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Notes on semi-Thue Systems in 
a Context of Morphogrammatics
Further explanations of the formal notions behind mor-
phic cellular automata

Rudolf Kaehr Dr.phil „
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Abstract
The main differences between symbolic and morphic formal systems: Instead of the 
Kleene star for the symbolic universes, morphic universes are generated by the Stirling 
cross. Symbolic substitution and concatenation is preserving production concatenation. 
Morphic substitution/concatenation is opening up a system of interactive complexions of 
derivations. Comparison of substitution based production systems (Thue, Post, Markov) 
with Hausser’s systems of “possible continuations” of Left-Associative languages is 
sketched.

1. Semi-Thue Systems

1.1. Production systems
1.1.1. Deconstruction remarks

”It is a gross simplification to view languages as sets of strings. 
The idea that they can be defined by means of formal processes did not 
become apparent until the 1930s. The idea of formalizing rules for 
transforming strings was first formulated by Axel Thue (1914). The 
observation that languages (in his case formal languages) could be seen 
as generated from semi Thue systems, is due to Emil Post. Also, he has 
invented independently what is now known as the Turing machine and 
has shown that this machine does nothing but string transformations. 
[...] The idea was picked up by Noam Chomsky and he defined the 
hierarchy which is now named after him (see for example (Chomsky, 
1959), but the ideas have been circulating earlier)." Marcus Kracht  
2003, The Mathematics of Language, Rewriting Systems, p. 53

"In formal language theory, languages are sets of strings over some 
alphabet. We assume throughout that an alphabet is a finite, 
nonempty set, usually called A. It has no further structure, it only 
defines the material of primitive letters.” (ibd, p. 16)
http://www.lix.polytechnique.fr/~bournez/MPRI/formal.pdf 

http://www.lix.polytechnique.fr/~bournez/MPRI/formal.pdf


"In formal language theory, languages are sets of strings over some 
alphabet. We assume throughout that an alphabet is a finite, 
nonempty set, usually called A. It has no further structure, it only 
defines the material of primitive letters.” (ibd, p. 16)
http://www.lix.polytechnique.fr/~bournez/MPRI/formal.pdf 

A deconstruction of “sign”, “string” and “set” is necessary to understand 
morphogrammatics and morphogrammatic semi-Thue systems, morphic 
finite state machines and morphic cellular automata as introduced in 
recent papers. A further deconstruction has to go into the topics of finite-
ness and infiniteness of alphabets and strings. It also has to be seen that 
the term “sign” is understood as a purely syntactical mark, letter or charac-
ter and is not involved in any serious semiotical distinctions.

The kernel of formal language considerations is the monoid,  = (M, Î, 1) 
and the Kleene (star) production A*.

A monoid is a triple  = (M, Î, 1) where : “Î” is a binary operation on M 
and 1 an element such that for all x, y, z œ M 
the following holds.
 x Î 1 = x                    (Idempotence)
1 Î x = x                     (Idempotence)
(x Î y) Î z = x Î (y Î z)   (Associativity). 

Hence, a deconstruction of a monoid  has firstly to deconstruct the 
binary operation (composition)    “Î” and then, secondly, more or less as a 
consequence of it, a deconstruction of the elements of .

A deconstruction of the concept of set-theoretical elements has led to the 
introduction of a new ‘data-type’, the kenogrammatic and morphogram-
matic data patterns used in kenomic and morphic cellular automata con-
structions.

Criticism: Just an abstraction more?
At a first glance it seems that such a deconstruction which leads from the 
Kleene product to a Stirling distribution might simply be an abstraction 
over the set of values producing an equivalence class as it is well known. 
Hence, Stirling K* = S*/eq. There are some academic publications insisting 

on such profound insight. Furthermore it is trivial to conclude that the 
same abstraction holds for the introduction of kenomic cellular automata: 
kenoCA = ECA/eq. In such a view the kenomic rules are just an abstraction 

of the CA rules.  If we consider the situation for ECAH3,2L with the complete 

rule set 23= 8 and a complete rule range of 22 3
= 256 and the correspond-

ing kenoCAH3,2Lwith an incomplete rule set of StirlingSn2(3, 2) = 4 and an 

incomplete rule range of StirlingSn2(23, 2) = 128, then results look quite 

trivially as an abstraction from 23 to 23í2= 4 and 22 3
 to 22 3

/2 = 128. Unfor-

tunately, the complete rule set for the elementary kenoCAH3,4L is StirlingS-
n2(4, 4) = 15 and not 8. As a consequence of this asymmetry between 
complete rule sets, different kinds of rules, methods and features are 
surpassing the classical definitions of CAs without the Stirling approach 
those new constellations wouldn’t be accessible. •

There is not much chance to achieve such a transformation of the concept 
and functioning of an elementary operation like the composition "Î” in a 
monoid. 

Nevertheless, there are some still recent but well elaborated and tested 
approaches to recognize. The diamondization of composition has been 
demonstrated in my papers to a Diamond Category Theory.
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n2(4, 4) = 15 and not 8. As a consequence of this asymmetry between 
complete rule sets, different kinds of rules, methods and features are 
surpassing the classical definitions of CAs without the Stirling approach 
those new constellations wouldn’t be accessible. •

There is not much chance to achieve such a transformation of the concept 
and functioning of an elementary operation like the composition "Î” in a 
monoid. 

Nevertheless, there are some still recent but well elaborated and tested 
approaches to recognize. The diamondization of composition has been 
demonstrated in my papers to a Diamond Category Theory.

With “ x Î 1 = x”  and “1 Î x = x”  it follows that the equation “x Î 1 = x = 1 
Î x”  holds. This is not surprising and has its rock solid foundations in first-
order logic and category theory and their epistemologies.

Does it hold for morphogrammatics? Obviously not! The equation might be 
interpreted as the equality of right- and left-oriented self-identity of the 
object “x” of a morphism. 

JX Î 1N x= X x JDiamond idempotenceN

J1Î XN x= x X JDiamond idempotenceN

f X Î f id
Xœ Iter

Xœ Accr
http://www.thinkartlab.com/pkl/lola/Semiotics-in-Diamonds/Semiotics-in-Diamond-
s.html
 
Hence, even the simplest presumbtion, namly that X = X has to be decon-
structed.
As a consequence, the obvious symmetry of A = B iff B = A is not obvious 
anymore.

A deconstruction of associativity of composition follows, at first, quite 
automatically:
The context-independent associativity "(x Î y) Î z = x Î (y Î z)" becomes the 
contextualized associativity
"(X Î Y)|(x; y) Î Z | z = X | x Î (Y Î Z)|(y; z)".

Article Title  3
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Hence, even the simplest presumbtion, namly that X = X has to be decon-
structed.
As a consequence, the obvious symmetry of A = B iff B = A is not obvious 
anymore.

A deconstruction of associativity of composition follows, at first, quite 
automatically:
The context-independent associativity "(x Î y) Î z = x Î (y Î z)" becomes the 
contextualized associativity
"(X Î Y)|(x; y) Î Z | z = X | x Î (Y Î Z)|(y; z)".

Diamondization of associativity of composition

" x, y, z : Jx Î yN Î z= SEM xÎ Jy Î zN

"X, Y, Z ; " x, y, z, u : JJX Î YN Jx; yN Î Z zN u= DIAM JX x Î JYÎ ZN Jy

This has consequences for any introductory rule like R0: ö X.
There is no simple beginning in a diamond world. Setting a beginning is 
always multiple, at least double: a beginning as an iterative or an accre-
tive beginning. The act of beginning happens in a context of a beginning 
and has its own notion in a calculus of beginnings.

Hence, R0: ö X becomes diamond R0: ö X | x.

Therefore, the statement of a beginning kenogram [kg] of kenogrammatic 
sequences in a trito-universe TU as in TU = ([1] Tsucc) of a recursive for-
mula is just a beginning of the process of deconstruction of the notions and 
terms of keno- and morphogrammatics and not an end at all.

Nevertheless, diamond-theoretic thematizations had been, more or less, 
omitted in the proposals on kenomic and morphic cellular automata, finite-
state machines and semi-Thue systems.

And just the Stirling effect is in focus that is affecting the rules of the 
morphogrammatic game of semi-Thue systems and cellular automata decon-
struction.

Hence, the universe of trito-structural kenogram sequences, kgs, TU, 
remains defined without its diamond environment as 
TU = [[1] Tsucc], with x + 0 = 0 + x = x.

Further deconstructions of the concept of ‘beginnings’ in formal systems 
at: 
“Quadralectic Diamonds: Four-foldness of beginnings”,
http://www.thinkartlab.com/pkl/lola/Quadralectic%20Diamonds/Quadralectic%20Diamon
ds.pdf
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1.1.2. Langtonʼs rules for simple linear growth
A classical example of a production system is introduced by Langton‘s L-
system.

"Here is an example of the simplest kind of L-system. The rules are 
context free, meaning that the context in which a particular part is 
situated is not considered when altering it. There must be only one 
rule per part if the system is to be deterministic.

The rules: (the “recursive description” of a GTYPE)
1) A ö CB
2) B ö A
3) C ö DA
4) D ö C

When applied to the initial seed structure “A,” the following struc-
tural history develops (each successive line is a successive time step):
          time   structure    rules applied (L to R)

            1.       A            : start
                      
            2.      CB           : rule1 on 1.
                    áä
            3.    DA   A        : rule3 on 2. C, rule2 on 2. B
                 á     ä        
            4. C CB    CB     : rule4 on 3. D, rule1 on 3. A, rule1 on 3. A

 Christopher Langton, Artificial Life, 1989, p. 26

.l 1 2 3 4 5 6 7 8 9 rule= rule1 .2 .3 .4
0 Ñ Ñ Ñ Ñ A Ñ Ñ Ñ Ñ 0L initial " seed "
1 Ñ Ñ Ñ C - B Ñ Ñ Ñ 1L rule 1 replaces A with CB
2 Ñ Ñ D - A Ñ A Ñ Ñ 2L rule 3 : C with DA, rule 2 : B with A
3 Ñ C Ñ C - B C - B 3L rule 4 : D with C; rule 1 : AA with CB' s
4 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ stop

Atomic elements are substituted by unary and binary elements. Binary 
elements are seen as a concatenation of 2 identical unary elements. 
Because of this atomism or elementarism a kenomic abstraction is empty, 
i.e. all unary elements are kenomically equivalent. 
Because rewritting systems are substitutional systems the point of substitu-
tion in this case is atomistic.
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Atomic elements are substituted by unary and binary elements. Binary 
elements are seen as a concatenation of 2 identical unary elements. 
Because of this atomism or elementarism a kenomic abstraction is empty, 
i.e. all unary elements are kenomically equivalent. 
Because rewritting systems are substitutional systems the point of substitu-
tion in this case is atomistic.

kenoCAH2L rule set

R1
‡ ‡ ‡

- ‡ -
R2

‡ ‡ ·

- ‡ -
R3

‡ · ‡

- ‡ -
R4

‡ · ·

- ‡ -

R6
‡ ‡ ‡

- · -
R7

‡ ‡ ·

- · -
R8

‡ · ‡

- · -
R9

‡ · ·

- · -

Example for kenoCA rules of the form: [axb] ö y
rule1: [AAA] ö A   
rule7: [AAB] ö B    
rule8: [ABA] ö B    
rule4: [ABB] ö A    

Nr.l 1 2 3 4 5 6 7 8 9 rule= rule1 .7 .8 .4
0 Ñ Ñ Ñ x A x Ñ Ñ Ñ 0L A initial " seed " H0; 5L
1 Ñ Ñ x B B A x Ñ Ñ R7H0; 3, 4, 5L : BBA B, R8H0; 4, 5, 6L : ABA B, R4H0; 5, 6, 7L : ABB A

2 Ñ x A A B B A x Ñ R1H1; 2, 3, 4L, r1H1; 3, 4, 5L : BBB A, R7H1; 4, 5, 6L : BBA B,
R8H1; 5, 6, 7L : ABA B, R4H1; 6, 7, 8L : ABA B

kenoCA
Nr.l 1 2 3 4 5 6 7 8 9 rule= rule1 .7 .8 .4
1 Ñ Ñ Ñ Ñ ‡ Ñ Ñ Ñ Ñ R7H1; 3, 4, 5L, R8H1; 4, 5, 6L, R4 H1; 5, 6, 7L
2 Ñ Ñ Ñ x x ‡ Ñ Ñ Ñ 1, 1, 7, 8, 4
3 Ñ Ñ ‡ ‡ x x ‡ Ñ Ñ 7, 4, 7, 4, 7, 8, 4
4 Ñ x ‡ x ‡ x x ‡ Ñ 1, 7, 8, 8, 8, 4, 7, 8, 4
5 ‡ x x x x ‡ x x ‡ stop

1.1.3. Introducing kenogrammatic rules
Technical alphabet, standard normal form of kenograms: {A, B, C}.
Rules: rule1, rule2, rule3.

One trito-equivalence of the calculus, not applicable to the technical, 
meta-linguistic alphabet: 
A = KGC:

PKG = [mode=KG; {A, B, C}, rule1, rule2, rule3]
rule1:  ö A
rule2: A ö AB
rule3: AB ö C

A, AB, C, AB, C, AB, ...: chiastic interchange between A(2) and C(3).
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Rules: rule1, rule2, rule3.
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rule1:  ö A
rule2: A ö AB
rule3: AB ö C

A, AB, C, AB, C, AB, ...: chiastic interchange between A(2) and C(3).

The term A(1) as operator is set, C(3) as operand of the operator AB (3) 
becomes the operator A(2). Hence, A(2) is involved in the chiasm of opera-
tor and operand, playing both roles at once. Considering the roles of C, the 
same holds for a B in place of C.

Différance and memristivity
Strictly speaking, we encouter with this tiny PKG- system a situation where 
both, the halt and the continuation of the production, happens at once. 
The chiastic interplay of the situation “A” and the situation “C” is playing 
the différance of the difference of “A” and “C” and its defer of change 
from ”C” to “A”. Jaques Derrida’s différance, which is neither a word nor 
a term, and is phoneticlly indistinguishable from “différence”, plays on the 
fact that the French word différer means both "to defer" and "to differ." 
"Différance as temporization, différance as spacing. How are they to be 
joined?” (J. Derrida)
Jacques Derrida, Différance, http://www.stanford.edu/class/history34q/read-

ings/Derrida/Differance.html 

This mechanism of a chiastic interchange between A and C invites to inter-
pret it as a memristive mechanism and probably as the smallest model of 
non-destructive self-referentiality in/of a formal system. The self-referen-
tiality of the production scheme seems to be obvious. What isn’t obvious 
at a first glance is its memristivity. Memristivity is involved with the chi-
asm between ‘operand’ C and ‘operator’ A. The property of re-entry and 
sameness has to be remembered during the substitution. In a classical 
setting, nothing of this kind has to be reached because it is presumed and 
installed from the ‘outside’ by an external designer/user of the rules that 
the re-entry ’port’ is not missed and that the object has not changed in 
the process of substitution from one identity (A/C) to another identity 
(C/A).

For the kenomic calculus, the technical alphabet is build by distinctive 
letters, characters, elements, but inside the kenomic game and its rules, 
all occurrences of monadic elements are kenomically equal. 

The substitution of C from rule3 to rule2 as A has the choice to decide for 
a kenomic or for a symbolic interpretation of the substitution. With a sym-
bolic interpretation the calculus stops here because the application is 
refused. For a kenomic interpretation rule2 holds, and the game goes on. 
Hence, with A ≠SEM C, the semiotic rule system is terminating with C, and 
with  A =KG C the production goes on with C =KG A.

Hence, the general decision problem gets confronted with an as yet 
unknown situation of a rewriting system having properly a state and at 
once not having that state in the calculus. 

Consequences for the concepts and constructions of replication, cloning 
and self-production/production of a self (autopoiesis) have at first to decon-
struct the underlying concepts of iterability in their concepts of recursion.

Decidability and non-decidability, therefore, is not focussed on the identifi-
cation or non-identification of an object, i.e. a state, with decidable or 
non-decidable properties but on the interaction between applications 
inside and between formal systems.
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Further examples
PID = [mode=ID; {A, B, C}, rule1, rule2, rule3]
rule1:  ö A
rule2: A ö AB
rule3: AB ö C

A, AB, C.

Production systems are based on substitution. Kenomic and morphic substi-
tutions are context-dependent.

Chiastic rule applications are not to be confused with the identity systems 
with A(1) = A(2) in a (self-referential) circular rule system:

PID = [mode=ID; {A, B}, rule1, rule2]
Alphabet = {A, B}
Rules (Id):
rule1: A ö AB
rule2: AB ö A.

A, AB, A, AB, ... : non-terminating

Logic, Copies and DNA Replication 
"In logic there is a level beyond the simple copying of symbols that 
contains a non-trivial description of self-replication. The schema is as 
follows: There is a universal building machine B that can accept a text 
or description x (the program) and build what the text describes. We 
let lowercase x denote the description and uppercase X denote that 
which is described. Thus B with x will build X. In fact, for bookkeeping 
purposes we also produce an extra copy of the text x. This is appended 
to the production X as X, x. Thus B, when supplied with a description 
x, produces that which x describes, with a copy of its description 
attached. Schematically we have the process shown below.
                     B, x ö B, x; X, x 
Self-replication is an immediate consequence of this concept of a uni-
versal building machine. Let b denote the text or program for the 
universal building machine. Apply B to its own description. 
                     B, b ö B, b; B, b 
The universal building machine reproduces itself. Each copy is a univer-
sal building machine with its own description appended. Each copy will 
proceed to reproduce itself in an unending tree of duplications. In 
practice this duplication will continue until all available resources are 
used up, or until someone removes the programs or energy sources 
from the proliferating machines."
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versal building machine. Let b denote the text or program for the 
universal building machine. Apply B to its own description. 
                     B, b ö B, b; B, b 
The universal building machine reproduces itself. Each copy is a univer-
sal building machine with its own description appended. Each copy will 
proceed to reproduce itself in an unending tree of duplications. In 
practice this duplication will continue until all available resources are 
used up, or until someone removes the programs or energy sources 
from the proliferating machines."

Louis H. Kauffman,  Biologic 
http://arxiv.org/pdf/quant-ph/0204007 

Chiastic self-reference with 2 trito-equivalences: A = KG C and AB = KG BA 

PKG = [mode=KG, {A, B, C}, rule1, rule2, rule3]
Alphabet = {A, B, C}
rule1: ö A
rule2: A ö AB 
rule3 : BA ö C

(1): A, AB, A, AB, A, ...

(2): A, AB, C, AB, C, ...

Also they differ as resulting productions semiotically, both production 
chains are kenogrammatically equivalent: (1) =KG (2).

Polycontextural productions
Further interesting results are obtained by polycontextural production 
systems. In this context of polycontexturality it is obvious to state “The 
same is different”. 

PPCL
H3L = (P1ˇ P2) ˇ P3= [mode=PolyKH3L, {A, B, C}H3L, (rule1, rule2, 

rule3)H3L], ˇ: mediation

Alphabet = {A, B, C}H3L:

Alph = {A, B, C}1     Alph = {A, B, C}2      Alph = {A, B, C}3

rule1.1 : ö A        rule1.2 : ö A         rule1.3 : ö A  
rule2.1 : A ö AB    rule2.2 : A ö AB    rule2.3 : A ö AB
rule3.1 : AB ö A    rule3.2 : AB ö A    rule3.3 : AB ö A

A1, AB1, A1= A2, (AB)2, A2 = A1, (AB)1, ...
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Polycontextural productions
Further interesting results are obtained by polycontextural production 
systems. In this context of polycontexturality it is obvious to state “The 
same is different”. 

PPCL
H3L = (P1ˇ P2) ˇ P3= [mode=PolyKH3L, {A, B, C}H3L, (rule1, rule2, 

rule3)H3L], ˇ: mediation

Alphabet = {A, B, C}H3L:

Alph = {A, B, C}1     Alph = {A, B, C}2      Alph = {A, B, C}3

rule1.1 : ö A        rule1.2 : ö A         rule1.3 : ö A  
rule2.1 : A ö AB    rule2.2 : A ö AB    rule2.3 : A ö AB
rule3.1 : AB ö A    rule3.2 : AB ö A    rule3.3 : AB ö A

A1, AB1, A1= A2, (AB)2, A2 = A1, (AB)1, ...

The substitution process distributed between P1and P2 might be reflected 

from the third position of P3 from which it is reasonable to state that there 

is no classical circular production with (A1= A2/A2 = A1) but a chiastic self-
referentiality between the two mediated contexturally different produc-

tion systems P1and P2 albeit both are using the “same” alphabets and the 
“same” rules.

The questions of termination of programs, calculations, productions and 
the Halting problem are one side of the classical constellations. The other 
side is that a non-terminating program has different meanings in the new 
constellation. Computation as an interactive media is not problem solving 
and is therefore ‘beyond’ the classical questions of termination and non-
termination. Media of computation don’t have a start or an initial configura-
tion nor do they have a terminal goal. Non-termination in polycontextural 
and morphic systems is not the same as empty repetition, infinite loop or 
endless iteration in the classical framework.

This hint or metaphoric construction is not excluding the conservation of 
the classical situations and their results ‘inside’ the different contextures.

Hence, non-termination is not anymore a bad property of ‘algorithmic’ 
systems but the intrinsic character of inter-medial activity.

Some further entertainment from “Nick Haflinger”:
For a more philosophical intervention, go to “Nancy: Destruktion als Erin-
nerung der Struktion oder Techné” at:
http://player.vimeo.com/video/2846627?title=0&amp;byline=0&amp;portrait=0
Or you might prefer: “Slickaphonics - Procrastination (Wow Bag - 1983)" at:
http://www.youtube.com/watch?v=k2F7eWtYwkc 
The real thing? Peter Wegner, Interactive Computation
http://www.cse.uconn.edu/~dqg/inter_book.html 
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1.2. Semi-Thue Systems
1.2.1. Definitions for semi-Thue systems

Following PlanetMath we get a helpful definition of a semi-Thue system.
http://planetmath.org/encyclopedia/GenerableByASemiThueSystem.html
 
"A semi-Thue system  is a pair (S, P) where S is an alphabet and P is a 
non-empty finite binary relation on S* , the Kleene star of S .

Elements of P are variously called defining relations, productions, or 
rewrite rules, and  itself is also known as a rewriting system. If (x, y)œ P, 
we call x the antecedent, and y the consequent. 
Instead of writing (x, y)œ P or xPy , we usually write 
                                                                      x ö y.

Let  = (S, P) be a semi-Thue system. 
Given a word u over S, we say that a word v over S is immediately deriv-
able from u if there is a defining relation  
x ö y such that
                    u = rxs and v = rys,
for some words r, s (which may be empty) over  S.

If v is immediately derivable from u, we write
                     u fl v.
Let P’ be the set of all pairs (u, v)œ S• x S* such that u fl v. 
Then PŒ P’, and 

If u fl v, then wu fl wv and uw fl vw for any word w.”

If u fi v, then uw fi vw and wu fi wv for any word wœS *.

Example
"Let  be a semi-Thue system over the alphabet S = {a,b,c} , with the set 
of defining relations given by 

P = {ab ö bc, bc ö cb} . Then words ac3b , a2c2b and as bc4 are all deriv-

able from a2bc2 :

a2bc2 fl a(bc)c2 fl ac(bc)c fl ac2(cb) = ac3b ,

a2bc2 fl a2(cb)c fl a2c(cb) = a2c2b , and

a2bc2 fl a(bc)c2 fl (bc)cc2 = bc4.” (PlanetMath)

"Under  , we see that if v is derivable from u , then they have the same 
length: |u| = |v| . Furthermore, if we denote |a|u the number of occur-
rences of letter a in a word u , then |a|v § |a|u , |c|v § |c|u , and |b|v = 
|b|u . Also, in order for a word u to have a non-trivial word v (non-trivial 
in the sense that u ≠ v ) derivable from it, u must have either ab or bc as a 

subword. Therefore, words like a3 or c3b4a2 have no non-trivial derived 
words from them.” (PlanetMath)
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a2bc2 fl a2(cb)c fl a2c(cb) = a2c2b , and

a2bc2 fl a(bc)c2 fl (bc)cc2 = bc4.” (PlanetMath)

"Under  , we see that if v is derivable from u , then they have the same 
length: |u| = |v| . Furthermore, if we denote |a|u the number of occur-
rences of letter a in a word u , then |a|v § |a|u , |c|v § |c|u , and |b|v = 
|b|u . Also, in order for a word u to have a non-trivial word v (non-trivial 
in the sense that u ≠ v ) derivable from it, u must have either ab or bc as a 

subword. Therefore, words like a3 or c3b4a2 have no non-trivial derived 
words from them.” (PlanetMath)

1.2.2. Discussion of the presuppositions
Each repetition of the rules rule1= ab ö bc and rule2 = bc ö cb is realiz-
ing an identification of the result (operand)of the substitution with the 
initial word of the applied rule in the mode of identity.

1. aabc2 fl a(bc)c2     : by rule1 = ab ö bc
2. a(bc)c2  fl ac(bc)c  : by rule2 = bc ö cb

Rules: ab ö bc/bc ö cb

Rule1 recognizes in the mode of identity the left-most substring “ab” of 
the word and substitutes it at the place of its occurrence in that word with 
“bc”. 
The second step recognizes “bc”, now as an antecedent for the rule2 and 
replaces it at the place of its occurrence with the succedent of the rule2 
“cb".

This procedure is highly obvious. We are used to it. And such an explicit 
description I tried to give is quite superfluous, except we want to explain 
the procedure to a robot or to an alien. At least I need it to understand my 
own aversion against the frozenness of the whole paradigm of mathemati-
cal formalization.

But this game is presuming several “intuitions” which are not obvious at all.

It is not necessarily obvious that the whole procedure is supported by the 
principle of identity. A reuse of a word or a string, like “bc” in the 
antecedent of the rule1 and as a precedent in the rule2, has to match the 
matching conditions of iterability in the mode of identity. If the two occur-
rences of “bc” differ in the process of application, the substitution fails. 
Hence, the letters of the word are taken in a strictly atomistic and essen-
tialistic sense to guarantee identity independently of their use and their 
role in the game. The use of the signs is not changing the signs. 
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rences of “bc” differ in the process of application, the substitution fails. 
Hence, the letters of the word are taken in a strictly atomistic and essen-
tialistic sense to guarantee identity independently of their use and their 
role in the game. The use of the signs is not changing the signs. 

Matching conditions
Matching conditions for the composition of the rules r1 and r2:

r1= ab ö bc, r2 = bc ö cb,
cod(r1) ª dom(r2) fl r1 Î r2

As shown in earlier papers, a reflection of the matching conditions is 
enabling the possibility of an antidromic formalization by saltatories. Salta-
tories are complementary constructions to categories. 

Morphogrammatic turn
For the application of the rules there is no need to know the internal struc-
ture of the words u , v and w. 

With the morphogrammatic turn things are getting slightly more dynamic. 
A new kind of interplay between identification and application opens up 
first chances to avoid the frozenness of operative formalisms.

The presumption of identity in the substitution process gets some interest-
ing deliberation and generalization.
If the substitution rule holds for “any word” under identity, a first attempt 
to liberalize its application happens with the understanding of a word (w) 
as a kenomic word [w].  
Hence, for w = (ab), any keno-word of the form (ab) is applicable: [w] = 
{ab} = [bc] =  ... = [&, #]. Both, (w) and [a] are of the same morphogram-
matic structure and are of the same ‘length’.

A more radical generalization is achieved with the abstraction of bisimilar-
ity: Two words (morphograms) [w1], [w2] are equal iff the have the same 
behavior. Hence, the length of [w1] and [w2] is not anymore defining same-
ness of morphograms.

Additional to identity and equality, some more kinds of thematizations 
enter the game of symbolic or ’mathematical’ writing: equivalence, simula-
rity, bisimularity and different types of metamorphosis.

Definitions, theorems, methods, applications to recall the state of the art 
approach to formal language theory, look at:
John M. Abela , ETS Learning of Kernel Languages, 2002 
http://www.cs.unb.ca/~goldfarb/Theses/John's_Thesis.pdf 
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1.3. Kenomic semi-Thue systems
1.3.1. Semiotics

S* denotes the set of all finite strings of symbols from S. This statement of 
semiotics becomes in morphogrammatics:

Sn2(S, *L denotes the universe of all finite tritograms of monomorphies 
from Sn2(S). 

Sn2(S, *L is the trito-universe of keno-sequences “ks”. (Morphogrammatik, 
p. 77)

Sets in the trito-universe of keno-sequences are not sets in a definitorial 
sense, they might be called collections.
The objects (elements) of a collection are tritograms (ks-sequences) and 
are not defined by the set-theoretical rules of elements and ensemble 
(sets) which are based on identical concepts of first-order logic.

S = {a, b, c} 
S* = {a, b, c, aa, bb, cc, ab, ac, bc, aaa, bbb, ccc, ...}

StirlingSn2(S*) = {a, aa, ab, aaa, aab, aba, abb, abc, aaaa, ...}

nfirstq(n, seq):

- nfirstq (3, TU) = {a, aa, ab, aaa, aab, aba, abb, abc}

Kenosequence: length (states) and technical signs (a, b, c)

kseq (3):

{[aaa], [aab], [aba], abb], [abc]}.

J
1µ 2µ 3

a a a
N

Sn2(3, 3) = 1+2+1= 5

An element of the alphabet is a sequence of length 1: [a] = J 1
a
N.

[a] = J 1
a
N, [b] = J 1

b
N: [a] =KG [b]

Semiotically there are n unary elements in an alphabet:

(a) = J 1
a
N, (b) = J 1

b
N.

(a), (b) œ Alph: (a) ≠SEM (b) fl  
1
áä

a b

sum(Sn2(1,1)) = 1
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Sn2(3, 3) = 1+2+1= 5

An element of the alphabet is a sequence of length 1: [a] = J 1
a
N.

[a] = J 1
a
N, [b] = J 1

b
N: [a] =KG [b]

Semiotically there are n unary elements in an alphabet:

(a) = J 1
a
N, (b) = J 1

b
N.

(a), (b) œ Alph: (a) ≠SEM (b) fl  
1
áä

a b

sum(Sn2(1,1)) = 1

Like semiotic sign sequences are defined by their length and their alpha-
bet, kenogrammatic sequences kseq are defined by their positions and the 
realization of the positions, i.e. by their interaction of place and inscrip-
tion.
Semiotic sequences are therefore defined by their Cartesian product 

|sign| length  and keno-sequences are defined by their Stirling distribution(-
partition) of places and kenograms: Sn2(place, kenos).

A morphogrammatic turn which is focused on monomorphies instead of 
kenograms is changing the presupposition of equal length for the equiva-
lence (sameness) of morphograms, too. Two morphograms are the same iff 
their behavior is not distinguishable. That is, two morphograms are bisimi-
lar if they have equal behavior. The abstraction of bisimilarity takes the 
fact into account that there are different fundamental morphogrammatic 
operations and therefore an abstraction over the operators instead of the 
morphograms as ‘objects’ is applied.

Hence, for semiotics the star or Kleene closure is

S* = ‹
i=0

•
 Si =  S1‹ S2 ‹ S3 ‹ ... ‹ Sn ,

the kenogrammatic universe TU instead is defined by

TU = ([1], Tsucc).

Sn2(S, n)
nfirstq(n, seq)
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TU = ([1], Tsucc).

Sn2(S, n)
nfirstq(n, seq)

nfirstq(3, seq):
[aaa], [aab], [aba], [abb], [abc].

monomorphic TU = ([1], monomorphy(Tsucc)).

morph(nfirstq(3, seq)):
{[aaa], [aa][b], [a][b][a], [a][bb], [a][b][c]}.

Contextual repetition of monomorphies.

A =MG B iff  EN(A) = EN(B)

Two words are kenogrammatically equivalent iff they have the identical 
EN-structure.

1.3.2. Tectonics
A calculus is defined by 2 alphabets and a set of rules (Paul Lorenzen, 
Haskell Curry): 
1. the alphabet of signs
2. the alphabet of variables.

Two semiotic words are semiotically equal iff they are of the same length 
and all the occurrences in the words are equal (equiform) at the same 
places (positions) of the words (string).
Concatenation of words and star product of words, the empty word.

An introduction of a kenogrammatic calculus is applying the EN-abstraction 
on the objects of the calculus, i.e. on the words of the sign-alphabet and 
not yet on the meta-objects, i.e. the alphabet of the variables.

The rules of the calculus are applied to the signs of the alphabet with the 
help of variables which are not elements of the set of signs.

Second-order rules
Rules for morphogrammatics are not fully defined by the concept of con-
stant, i.e. elements from a pre-given alphabet, and variables over the 
alphabet.

Additionally to the classic requisites of constant and variable, the rules 
have to be calculated, i.e. produced by rules on a different may be meta-
level. Hence, the notions of constant, variable and rules together are 
determining the rules of a morphogrammatic calculus. Prolongation, contin-
uation, concatenation etc. are ruled by rules of rules, therefore the rules 
of morphogrammatic operations, like iteration and accretion, are second-
order rules.

iteration:  MG ö MGx, xœ AG(MG)
accretion: MG ö MGx, xœ AG(MG)+1

AG(MG) is the operation (rule) to calculate the constants of the continua-
tion operation (rule) applied to the encountered morphogram.

In fact, there are no first-order constants, like elements from an alphabet, 
in the game. Morphogrammatic ‘constants’ are calculated, i.e. produced, 
hence variables or second-order constants. In this sense, they are not 
constants but variables determined by the preceding kenograms of the 
morphogram. The first-order constants are the elements of a semiotic 
alphabet which is involved technically by supporting the notational systems 
of morphogrammatics.
 
Nor are there any variable as stable containers of previous productions in 
the game of kenomic calculi and algorithms.
An application of a rule depends 1. on its definition and 2. on the structure 
of the previous productions represented by the variables. Therefore, as it 
is explained before, a concatenation is always depending on the 
‘conctenat’ too. That is the crucial difference between atomistic and 
kenomic production rules.
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constants but variables determined by the preceding kenograms of the 
morphogram. The first-order constants are the elements of a semiotic 
alphabet which is involved technically by supporting the notational systems 
of morphogrammatics.
 
Nor are there any variable as stable containers of previous productions in 
the game of kenomic calculi and algorithms.
An application of a rule depends 1. on its definition and 2. on the structure 
of the previous productions represented by the variables. Therefore, as it 
is explained before, a concatenation is always depending on the 
‘conctenat’ too. That is the crucial difference between atomistic and 
kenomic production rules.

Calculi
Stroke calculus (Lorenzen, 1950/60s)
Atom : {|}
Variable : {n}
Rules : {R0, R1}
R0: ö |
R1: n ö n|

(R2: R1 œ iteration)

Production: |, ||, |||, ||||, ....
 
Kenomic calculus (Kaehr 1970s)
Atom     : {[kg]}            :( = kenomic constant )
Variable : {[mg]}           :( = kenomic variable )
Rules     : {R0, R1}
R0:        ö [kg]
R1: [mg] ö [mg][kg]   :( = conckeno([mg], [kg]))

(R2: R1 œ iteration, accretionL
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R0:        ö [kg]
R1: [mg] ö [mg][kg]   :( = conckeno([mg], [kg]))
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Example
Atom     : {[a]}       
Variable : {[mg]}  
Rules     : {R0, R1}
R0:          ö [a]
R1.1:       mg = [a]  ö  conckeno(mg = [a], kg = [a])  = {[aa], 
[ab]}œ iteration, accretion
R1.2:       mg = [aa] ö conckeno(mg = [aa], kg = [a]) = {[aaa, [aab]}  
              mg = [ab] ö conckeno(mg = [ab], kg = [a]) = {[aba, [abb], [abc]}.

short:
Atom     : {[a]}       
Variable : {[mg]}  
Rules     : {R0, R1}
R0 :         ö  [a]
R1:          [mg] ö [mg]^[a]:

R1.1:   [a]  ö  [a][a])      = {[a]^[a], [a]^[b]} = {[aa], [ab]}  
R1.2:   [aa] ö [aa][a])     = {[aa]^[a], [aa]^[b]}  = {[aaa], [aab]}
          [ab] ö [ab][a])     = {[ab]^[a], [ab]^[b], [ab]^[c]}.

Production (out of [a]): [a], [aa], [ab], [aaa], [aab], [aba], [abb], [abc]...

This example, again, shows clearly the dependence of the alphabet from 
the applications of the rules and surely, the dependence of the rules from 
the generated alphabet. The classical definition is constructed over an 
alphabet S by a binary relation (x, y) œ S* x S*, while the kenomic case is 
constructed out of a ‘beginning' [a] generating ‘words’ by binary rules of 
the Stirling universe 
(x, y) œ (StirlingSn2(S, *) x StirlingSn2(S, *)) = (x, y) œ K• x K• .

For notational reasons we have to add to the start alphabet of the Stirling 
universe of a calculus an alphabet, i.e. a technical sign repertoire, of 
technical letters, characters like brackets, dots etc. 
Because the definition of binary relations depends on a Cartesian product 
and the kenomic ‘binary relation’ on a Stirling distribution, kenomic rela-
tions are in fact technically not binary relations at all.

Quite obviously, Lorenzen calculi are alphabet-stable, they are defined 
over a pre-given alphabet. Therefore, their tectonics is hierarchical. 
Kenomic calculi are alphabet-variable. The alphabet is part of the produc-
tion, and the production depends solely on the precedent productions and 
not on an abstract application of rules over an alphabet. Hence, their 
tectonics is not hierarchical but heterarchical and is defining a retro-grade 
recursivity. This little difference is in fundamental conflict with the main 
statement of computation (Gurevich):“The vocabulary does not change 
during that evolution.”
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Stable base set vs. self-modifying media
"The choice of the vocabulary is dictated by the chosen abstraction 
level. In a proper formalization, the vocabulary reflects only truly 
invariant features of the algorithm rather than details of a particular 
state. In particular, the vocabulary does not change during the computa-
tion. One may think about a computation as an evolution of the initial 
state. The vocabulary does not change during that evolution. 
Is it reasonable to insist that the vocabulary does not change during 
that evolution?

"There are also so-called self-modifying or “non-von-Neumann” algo-
rithms which change their programs during the computation. For such 
an algorithm, the so-called program is just a part of the data. The real 
program changes that part of the data, and the real program does not 
change.

"While the base set can change from one initial state to another, it 
does not change during the computation. All states of a given run have 
the same base set. Is this plausible? There are, for example, graph 
algorithms which require new vertices to be added to the current 
graph. But where do the new vertices come from? We can formalize a 
piece of the outside world and stipulate that the initial state contains 
an infinite naked set, the reserve. The new vertices come from the 
reserve, and thus the base set does not change during the evolution. 
Who does the job of getting elements from the reserve? The environ-
ment.

"Formalizing this, we can use a special external function to fish out an 
element from the reserve. It is external in the sense that it is con-
trolled by the environment.” (Gurevich)
Yuri Gurevich, Sequential Abstract State Machines Capture Sequential 
Algorithms
ACM Transactions on Computational Logic, vol. 1, no. 1 (July 2000), 
pages 77–111.  
http://research.microsoft.com/en-us/um/people/gurevich/Opera/141.pdf
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Stable base set vs. self-modifying media
"The choice of the vocabulary is dictated by the chosen abstraction 
level. In a proper formalization, the vocabulary reflects only truly 
invariant features of the algorithm rather than details of a particular 
state. In particular, the vocabulary does not change during the computa-
tion. One may think about a computation as an evolution of the initial 
state. The vocabulary does not change during that evolution. 
Is it reasonable to insist that the vocabulary does not change during 
that evolution?

"There are also so-called self-modifying or “non-von-Neumann” algo-
rithms which change their programs during the computation. For such 
an algorithm, the so-called program is just a part of the data. The real 
program changes that part of the data, and the real program does not 
change.

"While the base set can change from one initial state to another, it 
does not change during the computation. All states of a given run have 
the same base set. Is this plausible? There are, for example, graph 
algorithms which require new vertices to be added to the current 
graph. But where do the new vertices come from? We can formalize a 
piece of the outside world and stipulate that the initial state contains 
an infinite naked set, the reserve. The new vertices come from the 
reserve, and thus the base set does not change during the evolution. 
Who does the job of getting elements from the reserve? The environ-
ment.

"Formalizing this, we can use a special external function to fish out an 
element from the reserve. It is external in the sense that it is con-
trolled by the environment.” (Gurevich)
Yuri Gurevich, Sequential Abstract State Machines Capture Sequential 
Algorithms
ACM Transactions on Computational Logic, vol. 1, no. 1 (July 2000), 
pages 77–111.  
http://research.microsoft.com/en-us/um/people/gurevich/Opera/141.pdf

Comparison between “Calculuses and Formal Systems” by Haskell B. Curry, 
Dialectica 47/48, pp. 249-271, 1958

A new challenge for polycontextural designs of formal languages, gram-
mars, rewriting systems and calculi occurs with the chiastification of the 
object- and meta-system, i.e. the chiasm of objects (alphabets, signs, 
keno- and morphograms) and variables (schemes, frames, )

Same length morphograms
Encountered morphogram MG2 = [abbcdd]. How can it be produced by 
which rules from “axiom” MG1=[aabaac]?
Both morphograms are correctly produced by the rules of the morphogram-
matic system. Both are of the same length, therefore they cannot be equiv-
alent. Hence, there is no derivation in the morphogrammatic calculus from 
MG1to MG2.

                         [a]
                          áä
                      [aa]  [ab]
                             á Ø ä
                      [aba][abb][abc]
                            á   ä
                  [abba] [abbb] [abbc] 
                                         á   ä
                              [abbca][abbcc][abbcd]
                                                      á  Ø ä
                                          [abbcda] [abbcdd] [abbcdb] [abbcdc][abbcde]
                  [a]
                   áä
               [aa] [ab]
                áä
          [aaa] [aab]
             á     ä
      [aaaa] [aaba]  [aabb]
                    ä
               [aabaa]
                       ä
                      [aabaac].   
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                         [a]
                          áä
                      [aa]  [ab]
                             á Ø ä
                      [aba][abb][abc]
                            á   ä
                  [abba] [abbb] [abbc] 
                                         á   ä
                              [abbca][abbcc][abbcd]
                                                      á  Ø ä
                                          [abbcda] [abbcdd] [abbcdb] [abbcdc][abbcde]
                  [a]
                   áä
               [aa] [ab]
                áä
          [aaa] [aab]
             á     ä
      [aaaa] [aaba]  [aabb]
                    ä
               [aabaa]
                       ä
                      [aabaac].   

Both produced morphograms are of the same ‘length’, hence there is no 
evolving production rule which is generating a ‘word’ of the same ‘length’ 
with a different pattern and the same path. 
Therefore, the rules of differentiation, called emanation, shall be intro-
duced to transform morphograms of the same complexity into each other 
of the same length.

1.3.3. Semi-Thue systems with morphograms
A keno-string rewriting system or keno-semi-Thue system is a tuple (S, R) 
where tnf(S) is an alphabet, usually assumed finite. The elements of the 
set Sn2(S *) (* is the Kleene star here, Sn2(S *) is the Stirling distribution) 
are finite (possibly empty) keno-strings on tnf(S), sometimes called keno-
sequences or morphograms in formal writing systems; we will simply call 
them keno-strings here.

Two keno-strings A and B are equivalent iff EN(A) = EN(B),

A behavioral or actional approach is contemplating on the behavior of 
kenograms and not on the semio-ontological question of what is a 
kenogram.
Therefore a mix of different definitions of sign-use is possible: EN, TNF, 
SEMiotic, MONomorphy, etc.

Example
Semiotic alphabet: SSEM = {a, b}
Kenomic words over the semiotic alphabet SSEM of length 3: 
Sn2(S*, 3) = {a, aa, ab, aaa, aab, aba, abb}

Sn2(S*)ª K*
K* is the trito-universe TU.

Monomorphies of K*
Monomorphies in kenomic systems are a kind of an analogy to a “sub-
string” in a word or string production system.

For SSEM = {a, b}, length(K*) = 3:
Monomorphies of K*(3) are m(K*, 3) = {[a], [aa], [aaa],[aa][b], [a][b][a], 
[a][bb]}.

Hence, m(K*) = {[a], [aa], [aaa]}. 
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Monomorphies of K*
Monomorphies in kenomic systems are a kind of an analogy to a “sub-
string” in a word or string production system.

For SSEM = {a, b}, length(K*) = 3:
Monomorphies of K*(3) are m(K*, 3) = {[a], [aa], [aaa],[aa][b], [a][b][a], 
[a][bb]}.

Hence, m(K*) = {[a], [aa], [aaa]}. 

1.3.4. Monomorphies
Monomorphic notation 
Monomorphies in morphograms are playing a similar role as atomic signs in 
sign sequences. 
The monomorphies of the morphogram MG = [abbcaa] are writen in a table 
with the distinctions locus, monomorphy and kenogram as follows. 
Monomorphies are produced by the monomorphic decomposition Dec of the 
morphogram MG: Dec(MG) = (mg1, mg2, mg3, mg1) wit the kenograms {a, b, 
c} for mg1= [a], mg2 = [bb], mg3 = [c].

a bb c aa =

MG loc1 loc2 loc3 loc 4

Dec mg1 mg2 mg3 mg1
Ken a b c a

ø b ø a

MG 1.2 .3 .1 loc1 loc2 loc3 loc4

MG 1.0 .3 .0

MG 0.2 .0 .0

MG 0.0 .0 .1

mg 1 - mg 3 -

- mg 2 - -

- - - mg 1

morphogram = kenoms
locus

BmgF

BabbcaaF = J11
1, 22

2, 13
3, 24

1N

Systematics of mor-
phograms
Positionality of morphograms : < Position, Locality, Place > .
Position of themorphogram in a

morphogrammatic system defined by emanation and evolution.
Locality of themonomorphies in amorphogram;
loci are offering place for different monomorphies.
Monomorphiesmight be reduced to homogeneous
patterns or theymight keep some structuration.

Place of a kenom in amonomorphy depending on the length of themonomorphy.

PositionMGJm, nN

MGJmN locus

DecKMGJmN
O monomorphy

KenKMGJmN
O kenom

        

B

morphogrammatics

B

morphogram

B

monomorphy

B

locus

B
place
@kenomD

F
F
F
F
F
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PositionMGJm, nN

MGJmN locus

DecKMGJmN
O monomorphy

KenKMGJmN
O kenom

        

B

morphogrammatics

B

morphogram

B

monomorphy

B

locus

B
place
@kenomD

F
F
F
F
F

Decomposition of morphograms into monomorphies (Gunther)
Given a morphogram [aabc] how to decompose it into its monomorphies?

1.                          [a]
2.                     [aa]  [ab]
3.        [aaa] [aab] [aba] [abb] [abc]
4.     [aaaa] [aaab] .... [aabc] ...[abcd]

Dec([aabc]) = ([aab]; [aa], [ab]; [a])

[aabc] ö  [aab]|[a] ö [aa]|[ab] ö [a].

Production of [aabc]: [a] öiter [aa] öaccr [aab] öaccr [aabc].

In contrary to the semiotic case, composition and decomposition of mor-
phograms are not symmetric.

The decomposition Dec([aabc]) is ”over-complete”, according to Gunther’s 
classification of complexity into incomplete (I), complete (C)and over-
complete(O) because it decomposes into two monomorphies of the same 
length, [aa] and [ab]. Nevertheless, the morphogram [ab] decomposes 
finally into the monomorphy [a]. Hence, the remaining basic monomor-
phies of [aabc] are [a] and [aa]. The monomorphy [aa] is not decompos-
able into smaller monomorphies, say [a], because it is a morphogram with-
out differentiation which would be necessary for a decomposition of the 
morphogram.

Decomposition for MGH4L

Dec([aaaa]) = [aaaa]                          aaaa

Dec([aaab]) = [aaa], [a]                     aaa b

Dec([aaba]) = [aa] |[ab], [a]         aa b a  

Dec([aabb]) = [aa]                             aa bb

Dec([aabc]) = [aab], [aa]|[ab], [a]      aa b c

Dec([abaa]) = [ab] |[aa], [a]              a b aa

Dec([abab]) = [aba], [ab], [a]             a b a b

Dec([abac]) = [aba], [ab], [a]             a b a c

Dec([abba]) = [abb], [aa], [ab], [a]     a b b a

Dec([abbb]) = [a], [aaa]                     a bbb

Dec([abbc]) = [a], [aa], [ab], [a]         a b b c

Dec([abca]) = [ab, [aa]|[ab], [a]         a b c a

Dec([abcb]) = [aab, [aa]|[ab], [a]       a b c b

Dec([abcd]) = [abc], [ab], [a].            a b c d  
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Decomposition for MGH4L

Dec([aaaa]) = [aaaa]                          aaaa

Dec([aaab]) = [aaa], [a]                     aaa b

Dec([aaba]) = [aa] |[ab], [a]         aa b a  

Dec([aabb]) = [aa]                             aa bb

Dec([aabc]) = [aab], [aa]|[ab], [a]      aa b c

Dec([abaa]) = [ab] |[aa], [a]              a b aa

Dec([abab]) = [aba], [ab], [a]             a b a b

Dec([abac]) = [aba], [ab], [a]             a b a c

Dec([abba]) = [abb], [aa], [ab], [a]     a b b a

Dec([abbb]) = [a], [aaa]                     a bbb

Dec([abbc]) = [a], [aa], [ab], [a]         a b b c

Dec([abca]) = [ab, [aa]|[ab], [a]         a b c a

Dec([abcb]) = [aab, [aa]|[ab], [a]       a b c b

Dec([abcd]) = [abc], [ab], [a].            a b c d  

Decomposition of [abbcaa]
Dec([abbcaa]) = ([abbc], [aab]|[abb], [aa]|[ab], [a]).

                                               StirlingSn2(m, n), m = n = 1 to 6
1.                          [a]                                     : 1
2.                     [aa]   [ab]                                : 2
3.        [aaa] [aab] [aba] [abb] [abc]                   : 5
4.     [aaaa] [aaab] ....[abbc] ...  [abcd]              :15
5.   [aaaaa]  [aaaab] ...................[abcde]        : 52
6.  [aaaaaa]  ...     [a bb c aa]   ...       [abcdef]   : 203
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Decomposition of [abbcaa]
Dec([abbcaa]) = ([abbc], [aab]|[abb], [aa]|[ab], [a]).

                                               StirlingSn2(m, n), m = n = 1 to 6
1.                          [a]                                     : 1
2.                     [aa]   [ab]                                : 2
3.        [aaa] [aab] [aba] [abb] [abc]                   : 5
4.     [aaaa] [aaab] ....[abbc] ...  [abcd]              :15
5.   [aaaaa]  [aaaab] ...................[abcde]        : 52
6.  [aaaaaa]  ...     [a bb c aa]   ...       [abcdef]   : 203

1.3.5. Morphogrammatic rewriting rules
P œ Sn2(K*, K*)
(u, v) œ Sn2(K*, K*) such that u fl v.
Then P Œ P’, and 
If u fl v, then uw fl vw and wu fl wv for any monomorphy w.

u fl v  iff there exists a context C and (u, v) œ P such that u = C(x) and v = 
C(y).

"Definition 1.34 A context is a pair C = <y, z>  of strings. 
The substitution of x into C, in symbols C(x), is defined to be the string 
y^x^z. 
We say that x occurs in v in the context C if v = C(x). 
Every occurrence of x in a string v is uniquely defined by its context. 
We call C a substring occurrence of x in v.” (Kracht)

Contexts and contextures
Cid(x), Cequi(x), Csim(x), Cbisim(x), Cmorph(x).

Example
(aa) fl (aaa), then (aa)w1 fl (aaa)w2, w3(aa) fl w4(aaa);  Cid(wi , w j)

and wi = w j, i, j = 1,2,3,4

1.3.6. The Fibonacci word exercise
”Fibonacci words are easily defined by iterating a morphism. In fact, 
the Fibonacci morphism is among the absolute simplest (more precisely 
shortest) conceivable morphism: discard the one letter alphabet, and 
try to define a non trivial short morphism on two letters. It suffices, 
for this, that the image of one letter has length two, and you already 
get Fibonacci’s morphism.” (Jean Berstel, Fibonacci Words - A survey, 
in: G. Rozenberg, A. Salomaa, The Book of L, 1985, pp. 13 - 27)

Production of Fibonacci words
A = {a, b}
e: A*  ö A*,  A* is the Kleene product of signs, e is a morphism from A* to 
A* .
e(a) = ab
e(b) = a

Iteration of this morphism defines the Fibonacci words.
f0= a, f1= ab
fn+2= fn+1fn

f0 = a
f1 = ab        
f2 = aba                    1.0
f3 = abaab                 2.1
f4 = abaababa            3.2
f4 = abaababaabaaba   4.3
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Production of Fibonacci words
A = {a, b}
e: A*  ö A*,  A* is the Kleene product of signs, e is a morphism from A* to 
A* .
e(a) = ab
e(b) = a

Iteration of this morphism defines the Fibonacci words.
f0= a, f1= ab
fn+2= fn+1fn

f0 = a
f1 = ab        
f2 = aba                    1.0
f3 = abaab                 2.1
f4 = abaababa            3.2
f4 = abaababaabaaba   4.3

Kenogrammatic analogon to Fibonacci words

A = {a, b}
{a, b} Œ A: (a) ≠SEM (b)  
eKG: K*  ö K*,  K* is the Stirling distribution of kenogram sequences.
{a, b} Œ K* : [a] =KG [b]
eKG([a]) =KG [ab]
eKG([b]) =KG [a]

f0 = [a], f1= [ab]
fn+2= fn+1Hfn)KENO   

Kenogrammatic composition with iteration and accretion.

f n+2 = f n+1

fn
iter

ˇ

fn
acc

A= 8a, b< is the alphabet of the kenomic Fibonacci
example. Also atomic " signs " are kenomically equal,

i.e. HaL = KG HbL, the signs of the alphabet are used here as technical
signs in a kenomic standard notation form HtnfL. Therefore,

at least two different games have to be distinguished in
the definition of the kenomic Fibonacci word system :

1. The ' semiotics' of the head of the formal language,
i.e. the sign repertoire HalphabetL and
2. the definition of the behavior of the standard signs in the calculus,
i.e. as kenograms of kenomically defined operations HrecursionL f n.

Fibonacci derivations FIBHmL
KG(a, ab):

f0 = a
f1 = ab        
f2 = aba; abb; abc                                                          1.0
f3 = 
aba’ab, aba’ba, aba’ac, aba’bc, aba’ca, aba’cb, aba’cd;     2.1
abb’ab, abb’ba, abb’ac, abb’bc, abb’ca, abb’cb, abb’cd;
abc’ab, abc’ba, abc’ac, abc’bc, abc’ca, abc’cb, abc’cd.              

1, 1, 3, 21, 85, ...

f2 = f1(f0) = ˇ(aba; abb; abc), i.e. the mediated parallelism 

aba
ˇ

abb
ˇ

abc

.
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Fibonacci derivations FIBHmL
KG(a, ab):

f0 = a
f1 = ab        
f2 = aba; abb; abc                                                          1.0
f3 = 
aba’ab, aba’ba, aba’ac, aba’bc, aba’ca, aba’cb, aba’cd;     2.1
abb’ab, abb’ba, abb’ac, abb’bc, abb’ca, abb’cb, abb’cd;
abc’ab, abc’ba, abc’ac, abc’bc, abc’ca, abc’cb, abc’cd.              

1, 1, 3, 21, 85, ...

f2 = f1(f0) = ˇ(aba; abb; abc), i.e. the mediated parallelism 

aba
ˇ

abb
ˇ

abc

.

Fibonacci derivations FIB H2L
KG(a, ab):

f0 = a
f1 = ab        
f2 = aba; abb               1.0
f3 = aba’ab, aba’ba,     2.1
      abb’ab, abb’ba, 

1, 1, 2, 4, ...

f2 = f1(f0) = ˇ(aba; abb), i.e. the mediated parallelism 
aba
ˇ

abb
 .

1.3.7. Inversion and equivalence
In a general morphogrammatic word algebra the equality (equivalence, 
similarity, bisimilarity) of words has to be defined formally. A simple opera-
tor, the inversion of the order of a word, called reflector(refl) offers some 
distinctions between words.

Inverse words produced by the Fibonacci word system might be compared.

For f1 = (ab) we get refl(f1) = (ba). The word (ba) is not a word of the semi-
otic Fibonacci word system.
A kenomic consideration shows that both words (ab) and (ba) are equiva-
lent: (ab) =KG refl(ab).

This holds generally for all symmetrical kenomic words: 

H1, 2 œ SYM: H1 =KG H2.

This nice property of kenomic word systems is helping to reduce the work 
into half, like duality in category theory is offering “two for one" 
(Herrlich).
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In a general morphogrammatic word algebra the equality (equivalence, 
similarity, bisimilarity) of words has to be defined formally. A simple opera-
tor, the inversion of the order of a word, called reflector(refl) offers some 
distinctions between words.

Inverse words produced by the Fibonacci word system might be compared.

For f1 = (ab) we get refl(f1) = (ba). The word (ba) is not a word of the semi-
otic Fibonacci word system.
A kenomic consideration shows that both words (ab) and (ba) are equiva-
lent: (ab) =KG refl(ab).

This holds generally for all symmetrical kenomic words: 

H1, 2 œ SYM: H1 =KG H2.

This nice property of kenomic word systems is helping to reduce the work 
into half, like duality in category theory is offering “two for one" 
(Herrlich).

2. Finite State Automata

2.1. Classical FSA
2.1.1. Automaton and language

Finite State Machine
"We consider non-deterministic finite state machines with no accepting 
states, defined as follows. 
A finite state machine (FSM) is a quadruple M = (S, Q, q0, d), where S is 
the alphabet of input symbols, Q is the set of states, q0 is the initial state, 
and d is the transition function, which maps Q × S to subsets of Q. If every 
d(q, a) contains exactly one state, then M is deterministic. 
In this case we may write d(q, a) = q’ instead of d(q, a) = {q' }."
http://www.cs.yale.edu/homes/aspnes/papers/lata2011-proceedings.pdf 

Binary relation
A binary relation, denoted by Ø, is any subset of the Cartesian product P × 
P . 
For any binary relation Ø Õ P × P : 
domain( Ø) =def { a | $b, (a, b) œ Ø}, and 
range( Ø)   =def { b | $a, (a, b) œ Ø}. 

Automaton
M = HQ, S, d, q 0, FL
Q : States
S : Alphabet
d : state- transition function
q 0 : initial state
F Œ Q : set of final states

FSM transition function
d:  x S ö ,
rewriting rules: qiak ö qj, with qi, qj are states, akis input symbol

The transition function d : Q × S Ø Q of a DFA can be extended to Q × S* as 
follows: 
d(q, ε) = q 
d(q, wa) = d(d(q, w), a). 

Language
L = { w œ S* | q0w fl*qfε, with qf œ F}
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FSM transition function
d:  x S ö ,
rewriting rules: qiak ö qj, with qi, qj are states, akis input symbol

The transition function d : Q × S Ø Q of a DFA can be extended to Q × S* as 
follows: 
d(q, ε) = q 
d(q, wa) = d(d(q, w), a). 

Language
L = { w œ S* | q0w fl*qfε, with qf œ F}

2.2. Kenomic FSA
2.2.1. Explanations and motivations

This exercise is focusing on the transition rule (function). The conse-
quences for the concepts of the alphabet, the states and the initial state 
will be reflected later and will be conceived then as the pre-conditions of 
the new understanding of the transition function and the concept of the 
kenogrammatic finite state machines (kenoFSM) as such.

Elementary cellular automata are collections of simple finite state 
machines. 
In a similar sense, morphogrammatic cellular automata are interacting 
collections of elementary kenomic ‘finite state automata’. Each term, 
‘finite’, 'state’, 'automata’, deserves a proper deconstruction.

In earlier approaches, the strategic order was inverse. The focus was on 
the intriguing situation of the ‘non'-alphabet character of kenogrammatics 
and its paradoxical consequences. The new approach plays with the fact of 
the Stirling character of the kenogram sequences and morphograms and 
with a standard representation of the ‘non'-representable alphabet and 
kenogrammatic sequences, i.e. the trito-normal form (tnf).

In other words, only the kind of usage of marks defines their role as semi-
otic, kenogrammatic or morphogrammatic in the graphematic game. 
Hence, marks in an alphabet are playing in the context of the alphabet 
their semiotic role. In the use of a kenomic context, the mark of the alpha-
bet are playing the roles of kenograms. Then as a collection of kenograms, 
all elements of an alphabet are kenomically the same. 

One of the most elicit analysis of an abstract theory of computation is 
given by Gurevich’s  Abstract State Machines (ASM). This way of thinking 
was reflected in my “Skizze-0.9.5” from 2003. Like with Konrad Zuse, 
computation is defined by Gurevitch as a step-wise transition in time, 
guided by rules, from an initial to a terminal object, the result of the 
computation. 
Obviously, the limits of this paradigm are clear: no interactivity. Computa-
tion is conceived as problem-solving and not as a media of interacting 
processes, without beginning nor end. 
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This exercise is focusing on the transition rule (function). The conse-
quences for the concepts of the alphabet, the states and the initial state 
will be reflected later and will be conceived then as the pre-conditions of 
the new understanding of the transition function and the concept of the 
kenogrammatic finite state machines (kenoFSM) as such.

Elementary cellular automata are collections of simple finite state 
machines. 
In a similar sense, morphogrammatic cellular automata are interacting 
collections of elementary kenomic ‘finite state automata’. Each term, 
‘finite’, 'state’, 'automata’, deserves a proper deconstruction.

In earlier approaches, the strategic order was inverse. The focus was on 
the intriguing situation of the ‘non'-alphabet character of kenogrammatics 
and its paradoxical consequences. The new approach plays with the fact of 
the Stirling character of the kenogram sequences and morphograms and 
with a standard representation of the ‘non'-representable alphabet and 
kenogrammatic sequences, i.e. the trito-normal form (tnf).

In other words, only the kind of usage of marks defines their role as semi-
otic, kenogrammatic or morphogrammatic in the graphematic game. 
Hence, marks in an alphabet are playing in the context of the alphabet 
their semiotic role. In the use of a kenomic context, the mark of the alpha-
bet are playing the roles of kenograms. Then as a collection of kenograms, 
all elements of an alphabet are kenomically the same. 

One of the most elicit analysis of an abstract theory of computation is 
given by Gurevich’s  Abstract State Machines (ASM). This way of thinking 
was reflected in my “Skizze-0.9.5” from 2003. Like with Konrad Zuse, 
computation is defined by Gurevitch as a step-wise transition in time, 
guided by rules, from an initial to a terminal object, the result of the 
computation. 
Obviously, the limits of this paradigm are clear: no interactivity. Computa-
tion is conceived as problem-solving and not as a media of interacting 
processes, without beginning nor end. 

2.2.2. Keno-Languages and -Automata
A deconstruction of FSM and rewriting systems has to start wit a deconstruc-
tion of the underlying basics concepts. One important basic concept is the 
binary relation.

A first deconstructive step would have to contextualize the concept of 
relationality of the concept of binary relation which is based on relational 
logic and the Wiener-Kuratovsky definition of an ordered pair of elements.
A second step has to deconstruct the concept of binarity, P × P, of the 
binary relation.

P × P #  P x P; Q : contextualization (context-logical decomposition)
P × P #  StirlingSn2(P, 2): From sets to distributions. 

Binary relation
A kenomic binary relation, denoted by Ø, is any subset of the Stirling 
distribution StirlingSn(P, 2) . For any kenomic binary relation Ø Õ StirlingS-
n(P, 2) : 
domain( Ø) =def { a | $b, (a, b) œ Ø}, and 
range( Ø)   =def { b | $a, (a, b) œ Ø}. 

A n-ary kenomic relation, denoted Øn, is any subset of the Stirling distribu-
tion StirlingSn(P, n).

kenoFSM-Automaton
M = H@Q D, S, d keno, @q 0D, @FDL
@Q D : States
S : Alphabet, technical
d KENO : keno- state- transition function
@q 0 D : kenomic initial state
@FD Œ @Q D : set of final kenomic states

kenoFSM transition function
d keno : SumHStirling Sn2HQ, SLL

EQ
@Q D

Retro-grade recursion
d keno([q,] ε) = [q] 
d keno([q], [w]^[a]) = d keno(d keno([q], [w]), [a]). 

rewriting rules: [qi][ak] EQ
 [qjE, with [qi], [qj] as states, [ak] is input 

symbol.
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Retro-grade recursion
d keno([q,] ε) = [q] 
d keno([q], [w]^[a]) = d keno(d keno([q], [w]), [a]). 

rewriting rules: [qi][ak] EQ
 [qjE, with [qi], [qj] as states, [ak] is input 

symbol.

Language
L = {w œ K* | [q0] [w] ï

EQ

* @qf]ε, with [qf] œ F}, K* = Sum(StirlingSn2(S, *))

2.2.3. Formal aspects of kenomic cellular automata 
Alphabet, language and classical CA
"An alphabet S is a finite nonempty set of symbols. S* denotes the set of all 
finite strings of symbols from S. The empty string is denoted l. A language 

is any subset of S*. Sk denotes those elements of S* of length k. The sym-
bols in a string s of length n are indexed from 1 to n  and s[i] denotes the 

ith symbol of s. 

"Kari [6] notes that cellular automata have several fundamental properties 
of the physical world: they are massively parallel, homogeneous, and 
reversible, have only local interactions, and facilitate formulation of conser-
vation laws based on local update rules. We consider one-dimensional 
asynchronous reversible cellular automata with insertions and deletions 
because they support universal computation. 

"A cellular automaton C = (S, d) is composed of an alphabet of symbols S 
and a set d transition rules of the form axb ¨ ayb for substitutions or ab ¨ 
axb for insertions and deletions, where a, b, x, y œ S. 
The idea is that the value of a given cell of the automaton may change 
only when both its neighbors have specific values. 

"For s1, s2 œ S*, s1 can reach s2 in one step of C , denoted s1 ØC s2, if apply-
ing one transition rule to s1 yields s2. And s1 can reach s2 in C if s1 Ø*C s2. 
Given an input string s œ S*, a snapshot of C on input s is any string s’ such 
that s can reach s’ in C."

2.2.4. Operations on kenoCAs
Union of machines
Examples

A. Classical CAs
1. Q = states
Q = {(r1, r2) | r1œ Q1 and  r2œ Q2}

The set is the Cartesian product of sets Q1and Q2 and is written Q1 x Q2.
union HR9, R4L = |head(R9)| x |head(R4)| = 3 x 3 = 9

2.  Alphabet: S1 = S2 = {‡, ·}

3. rules
(r1, r2)œ Q, a œ S :
d ((r1, r2), a) = (d1(r1, a), d2(r2, a))

4. initial
q0 = (q1, q2)
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2.  Alphabet: S1 = S2 = {‡, ·}

3. rules
(r1, r2)œ Q, a œ S :
d ((r1, r2), a) = (d1(r1, a), d2(r2, a))

4. initial
q0 = (q1, q2)

B. Kenogrammatic CAs
kenogrammatics of union
1. States
Q = {(r1; r2)|r1œ Q1; r2œ Q2}

The set is the Stirling union of sets Q1 and Q2 and is written StirlingSn2(Q1, 
Q2).
StirlingSn2( Q1) x StirlingSn2( Q2)≠ StirlingSn2(Q1 x Q2)

addHR9, R4L = StirlingSn2(add(head(R9), head(R4))) = 4

2.  Alphabet: 
S = S1 = S2:
add( S1, S2) > S
additer( S1, S2 ) = S
addaccr( S1, S2 ) = add( S1, Tsucc(S2)) > S

add( S1={‡, ·}, S2 = {‡, ·}) = 
S1={‡, ·}, 
S2 = Tsucc({‡, ·}) = {‡, ·, ‡}.

3. rules
(r1, r2)œ Q, a œ S :
d ((r1, r2), a) = (d1 (r1, a), d2 (Tsucc(r2, a)))

r1=  @‡ ‡ ·],
r2 = [‡ · ·]

addHR2, R9L = 

R2
‡ ‡ ·

- ‡ -
R9

‡ · ·

- · -

R2
‡ ‡ ·

- ‡ -
R9

· ‡ ‡

- ‡ -

R2
‡ ‡ ·

- ‡ -
R9

‡ ‡ ‡

- ‡ -

R2
‡ ‡ ·

- ‡ -
R9

· ‡ ‡

- ‡ -
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addHR2, R9L = 

R2
‡ ‡ ·

- ‡ -
R9

‡ · ·

- · -

R2
‡ ‡ ·

- ‡ -
R9

· ‡ ‡

- ‡ -

R2
‡ ‡ ·

- ‡ -
R9

‡ ‡ ‡

- ‡ -

R2
‡ ‡ ·

- ‡ -
R9

· ‡ ‡

- ‡ -

4. initial 
q0 = (q1, q2) fl q0 = add(q1, q2)

Example
q0 = add(q1, q2) = (q1, q2, q3, q4)
q0 = (q1 = {[ ‡ · D}, q2 = {@·, ‡D}, q3= {[ ‡ ‡ D}, q4 = {@·, ‡D}

Concatenation of kenomic languages
A =SEM {a, b}, B =SEM {b, c}}
AB =SEM {ab, ac, bb, bc} 

A =KENO {1, 2}, B =KENO {1, 2}
kconcat ([1, 2], [1, 2]):
[AB] =KENO {[1212],[1221],[1213],[1231],[1223],[1232],[1234]}.  

2.2.5. Symmetric cellular automata and reduction
"Exploiting the symmetry with respect to renaming of q states of cellular 
automata allows us to reduce the number of rules to consider. Namely, it 
suffices to consider only orbits (equivalence classes) of the rules under q! 
permutations forming the group Sq.” Vladimir V. Kornyak, Cellular 

Automata with Symmetric Local Rules, 2006

"Definition 3.1. A cellular automaton A = (S, N, d) is said to be symmetric 
if 
d(s1 , s2 , . . . , s N  ) = d(ssH1L , ssH2L , . . . , ssH N L ), 

for every s1 , s2 , . . . , s N  œ S and s œ S N  (the permutation group of |N 

| degree)."
http://www.mtns2004.be/database/papersubmission/upload/341.pdf 

Permutations are not in conflict with the concept of identity of their ele-
ments. Identity is of the elements is a precondition for their permutation.  
Permutational equivalence is not kenogrammatic sameness. On a kenogram-
matic level, permutational equivalence leads from the trito- to the 
deutero-level of structuration. Therefore, the permutational reduction of 
CAs is different from a kenomic reduction of CAs.
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Permutations are not in conflict with the concept of identity of their ele-
ments. Identity is of the elements is a precondition for their permutation.  
Permutational equivalence is not kenogrammatic sameness. On a kenogram-
matic level, permutational equivalence leads from the trito- to the 
deutero-level of structuration. Therefore, the permutational reduction of 
CAs is different from a kenomic reduction of CAs.

3. Conditions for concatenation and substitution

3.1. Types of compositions
MG H m H m H m H m H m
= MG + + + + + + - - +- +-
= sem + + + - - - - - - -
[ + + + + + + - - Ñ Ñ

type id Ñ eq Ñ sim Ñ bisim Ñ metamorph Ñ
CA CCA Ñ kenoCA Ñ morphCA Ñ bisimCA Ñ metamCA Ñ

3.1.1. Equaity: Concatenation
u fi idv :
ufl MG v, w 1ufl SEMw 2 v and uw 3 fl SEM vw 4and
w 1 = semw 2= semw 3 = semw 4. : @++++D

HTrivially equal : u fi idv : ufl SEM v and w 1 = semw 2 = semw 3 = semw 4.L

u fi idv : ufl MG v, ufl SEM v and w 1,2,3,4œ C ID.

u fi idv
wu fl SEMwv uw fl SEM vw w 1,2,3,4œ C ID

Equality
w œ C ID

u fi
ID

v

w 1u fi
ID

w 2v , uw 3 fi
ID

vw 4

Table

B

Id wx xw w 12 w 34

MG + + + +
SEM + + + +

F =  B
Id wx xw w 12 w 34

SEM + + + +
F 
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Table

B

Id wx xw w 12 w 34

MG + + + +
SEM + + + +

F =  B
Id wx xw w 12 w 34

SEM + + + +
F 

Example

u = v = JaabN,

w 1 = semw 2= semw 3 = semw 4 = JccN

JaabN
ID

JaabN

JaabN JccN
ID

JaabN JccN, JccN JaabN
ID

JccN JaabN

Lambda-Example I

Jlw.wwN JJlv.vvN uN : t 0 Jsubst : Jl v tN s N t BvísF IDN

ã é

Jlw.wwN JuuN Jlv.vvN u JJlv.vvN uN : t 1, t 2, u = SEM u

u u JJlv.vvN uN

é ã

uu JuuN : t 1 = ID t 2.

Cellular automata scheme
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CA transition rule

CA = BCA, fF

Bc i - 1 JtN, c i JtN, c i+1 JtNF

f = transition

c i Jt + 1N

Null
3.1.2. Equivalence: Juxtaposition

u fieq v:  
w1u flMG w2v,  w3u flSEM w4v,
uw1 flMG vw2,  uw3 flSEM vw4,

wi œ CEQ, i = 1,...,4:

w1≠sem w2, w1 =MG w2,
w3≠sem w4, w3=MG w4,
w1 =sem w3, w1 =MG w3,
w2=sem w4, w2=MG w4.

Equivalence
w œ C EQ

u
EQ

v

w 1u î
EQ

w 2v , uw 3 î
EQ

vw 4

Table

B

Equ wx xw w 12 w 34 w 13 w 24

MG + + + + + +
SEM - - - - + +

F

Example

u = BaabF, v = BbbaF
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w 1, 2 = BccF, w 3,4 = BddF :

BaabF
EQ

BbbaF

BaabFBccF
EG

BbbaFBddF BccFBaabF
EQ

BddFBbbaF

Lambda-Example-II

Terms = :u, v, w, x, y, z>

subst : Jl v tN s N t BvísF keno

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN x JJlv.vvN xN Jlw.wwN JuuN : t 1, t 2, u = KENO x

xx JJlv.vvN xN

é

xx JxxN = MG uu JuuN : t 1 ≠ SEM t 2, t 1 = KENO t 2

Lambda-Example-III

Terms = :u, v, w, x, y, z>

subst : Jl v tN s N t BvísF keno

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN x JJlv.vvN xN

Jlv.vvN z JJlv.vvN zN
,

Jlw.wwN JuuN

Jlw.wwN JyyN
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xx JJlv.vvN xN

zz JJlv.vvN zN

é ã

xx JxxN

zz JzzN
,

uu JuuN

yy JyyN
: t 1 ≠ SEM t 2, t 1 = KENO t 2

kenoCA transition scheme

kenoCA = BCA, m, fF

Const JtN : Bc i - 1 JtN, c i JtN, c i+1 JtNF

m= ENtoKS JENS Jc i-1 c i c i+1NN

œ :Head JRuleN>

fJmN= rule

Const Jt+ 1N : c i Jt+ 1N : Rule-Result

3.1.3. Similarity: Cooperation

Ju SIM vN
w 1u SIMw 2 v

uw 3 SIM vw 4

wuŸ SEMwv, uwŸ SEM vw
w œC SIM :
w 1≠ semw 2, w 1= MGw 2

w 3≠ semw 4, w 3= MGw 4

w 1≠ semw 3, w 1= MGw 3

w 2≠ semw 4, w 2= MGw 4
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w 2≠ semw 4, w 2= MGw 4

Similarity
w œ C SIM

u
SIM

v

w 1u
SIM

w 2v , uw 3
SIM

vw 4

Table u fl
SIM

 v 

B

u fi
SIM

v wx xw w 12 w 34 w 13 w 24

MG + + + + + +
SEM - - - - - -
[ + + . . . .

F

Example: u fl
SIM

 v

u = [aab], v = [bba]
u flMG v, u ¬flSEMv
w1 = @cc], w2 = [dd] : w 1 ≠ sem w 2, w 1 = MG w 2

w3 = @ee], w4 = [ff] : w 3 ≠ sem w 4, w 3 = MG w 4

wi œSIM, i=1,2.3.4

length(w1) = length(w2)
w 1 ≠ sem w 2

sem(wi) [ sem(u)= ø, i = 1,2

length(w3) = length(w4)
w 3 ≠ sem w 4

sem(wi) [ sem(v)= ø, i = 3,4

length(w1) = length(w3)
w 1 ≠ sem w 3

sem(wi) [ sem(v)= ø, i = 1, 3

length(w2) = length(w4)
w 2 ≠ sem w 4

sem(wi) [ sem(v)= ø, i = 2, 4
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Example: u fl
SIM

 v

u = [aab], v = [bba]
u flMG v, u ¬flSEMv
w1 = @cc], w2 = [dd] : w 1 ≠ sem w 2, w 1 = MG w 2

w3 = @ee], w4 = [ff] : w 3 ≠ sem w 4, w 3 = MG w 4

wi œSIM, i=1,2.3.4

length(w1) = length(w2)
w 1 ≠ sem w 2

sem(wi) [ sem(u)= ø, i = 1,2

length(w3) = length(w4)
w 3 ≠ sem w 4

sem(wi) [ sem(v)= ø, i = 3,4

length(w1) = length(w3)
w 1 ≠ sem w 3

sem(wi) [ sem(v)= ø, i = 1, 3

length(w2) = length(w4)
w 2 ≠ sem w 4

sem(wi) [ sem(v)= ø, i = 2, 4

BaabF
SIM

BbbaF

BaabFBccF
SIM

BbbaFBddF, BeeFBaabF
SIM

BffFBbbaF

Example I- SIM

Terms = :u, v, w, x, y, z>

subst : Jl v tN s t BvísF SIM

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvN x JJlv.vvN xN Jlw.wwN JuuN : Jbr u-xN, Ja1N; Jbr u-uN : t 1, t 2

xx JJlv.vvN xN : Jbr x-xN, Ja2N : t 1

é

xx JyyN = SIM uu JuuN : Jbr x-yN; Ja1N, Jbr u-uN

: t 1 ≠ SEM t 2, t 1 ≠ keno t 2,
: t 1 = SIM t 2, .

3.1.4. Bisimilarity: Fusion
Bisimilarity
w 1

BIS
w 2 iff

$ w 1 , w 2 : Jw 1 w 2N œ JDec, Vk, Vs, EVk, EVsN

length Jw 1N≠ length Jw 2N :

$ Jx 1, x 2N : EVk JBw 1FN = Jx 1, x 2N

$ Jy 1, y 2N : EVs JBw 2FN = Jy 1, y 2N

IF
Vs Jx 1, x 2N = Bw 2F

Vk Jy 1, y 2N = Bw 1F
THEN w 1

BIS
w 2 .
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Bisimilarity

Vs JEVk Jw 1N N = Vk JEVs Jw 2NN

Table: u î
BIS

 v 

B

u î
BIS

v wx xw w 12 w 34 w 13 w 24

MG - - - - + +
SEM - - - - - -
[ + + . . . .

length - - - - + +

F

Conditions : u
BIS

v

wuŸ SEMwv, uwŸ SEM vw
w œ C BIS :
w 1≠ semw 2, w 1≠ MGw 2

w 3≠ semw 4, w 3≠ MGw 4

w 1≠ semw 3, w 1= MGw 3

w 2≠ semw 4, w 2= MGw 4

Bisimilarity
w œ C BIS :

u î
BIS

v

w 1u î
BIS

w 2v , uw 3 î
BIS

vw 4
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Example
u

BIS
v, w 1, w 2

For
length Jw 1N≠ length Jw 2N

and
EVk JBw 1FN= JBabF, BabFN

EVs JBw 2FN= JBabF, BabFN

and
Vs JBabF, BabFN= Bw 2F

Vk JBabF, BabFN= Bw 1F
then Vs JEVk Jw 1N N = Vk JEVs Jw 2NN

w 1 u
BIS

w 2 v

Example - BIS

Terms = :u, v, w, x, y, z>

subst : Jl v tN s t BvísF BIS

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvvN y JJlv.vvvN xN Jlw.wwN JuuN : Jbr, xx = BIS vvvN, Ja1N; Jbr v-uN

yyy JJlv.vvvN xN : JbrN, Ja2N : t 1

é

yyy JxxxN = BIS uu JuuN : Jbr v-xN; Ja1N, Jbr w-uN

: t 1 = SIM t 2, .

http://memristors.memristics.com/Church-Rosser%20Morphogrammatics/Church-Ross-
er%20in%20Morphogrammatics.pdf 
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Example - BIS

Terms = :u, v, w, x, y, z>

subst : Jl v tN s t BvísF BIS

Jlw.wwN JJlv.vvN uN : t 0

ã é

Jlv.vvvN y JJlv.vvvN xN Jlw.wwN JuuN : Jbr, xx = BIS vvvN, Ja1N; Jbr v-uN

yyy JJlv.vvvN xN : JbrN, Ja2N : t 1

é

yyy JxxxN = BIS uu JuuN : Jbr v-xN; Ja1N, Jbr w-uN

: t 1 = SIM t 2, .

http://memristors.memristics.com/Church-Rosser%20Morphogrammatics/Church-Ross-
er%20in%20Morphogrammatics.pdf 

Morphic transition rule scheme

Morphic rule CabbG CabG; 2- blending

a b b : trito normal form JtnfN

f : local rule 2 - blending

x x a b x x local result

conflict

x x x a b : target

x x b a x x

fusion

x x x a b x

new configuration : x x b a b x

Transition scheme for morphCA
morphCA = BCA, m, j, fF,

c i JtN : Bc i - 1 JtN, c i JtN, c i+1 JtNF

f= j JmN

c i Jt+ 1N : B c i c' iF Jt + 1N

3.1.5. Metamorphosis of rewriting
Recall, “Elements of P are variously called defining relations, productions, 
or rewrite rules, and  itself is also known as a rewriting system. If (x, y)œ 
P, we call x the antecedent, and y the consequent. 
Instead of writing (x, y)œ P or xPy , we usually write 
                                                                      x ö y."

Up to now, the transformation rules of rewriting systems had been defined 
in a still quite straight forward sense of succession of antecedent and conse-
quent by substitution.

Funny candidates joined this game which was opened up by Thoralf Skolem 
with his identity conserving productions. Kenogrammatic rewriting systems 
introduced an abstraction on the 'data' transforming sign systems to 
kenogrammatic systems. With the idea of overlapping and fusion a mecha-
nism to deal with overdetermined rewriting systems had been opened up as 
morphic systems.

Nevertheless, the brave succession and hierarchical order of antecendents 
and precedents had been untouched and accepted by this change of the 
modi of interaction, and was leading the introduction of the semiotic, 
kenomic and morphic concepts of rewriting systems.

A much more intriguing situation is possible with the idea of metamorphic 
transformations.

A full fledged involvement of the concept of diamond categorical inter-
changeability of distributed functors allows to introduce the paradox of a 
simultaneity of sameness and differentness in the game of interchanging 
roles.
Therefore, morphisms are not just changing objects in the mode of equal-
ity, equivalence, similarity and bisimilarity but in the mode of metamor-
phosis too. Metamorphosis is understood in the strict sense of an interplay 
of change and pertinence. 
Hence, an antecedent is not just producing its precendent by a transition 
rule but is at once also keeping itself in the game of change as the antecen-
det of a precendent.
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Up to now, the transformation rules of rewriting systems had been defined 
in a still quite straight forward sense of succession of antecedent and conse-
quent by substitution.

Funny candidates joined this game which was opened up by Thoralf Skolem 
with his identity conserving productions. Kenogrammatic rewriting systems 
introduced an abstraction on the 'data' transforming sign systems to 
kenogrammatic systems. With the idea of overlapping and fusion a mecha-
nism to deal with overdetermined rewriting systems had been opened up as 
morphic systems.

Nevertheless, the brave succession and hierarchical order of antecendents 
and precedents had been untouched and accepted by this change of the 
modi of interaction, and was leading the introduction of the semiotic, 
kenomic and morphic concepts of rewriting systems.

A much more intriguing situation is possible with the idea of metamorphic 
transformations.

A full fledged involvement of the concept of diamond categorical inter-
changeability of distributed functors allows to introduce the paradox of a 
simultaneity of sameness and differentness in the game of interchanging 
roles.
Therefore, morphisms are not just changing objects in the mode of equal-
ity, equivalence, similarity and bisimilarity but in the mode of metamor-
phosis too. Metamorphosis is understood in the strict sense of an interplay 
of change and pertinence. 
Hence, an antecedent is not just producing its precendent by a transition 
rule but is at once also keeping itself in the game of change as the antecen-
det of a precendent.

3.1.6. Types of change
1. transition succession :

Antecedent ö Precedent, succession-modi = :id, eq, sim, bisim>

2. transition chiasm :
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Antecedent 1 ö Precedent 1

X

Precedent 2 ô Antecedent 2

The wording here is
Antecedents becomes Precedents and Precedents becomes

Antecedents.

3. transition polycontextural :

Antecedent 1.3 ö Precedent 1

X

Precedent 2.3ô Antecedent 2

The wording here is, "Antecedents becomes Precedents and Precedents 
becomes Antecedents. The result is reflected in system3".

4. transition diamond :

Antecedent 1.3ö Precedent 1

X

Precedent 2.3ô Antecedent 2

Jsystem 4N

system 4 : Precedent 4 ô Antecedent 4   

"The matching conditions of the chaistic and polycontextural construction 
are reflected in the ‘antidromic’ system4.”

5.transitionmetamorphosis: 

B

Jsystem 1.1 N ˇ Jsystem 2.2 N

Jsystem 1.1 Ì 2.1N ˇ Jsystem 2.2 Ì 1.2N

Jsystem 1.2 N ˇ Jsystem 2.1 N

Jsystem 1.1 Ì 2.1N ˇ Jsystem 2.2 Ì 1.2N

F

Null
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Jmetaphor : Gregor Samsa JFranz KafkaN

as Gregor in the process of metamorphosisN

Null

6. transition diamond-metamorphosis :

B

Jsystem 1.1 N ˇ Jsystem 2.2 N

Jsystem 1.1 Ì 2.1N ˇ Jsystem 2.2 Ì 1.2N

Jsystem 1.2 N ˇ Jsystem 2.1 N

Jsystem 1.1 Ì 2.1N ˇ Jsystem 2.2 Ì 1.2N

F

system 4:J1.1-2.2N

system 4 :J1.1-2.1; 2.2-1.2N

system 4:J1.2-2.1N

system 4: J1.1-2.1; 22-12N

Jmetaphor : Gregor Samsa in metamorphosis,

reflecting the metamorphosis of his environment N

3.1.7. Type/term model of metamorphosis

"The wording here is not only "types becomes terms and terms becomes 
types" but “a type as a term becomes a term" and, at the same time, "a 
type as type remains a type". Thus, "a type as a term becomes a term and 
as a type it remains a type". And the same round for terms.

Full wording for a chiasmbetween terms and types over two loci
Explicitly, first the green round,
" A types 1.1 as a termM 2.1 becomes a termM 2.1

and as a types 1.1 it remains a types 1.1 for a termM 1.1 ".
And,
" A types 2.2 as a termM 1.2 becomes a termM 1.2

and as a types 2.2 it remains a types 2.2 for a termM 2.2 ".

And simultaneously, mediated,
the second round in red, the same for terms :
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the second round in red, the same for terms :
" A termM 1.1 as a type s 2.1 becomes a types 2.1

and as a termM 1.1 it remains a termM 1.1 for a type 1.1 ".
And,
" A termM 2.2 as a type s 1.2 becomes a types 1.2

and as a termM 2.2 it remains a termM 2.2 for a type 2.2 ".

And finally, between termsM 1.1 andM 2.2 and typess 1.1 ands 2.2,
a categorial coincidence is realized.
While between terms and types amorphism Horder relationL exists.

http://memristors.memristics.com/Polyverses/Polyverses.html 
http://memristors.memristics.com/Dominos/Domino%20Approach%20to%20Morphogrammat
ics.html 
http://www.thinkartlab.com/pkl/lola/From%20Ruby%20to%20Rudy.pdf 

3.1.8. Interchangeability of metamorphosis
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Metamorphic interactivity

BJM, sN, ª , ú, Î, ˇF

JJs 1 º M ' 2N Î JM ' 1 º s 2NN

ù ˇ ù

JJM 1 º s ' 2N Î Js ' 1 º M 2NN

:

B

JM 2 º

ˇ

JM 1 º

M ' 2N

ù

M ' 1N

F Î B

Js 2

Js 1

º s ' 2N

ˇ ù

º s ' 1N

F =

B

JM 2 Î

ˇ

JM 1 Î

s 2N

s 1N

F º B

JM ' 2

JM ' 1

Î s ' 2N

ù

Î s ' 1N

F

Î : composition, ˇ : mediation
ù : interchange, º : similarity

3.1.9. Some summary
Interdependence of operators JÎ, ˇ , ú , º N : Metamorphism

JM 1 Î s 1N ˇ JM 2 Î s 2N

Js ' 2 ù M '1N

Js ' 1 ù M ' 2N

ó

M 1 º s ' 2
s ' 1 º M 2

s 1 º M ' 2
M '1 º s 2

Interdependence of operators JÎ,⊗, ª N : Equality
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B

JM 1 Î s 1N

⊗
JM 2 Î s 2N

=

M 1

⊗
M 2

Î

s 1

⊗
s 2

F ó

M 1 ª M 1

s 1 ª s 1

M 2 ª M 2

s 2 ª s 2

Interdependence of the operators JÎ, ˇ , >N : Similarity

B

JM 1 Î s 1N

ˇ

JM 2 Î s 2N

=
M 1

ˇ

M 2

Î

s 1

ˇ

s 2

F ó
M 1 > M 2

s 1 > s 2

3.2. Transitive closures
3.2.1. Linearity

"Next, take the reflexive transitive closure P” of P' . Write a fl b for (ab)œ 
P". So a fl* b means that either a = b , or there is a finite chain a = a1, ..., 
an = b such that ai fl ai+1 for i =1, ..., n-1. When a fl* b, we say that b is 
derivable from a.“

"Concatenation preserves derivability:
a fl * b and c  fl * d imply ac  fl * bd .” (PlanetMath)

Morphogramatics of concatenation

a fi * b and c fi *d imply a^c  fi * b^d .

Depending on the definition of the concatenation operation "^", different 
realizations have to be distinguished.

Candidates are:

Identity (equality)
Equivalence 
Similarity
Bisimilarity
Metamorphosis.

Identity
a flid * b and c flid *d imply a^c  flid * b^d 

Equivalence
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Ja eq *bN and Jc eq *dN imply

a^ i c eq * b^ i d

ˇ

a^ j c eq * b^ j d

Ja eq *bN

ˇ

Jc eq *dN

JaN

ˇ

JcN

eq

JbN

ˇ

JdN

3.2.2. Bifunctoriality
For ambiguous semi-Thue systems, like the morphogrammatic semi-Thue 
systems, the interplay of bifunctorial interchangeability gets some rele-
vance in the definition of the rewriting system as such.

Up to isomorphism and down to kenomic sameness
Two kenomic semi-Thue systems are equal iff they are equivalent, i.e. 
isomorphic. 

3.3. Category theory and rewriting systems
3.3.1. Graph transformation

"We have introduced a new notion of abstract rewriting system based on 
categories. These systems are designed for dealing with abstract rewriting 
frameworks where rewrite steps are defined by means of matches. We 
have defined the properties of (horizontal) composition as well as functori-
ality of rewriting in our abstract setting and we have illustrated these 
properties throughout several algebraic graph rewriting systems.” (F. 
Prost et al)
http://arxiv.org/pdf/1101.3417v3

Also horizontal and vertical aspects of categorical compositions are consid-
ered, the main point still is to develop a well glued approach in the sense 
of the Berlin school of Graph transformation (Ehrig, König). The ultimate 
glue is offered by the category-theoretic span concept. Pushouts and spans 
are ”used for describing graph transformation systems as categorical 
rewriting systems”.

"In a categorical rewriting system, the matches introduce a “vertical dimen-
sion”, in addition to the “horizontal dimension” provided by the rules.
This composition gives rise to the bicategory of categorical rewriting sys-
tems (as for spans, we get a bicategory rather than a category, because 
the unicity of pushouts is only up to isomorphism)." (ibd)
http://content.imamu.edu.sa/Scholars/it/net/petritalk.pdf 
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Also horizontal and vertical aspects of categorical compositions are consid-
ered, the main point still is to develop a well glued approach in the sense 
of the Berlin school of Graph transformation (Ehrig, König). The ultimate 
glue is offered by the category-theoretic span concept. Pushouts and spans 
are ”used for describing graph transformation systems as categorical 
rewriting systems”.

"In a categorical rewriting system, the matches introduce a “vertical dimen-
sion”, in addition to the “horizontal dimension” provided by the rules.
This composition gives rise to the bicategory of categorical rewriting sys-
tems (as for spans, we get a bicategory rather than a category, because 
the unicity of pushouts is only up to isomorphism)." (ibd)
http://content.imamu.edu.sa/Scholars/it/net/petritalk.pdf 

Bifunctoriality
In contrast, a more or less glue-free construction is introduced by the 
concept of categorical bifunctoriality and its generalization to a diamond 
category-theoretic interchangeability of morphisms and contextures. In 
this approach “horizontal” and “vertical” structures of graph transforma-
tion systems are not glued together but are interacting in the framework 
of interchangeability.

3.3.2. Pushouts and diamonds
"After having developed some insights and experiences with the diamond 
approach and its complementary structures, a design of diamond category 
theory might be introduced which is not as close to the introductory anal-
ogy to classic category theory.” 

Excerpts from: Kaehr, Category of Glue III, (2009), unpublished.
http://www.thinkartlab.com/pkl/lola/Category%20Glue%20II/Category%20Glue%20II.html
 
Hetero-morphisms are reflecting the matching conditions of the composi-
tion of morphisms in a category.
There is an analogy between the concatenation of production rules in re-
writing systems and the composition of morphisms. Graph transformation 
systems and graph grammars are surpassing the limitations of linear con-
catenation of sign sequences. Graph transformation is formalized by Schnei-
der, Ehrig et al. by categorical pushouts.

"Therefore, graph transformations become attractive as a modeling and 
programming paradigm for complex-structured software and graphical 
interfaces. In particular, graph rewriting is promising as a comprehensive 
framework in which the transformation of all these very different struc-
tures can be modeled and studied in a uniform way.” (Ehrig, Padberg, p. 3)

Hetero-morphisms of pushouts are reflecting the complexity of graph com-
position.
Because of its complexity a more complex interplay between hetero-mor-
phisms and graph composition is opened up.  
Focused on graph derivations, the saltatorical hetero-morphisms are com-
plementarily defined. But the inverse complementary situation holds too. 
During a graph derivation, the saltatorical system might be changed and 
therefore re-defining the structural conditions of the categorical graph 
derivation.

This kind of mutual interplay had been defined for categories and saltato-
ries concerning the matching conditions of the composition of morphisms. 
Therefore, the interplay in diamondized graph systems is a generalization 
of the compositional approach.
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"After having developed some insights and experiences with the diamond 
approach and its complementary structures, a design of diamond category 
theory might be introduced which is not as close to the introductory anal-
ogy to classic category theory.” 

Excerpts from: Kaehr, Category of Glue III, (2009), unpublished.
http://www.thinkartlab.com/pkl/lola/Category%20Glue%20II/Category%20Glue%20II.html
 
Hetero-morphisms are reflecting the matching conditions of the composi-
tion of morphisms in a category.
There is an analogy between the concatenation of production rules in re-
writing systems and the composition of morphisms. Graph transformation 
systems and graph grammars are surpassing the limitations of linear con-
catenation of sign sequences. Graph transformation is formalized by Schnei-
der, Ehrig et al. by categorical pushouts.

"Therefore, graph transformations become attractive as a modeling and 
programming paradigm for complex-structured software and graphical 
interfaces. In particular, graph rewriting is promising as a comprehensive 
framework in which the transformation of all these very different struc-
tures can be modeled and studied in a uniform way.” (Ehrig, Padberg, p. 3)

Hetero-morphisms of pushouts are reflecting the complexity of graph com-
position.
Because of its complexity a more complex interplay between hetero-mor-
phisms and graph composition is opened up.  
Focused on graph derivations, the saltatorical hetero-morphisms are com-
plementarily defined. But the inverse complementary situation holds too. 
During a graph derivation, the saltatorical system might be changed and 
therefore re-defining the structural conditions of the categorical graph 
derivation.

This kind of mutual interplay had been defined for categories and saltato-
ries concerning the matching conditions of the composition of morphisms. 
Therefore, the interplay in diamondized graph systems is a generalization 
of the compositional approach.

3.3.3. Concatenation and pushouts
Production systems are based on concatenation. They have an initial and a 
terminal object.
A generalization of concatenation production systems is introduced by a 
transition from strings to graphs. Strings consists of atomic signs. Graphs 
are composed by elementary graphs, consisting of nodes and edges. Hence, 
graph grammars are a generalization of sign production systems. Sign pro-
duction systems are mapped as trees, graph transformations as graphs.
 
Graph transformation and graph grammars based on pushout constructions 
are well embedded in category theory. Pushouts and their dual pullbacks 
are save categorical constructions based on the composition rules for mor-
phisms in categories.
Categories in general are well complemented by saltatories.

Because pushouts are defined in categories, a diamondization of pushouts 
follows naturally.
Hence, pushouts as models for graph grammars gets diamondized pushouts 
for diamond graph grammars. 

As a consequence of the dependence of graph grammars from category 
theory, it seems obvious that graph transformations are not surpassing the 
limitations of computability of sign production systems.
Graph transformation sequences are computational equivalent to sign 
production sequences.
This correspondence between the computability of sign production systems 
and graph derivation might be disturbed by diamondized graph grammars.
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