 1.1 it remains a types 1.1 for a termM 1.1 ".
And,
" A types 2.2 as a termM 1.2 becomes a termM 1.2

and as a types 2.2 it remains a types 2.2 for a termM 2.2 ".

And simultaneously, mediated,
the second round in red, the same for terms :

46 Author Name

the second round in red, the same for terms :
" A termM 1.1 as a type s 2.1 becomes a types 2.1

and as a termM 1.1 it remains a termM 1.1 for a type 1.1 ".
And,
" A termM 2.2 as a type s 1.2 becomes a types 1.2

and as a termM 2.2 it remains a termM 2.2 for a type 2.2 ".

And finally, between termsM 1.1 andM 2.2 and typess 1.1 ands 2.2,
a categorial coincidence is realized.
While between terms and types amorphism Horder relationL exists.

http://memristors.memristics.com/Polyverses/Polyverses.html
http://memristors.memristics.com/Dominos/Domino%20Approach%20to%20Morphogrammat
ics.html
http://www.thinkartlab.com/pkl/lola/From%20Ruby%20to%20Rudy.pdf

3.1.8. Interchangeability of metamorphosis

Article Title 47

http://memristors.memristics.com/Polyverses/Polyverses.html
http://memristors.memristics.com/Dominos/Domino%20Approach%20to%20Morphogrammat
http://www.thinkartlab.com/pkl/lola/From%20Ruby%20to%20Rudy.pdf

Metamorphic interactivity

BJM, sN, ª , ú, Î, ˇF

JJs 1 º M ' 2N Î JM ' 1 º s 2NN

ù ˇ ù

JJM 1 º s ' 2N Î Js ' 1 º M 2NN

:

B

JM 2 º

ˇ

JM 1 º

M ' 2N

ù

M ' 1N

F Î B

Js 2

Js 1

º s ' 2N

ˇ ù

º s ' 1N

F =

B

JM 2 Î

ˇ

JM 1 Î

s 2N

s 1N

F º B

JM ' 2

JM ' 1

Î s ' 2N

ù

Î s ' 1N

F

Î : composition, ˇ : mediation
ù : interchange, º : similarity

3.1.9. Some summary
Interdependence of operators JÎ, ˇ , ú , º N : Metamorphism

JM 1 Î s 1N ˇ JM 2 Î s 2N

Js ' 2 ù M '1N

Js ' 1 ù M ' 2N

ó

M 1 º s ' 2
s ' 1 º M 2

s 1 º M ' 2
M '1 º s 2

Interdependence of operators JÎ,⊗, ª N : Equality

48 Author Name

B

JM 1 Î s 1N

⊗
JM 2 Î s 2N

=

M 1

⊗
M 2

Î

s 1

⊗
s 2

F ó

M 1 ª M 1

s 1 ª s 1

M 2 ª M 2

s 2 ª s 2

Interdependence of the operators JÎ, ˇ , >N : Similarity

B

JM 1 Î s 1N

ˇ

JM 2 Î s 2N

=
M 1

ˇ

M 2

Î

s 1

ˇ

s 2

F ó
M 1 > M 2

s 1 > s 2

3.2. Transitive closures
3.2.1. Linearity

"Next, take the reflexive transitive closure P” of P' . Write a fl b for (ab)œ
P". So a fl* b means that either a = b , or there is a finite chain a = a1, ...,
an = b such that ai fl ai+1 for i =1, ..., n-1. When a fl* b, we say that b is
derivable from a.“

"Concatenation preserves derivability:
a fl * b and c fl * d imply ac fl * bd .” (PlanetMath)

Morphogramatics of concatenation

a fi * b and c fi *d imply a^c fi * b^d .

Depending on the definition of the concatenation operation "^", different
realizations have to be distinguished.

Candidates are:

Identity (equality)
Equivalence
Similarity
Bisimilarity
Metamorphosis.

Identity
a flid * b and c flid *d imply a^c flid * b^d

Equivalence

Article Title 49

Ja eq *bN and Jc eq *dN imply

a^ i c eq * b^ i d

ˇ

a^ j c eq * b^ j d

Ja eq *bN

ˇ

Jc eq *dN

JaN

ˇ

JcN

eq

JbN

ˇ

JdN

3.2.2. Bifunctoriality
For ambiguous semi-Thue systems, like the morphogrammatic semi-Thue
systems, the interplay of bifunctorial interchangeability gets some rele-
vance in the definition of the rewriting system as such.

Up to isomorphism and down to kenomic sameness
Two kenomic semi-Thue systems are equal iff they are equivalent, i.e.
isomorphic.

3.3. Category theory and rewriting systems
3.3.1. Graph transformation

"We have introduced a new notion of abstract rewriting system based on
categories. These systems are designed for dealing with abstract rewriting
frameworks where rewrite steps are defined by means of matches. We
have defined the properties of (horizontal) composition as well as functori-
ality of rewriting in our abstract setting and we have illustrated these
properties throughout several algebraic graph rewriting systems.” (F.
Prost et al)
http://arxiv.org/pdf/1101.3417v3

Also horizontal and vertical aspects of categorical compositions are consid-
ered, the main point still is to develop a well glued approach in the sense
of the Berlin school of Graph transformation (Ehrig, König). The ultimate
glue is offered by the category-theoretic span concept. Pushouts and spans
are ”used for describing graph transformation systems as categorical
rewriting systems”.

"In a categorical rewriting system, the matches introduce a “vertical dimen-
sion”, in addition to the “horizontal dimension” provided by the rules.
This composition gives rise to the bicategory of categorical rewriting sys-
tems (as for spans, we get a bicategory rather than a category, because
the unicity of pushouts is only up to isomorphism)." (ibd)
http://content.imamu.edu.sa/Scholars/it/net/petritalk.pdf

50 Author Name

http://arxiv.org/pdf/1101.3417v3
http://content.imamu.edu.sa/Scholars/it/net/petritalk.pdf

Also horizontal and vertical aspects of categorical compositions are consid-
ered, the main point still is to develop a well glued approach in the sense
of the Berlin school of Graph transformation (Ehrig, König). The ultimate
glue is offered by the category-theoretic span concept. Pushouts and spans
are ”used for describing graph transformation systems as categorical
rewriting systems”.

"In a categorical rewriting system, the matches introduce a “vertical dimen-
sion”, in addition to the “horizontal dimension” provided by the rules.
This composition gives rise to the bicategory of categorical rewriting sys-
tems (as for spans, we get a bicategory rather than a category, because
the unicity of pushouts is only up to isomorphism)." (ibd)
http://content.imamu.edu.sa/Scholars/it/net/petritalk.pdf

Bifunctoriality
In contrast, a more or less glue-free construction is introduced by the
concept of categorical bifunctoriality and its generalization to a diamond
category-theoretic interchangeability of morphisms and contextures. In
this approach “horizontal” and “vertical” structures of graph transforma-
tion systems are not glued together but are interacting in the framework
of interchangeability.

3.3.2. Pushouts and diamonds
"After having developed some insights and experiences with the diamond
approach and its complementary structures, a design of diamond category
theory might be introduced which is not as close to the introductory anal-
ogy to classic category theory.”

Excerpts from: Kaehr, Category of Glue III, (2009), unpublished.
http://www.thinkartlab.com/pkl/lola/Category%20Glue%20II/Category%20Glue%20II.html

Hetero-morphisms are reflecting the matching conditions of the composi-
tion of morphisms in a category.
There is an analogy between the concatenation of production rules in re-
writing systems and the composition of morphisms. Graph transformation
systems and graph grammars are surpassing the limitations of linear con-
catenation of sign sequences. Graph transformation is formalized by Schnei-
der, Ehrig et al. by categorical pushouts.

"Therefore, graph transformations become attractive as a modeling and
programming paradigm for complex-structured software and graphical
interfaces. In particular, graph rewriting is promising as a comprehensive
framework in which the transformation of all these very different struc-
tures can be modeled and studied in a uniform way.” (Ehrig, Padberg, p. 3)

Hetero-morphisms of pushouts are reflecting the complexity of graph com-
position.
Because of its complexity a more complex interplay between hetero-mor-
phisms and graph composition is opened up.
Focused on graph derivations, the saltatorical hetero-morphisms are com-
plementarily defined. But the inverse complementary situation holds too.
During a graph derivation, the saltatorical system might be changed and
therefore re-defining the structural conditions of the categorical graph
derivation.

This kind of mutual interplay had been defined for categories and saltato-
ries concerning the matching conditions of the composition of morphisms.
Therefore, the interplay in diamondized graph systems is a generalization
of the compositional approach.

Article Title 51

http://content.imamu.edu.sa/Scholars/it/net/petritalk.pdf
http://www.thinkartlab.com/pkl/lola/Category%20Glue%20II/Category%20Glue%20II.html

"After having developed some insights and experiences with the diamond
approach and its complementary structures, a design of diamond category
theory might be introduced which is not as close to the introductory anal-
ogy to classic category theory.”

Excerpts from: Kaehr, Category of Glue III, (2009), unpublished.
http://www.thinkartlab.com/pkl/lola/Category%20Glue%20II/Category%20Glue%20II.html

Hetero-morphisms are reflecting the matching conditions of the composi-
tion of morphisms in a category.
There is an analogy between the concatenation of production rules in re-
writing systems and the composition of morphisms. Graph transformation
systems and graph grammars are surpassing the limitations of linear con-
catenation of sign sequences. Graph transformation is formalized by Schnei-
der, Ehrig et al. by categorical pushouts.

"Therefore, graph transformations become attractive as a modeling and
programming paradigm for complex-structured software and graphical
interfaces. In particular, graph rewriting is promising as a comprehensive
framework in which the transformation of all these very different struc-
tures can be modeled and studied in a uniform way.” (Ehrig, Padberg, p. 3)

Hetero-morphisms of pushouts are reflecting the complexity of graph com-
position.
Because of its complexity a more complex interplay between hetero-mor-
phisms and graph composition is opened up.
Focused on graph derivations, the saltatorical hetero-morphisms are com-
plementarily defined. But the inverse complementary situation holds too.
During a graph derivation, the saltatorical system might be changed and
therefore re-defining the structural conditions of the categorical graph
derivation.

This kind of mutual interplay had been defined for categories and saltato-
ries concerning the matching conditions of the composition of morphisms.
Therefore, the interplay in diamondized graph systems is a generalization
of the compositional approach.

3.3.3. Concatenation and pushouts
Production systems are based on concatenation. They have an initial and a
terminal object.
A generalization of concatenation production systems is introduced by a
transition from strings to graphs. Strings consists of atomic signs. Graphs
are composed by elementary graphs, consisting of nodes and edges. Hence,
graph grammars are a generalization of sign production systems. Sign pro-
duction systems are mapped as trees, graph transformations as graphs.

Graph transformation and graph grammars based on pushout constructions
are well embedded in category theory. Pushouts and their dual pullbacks
are save categorical constructions based on the composition rules for mor-
phisms in categories.
Categories in general are well complemented by saltatories.

Because pushouts are defined in categories, a diamondization of pushouts
follows naturally.
Hence, pushouts as models for graph grammars gets diamondized pushouts
for diamond graph grammars.

As a consequence of the dependence of graph grammars from category
theory, it seems obvious that graph transformations are not surpassing the
limitations of computability of sign production systems.
Graph transformation sequences are computational equivalent to sign
production sequences.
This correspondence between the computability of sign production systems
and graph derivation might be disturbed by diamondized graph grammars.

52 Author Name

