

 Summer-Edition 2017

— vordenker-archive —

Rudolf Kaehr

(1942-2016)

Title

Playing Chiasms, Proemiality and Bifunctoriality

From Conceptual Graphs to Formulas and Procedures

Archive-Number / Categories

3_21 / K05, K07, K08

Publication Date

2012

Keywords / Topics

o BIFUNCTORIALITY IN PROGRAMMING : Programming Proemiality in SML, Implementing transjunctions,

Bifunctoriality with Combinatory Logic

o DISTRIBUTED PROCESSORS

Disciplines

Cybernetics, Computer Sciences, Logic and Mathematics, Theory of Science

Abstract

The recent paper about the Tabularity of Polycontextural Logics gets a complementary reflection of the

mechanism of dissemination, i.e. distribution and mediation, by focusing on the conditions of mediation

of distributed formal systems. In focus are some programming strategies, like bifunctoriality. Historical

background information of implementations of polycontextural logics and attempts to formalize

Gunther’s proemial relationship are sketched. – See also: 3_19

Citation Information / How to cite

Rudolf Kaehr: "Playing Chiasms, Proemiality and Bifunctoriality", www.vordenker.de (Sommer Edition, 2017)
J. Paul (Ed.), http://www.vordenker.de/rk/rk_Playing-Chiasms-and-Bifunctoriality_2012.pdf

Categories of the RK-Archive
K01 Gotthard Günther Studies

K02 Scientific Essays

K03 Polycontexturality – Second-Order-Cybernetics

K04 Diamond Theory

K05 Interactivity

K06 Diamond Strategies

K07 Contextural Programming Paradigm

K08 Formal Systems in Polycontextural Constellations

K09 Morphogrammatics

K10 The Chinese Challenge or A Challenge for China

K11 Memristics Memristors Computation

K12 Cellular Automata

K13 RK and friends

http://www.vordenker.de/index.html
http://www.vordenker.de/index.html
http://www.vordenker.de/navigation.htm
https://de.wikipedia.org/wiki/Rudolf_Kaehr
http://www.vordenker.de/rk/rk_Playing-Chiasms-and-Bifunctoriality_2012.pdf
http://www.vordenker.de/rk/rk_Playing-Chiasms-and-Bifunctoriality_2012.pdf
http://www.vordenker.de/rk/rk_Notes-on-Tabularity-of-Polycontextural-Logics_2012.pdf
http://www.vordenker.de/rk/rk_Notes-on-Tabularity-of-Polycontextural-Logics_2012.pdf

Playing Chiasms, Proemiality and
Bifunctoriality
From Conceptual Graphs to Formulas and Procedures

Rudolf Kaehr Dr.phil@

Copyright ThinkArt Lab ISSN 2041-4358

Abstract
The recent paper about the Tabularity of Polycontextural Logics gets a complementary reflection of the
mechanism of dissemination, i.e. distribution and mediation, by focusing on the conditions of mediation of
distributed formal systems. In focus are some programming strategies, like bifunctoriality. Historical background
information of implementations of polycontextural logics and attempts to formalize Gunther’ s proemial
relationship are sketched.
(Work in progress, v. 0.2, 25.July 2012)

1. Bifunctoriality in Programming

1.1. Dortmunder Trials in the early 1990s
1.1.1. Programming Proemiality in SML
PROEMIAL
fun copy (ref(atom(x,ref Emark,ref wq))) =
 ref(atom(x,ref Emark,ref wq))
 |copy (ref(comb(x,ref Emark,ref wq))) =
 ref(comb(x,ref Emark,ref wq))
 |copy (ref(app((rator,rand),ref Emark,ref wq))) =
 ref(app((copy rator,copy rand),ref Emark,ref wq));

fun equal (ref(atom(x,_,_))) (ref(atom(y,_,_))) = (x=y)
 |equal (ref(comb(x,_,_))) (ref(comb(y,_,_))) = (x=y)
 |equal (ref(app((xrator,xrand),_,_)))
 (ref(app((yrator,yrand),_,_))) =
 (equal xrator yrator) andalso (equal xrand yrand)
 |equal__=false;

Discussion
PROEM: |equal
 (ref(app((xrator,xrand),_,_)))
 (ref(app((yrator,yrand),_,_))) =

 (equal xrator yrator) andalso
 (equal xrand yrand)

In combinatory logic terms this construction of Mahler corresponds to the transition from the cominatory
logical Sxyz = xz(yz) to the ‘bifunctorial’ construction of proemiality: PR S xy fg = fx(gy). Bifunctoriality was
clearly realized in the description and the implementation of the model. But its mathmatical construct of
bifunctoriality that would probabily have been of help for the academics to accept the ingeniosity of the
model.

"The type of proemial relationship which applies to the parallel evaluation of two combinator expressions (f
x) and (g y) cannot be determined from the term structure; instead it can only be found out by looking at

Playing Chiasms and Bifinctoriality.nb 1 of 13

25/07/2012 13:58

the structure of pointer equality ≡z and pointer difference (!≡z) of f, x, g and y.” (Mahler, pLISP, 1992)

In ML terms: P (app1 rator1) (app2 rator2) --> (quote parEval(app1 rator1) parEval(app2 rator2)).

Translation
(a :- b): app (xrator,xrand)
(c :- d): app (yrator,yrand)
 =
p a c : (equal xrator yrator)
p b d : (equal xrand yrand)

The proposed strategy shall be to start a programming language with bifunctoriality (interchangeability,
metamorphosis, chiasm and proemiality) at the very beginning and to show that the common patterns of
ordinary programming are just a case of a specific reduction of proemiality.

(P (f x) (g y)) => (P parEval(f x) parEval(g y))
"The P-Combinator is not a classical Termtransformation. On the term level it does not change anything.
But it produces two asynchronous Tasks (f x) and (g y) that are left on their own.
This Combinator is used to produce explicit parallelity. If both processes work with equal variables, the
processes are linked like in (P (f x)(g x)).
With the P-Combinator it is possible to create interesting topologies like (P (f x) (x y)). In the first process x
functions as the operand, in the second it is the operator. And this categorical exchange is performed
simultaneously!
Such computational topologies are found in Polycontextural Logics (where they are formalized as "Proemial
Relations"), meta-level architectures, computational reflection with causal connection and in simulations of
self-referential, paradoxical and autopoietic systems.” (Mahler)

Thomas Mahler, pLISP: Parallel Functional Programming
http://www.thinkartlab.com/pkl/tm/plisp/ENGLISH.EPS
http://www.thinkartlab.com/pkl/tm/plisp/pr-java/index.htm

General Scheme:

As a simple model I take the 2-domain bifunctoriality as it is implemented in Haskell for a bifunctor.

HASKELL: bimapS :: (a :- b) -> (c :- d) -> p a c :- p b d

Trivially, we get the fundamental transitivity of uni-versal programming (and math) as a reduction of
bifunctoriality:

TRANS: (a :- b) -> (b :- c) -> (a :- c)

1.1.2. Implementing transjunctions

In a first step, the tableaux rules for transjunctions had been established and the distribution over
different subsystems had been recognized and formalized. Nevertheless, the tableaux didn’t offer much
heuristic guidance to proceed properly a proof of a formula with transjunctions and negations included.

The developed tableaux proof system LOLA, by Bashford and Joemann, applied a rule that properly
separates junctional from transjunctional parts of a proof. This was the crucial step for a reasonable
heuristics for polycontextural tableaux proofs, supporting both, the machine and the human victim.

I wasn’t aware that the term rule R1 “(α simul δ) et (β simul γ) = (α et β) simul (γ et δ)" is build on the base
of the principle of bifunctoriality of the functions “simul” and “par" (Bob Coecke)

The similarity of the logical term rule to the programming strategy for an implementation of the proemial
relationship by Mahler wasn’t obvious either.

Nevertheless, the theorem prover LOLA implemented in SML/NJ is properly working albeit the matrix
approach to the architecture of polycontextural logics, especially the difference of transpositional (for
transjunctions) and replicational 'dimensions’ (for implications), wasn’t conceived in full. Unfortunately,
the so called system-changes forced by the sub-system permutations of the negation operations which had
been formalized properly years before (early 1970s) didn’t got a direct and full implementation in
LOLA-SML/NJ.

Today it has become more clear that a singular theorem prover that is simulating the different contextures
generated by transjunctions and replications has to be replaced by a polycontextural theorem prover that
is running simultaneously at each contexture autonomically and that are connected by the super-
operators.

A first step to a conservative implementation of such a simultaneity might be achieved with the application
of parallelism in programming, like the “spawn” concept for ML or HASKELL (GHC).
(cf. A Note on the Tabularity Polycontextural Logics
http://memristors.memristics.com/Notes%20on%20Polycontextural%20Logics

Playing Chiasms and Bifinctoriality.nb 2 of 13

25/07/2012 13:58

http://www.thinkartlab.com/pkl/tm/plisp/ENGLISH.EPS
http://www.thinkartlab.com/pkl/tm/plisp/pr-java/index.htm
http://memristors.memristics.com/Notes%20on%20Polycontextural%20Logics

/Notes%20on%20Polycontextural%20Logics.html)

1.1.3. Interchange of sorts and universes

Years before the SML adventures, I sketched a proemial relationship between logical universes and sorts as
an attempt to extend the conceptual framework of many-sorted predicate logics, a logical system of
fundamental relevance for the theoretical study of programming (Joseph Goguen).

"The modeling strategy for chiastic types in polycontextural situations is similar to the modeling strategy
for chiasms in many-sorted logics. There, the chiasm is between uni-verse(s) and sorts of disseminated
logics. Sorts in one logic can change to become uni-verses in other mediated logics. And in reverse,
universes can change to sorts. Thus, chiasms are equally operating on many-sorted algebras as on typed
calculi.” (Kaehr, 2006)
http://www.thinkartlab.com/pkl/lola/poly-Lambda_Calculus.pdf

Looking back, it turned out that the mathematics of the complex structures of bifunctors in 2-categories
had been at hand with the “Doppelkategorien” of Hasse/Michler at least from 1966 on.

I never got a hint emphasizing this direction of thought from any of the academics who had been sceptical
to the project of a formalization and implementation of polycontextural logics. The East-German
mathematician Horst Reichel offered me some help but I didn’t see my project mature enough to enter a
collaboration with his highly complex category-theoretic formalizations. Jochen Pfalzgraf’s successful
formalizations of some aspects of polycontextural logics in the framework of category theory didn't
consider the topics of interchangeability and bifunctoriality.

Quite obviously, the concept of bifunctoriality also wasn’t implemented explicitly by any (functional)
programming languages at that time (1990). This has changed, outside of academic interests, only
recently.

Chiasms of terms and types

"Thus, a type has two functionalities at once, a type as a type and a type as a term. Therefore, this double
meaning has to be distributed over different localization of the complex constellation. Otherwise it simply
would produce unnecessary conflictive overlapping. The matrix shows clearly the kind of distribution, the
diagram is visualizing the process of the chiasm.” (2006)

Today I shall continue:
“and the formula ‘finally’ formalizes the bifunctorial interchangeability of types and terms in the
framework of a polycontextural diamond category theory.”

At the ‘end’ of the research program, suddenly stopped by the administration, it turned out that the main
advances had been structured by the formula:

Hence, from Gunther’s relational formula of the proemial relaionship to my own diagrammatic
formulations, to a proemial LISP and more, the journey got as a next step some academic disguise with the
polycontextural subversion of the category-theoretic concept of bifunctoriality.

Dissemination: Introducing the proemial relationship
http://www.thinkartlab.com/pkl/media/DERRIDA/Proemial%20Relationship.html

Early applications of the proemial relationship

Playing Chiasms and Bifinctoriality.nb 3 of 13

25/07/2012 13:58

http://www.thinkartlab.com/pkl/lola/poly-Lambda_Calculus.pdf
http://www.thinkartlab.com/pkl/media/DERRIDA/Proemial%20Relationship.html

Bernhard J. Mitterauer, The proemial synapse. Consciousness generating glial-neuronal units
"This type of relation may be an inevitable prerequisite for any theory of consciousness. Its formal
description is as follows: Glia (G) dominate the neuronal components (N) by modifying them. Therefore, G
play the role of a relator and N is the relatum. If this relationship changes inversely, N becomes the relator
and G the relatum. Since the proemial relationship is cyclically organized, glial-neuronal synapses are
capable of changing their relational positions in the sense of an iterative self-reflection mechanism. Hence,
it seems to be legitimate to speak of proemial synapses."
www.volitronics-institute.at/files/scanned31.pdf

1.2. Functional Programming and Bifunctoriality
1.2.1. A collection of attempts
Planet Haskell

#if 0
class BifunctorS (p :: Constraint -> Constraint -> Constraint) where
 bimapS :: (a :- b) -> (c :- d) -> p a c :- p b d
#endif

In an even more ideal world, it would be enriched using something like

#ifdef POLYMORPHIC_KINDS
class Category (k :: x -> x -> *) where
 id :: k a a
 (.) :: k b c -> k a b -> k a c
instance Category (:-) where
 id = refl
 (.) = trans
#endif

where x is a kind variable, then we could obtain a more baroque and admittedly far less thought-out bifunctor class like:

#if 0
class Bifunctor (p :: x -> y -> z) where
 type Left p :: x -> x -> *
 type Left p = (->)
 type Right p :: y -> y -> *
 type Right p = (->)
 type Cod p :: z -> z -> *
 type Cod p = (->)
 bimap :: Left p a b -> Right p c d -> Cod p (p a c) (p b d)
#end

1.3. Bifunctoriality with Combinatory Logic
1.3.1. Transitivity
Quite obviously, there is no bifunctoriality neither in Combinatory logic nor in Category theory on a basic
and first-order level of the primary definitions of the formal languages (systems, calculi, scriptures).

Playing Chiasms and Bifinctoriality.nb 4 of 13

25/07/2012 13:58

Bifunctoriality enters category theory as a secondary construct on the base of a product. The same
happens with combinatory logic and its application in functional programming. Bifunctoriality in functional
programming is based on types and their multiplicity on a secure singular ground.

Transjunctions in the sense of polycontextural logic are breaking the linearity of transitivity.

Transjunctions are the primary “functions” or operations of polycontextural logics, both in respect of their
conceptual and their numerical relevance.

S functor
fun S f g x = f x (g x)
(* val S = ('a -> ('b -> 'c)) -> (('a -> 'b) -> ('a -> 'c)) *)

BIF: S1, S2, S3 :

S1: S f g x = f x (g x)
 ∐
S2: S f g x = f x (g x)

Playing Chiasms and Bifinctoriality.nb 5 of 13

25/07/2012 13:58

Playing Chiasms and Bifinctoriality.nb 6 of 13

25/07/2012 13:58

1.3.2. Operator/operand chiasm

1.3.3. Distributed buildins

Playing Chiasms and Bifinctoriality.nb 7 of 13

25/07/2012 13:58

Playing Chiasms and Bifinctoriality.nb 8 of 13

25/07/2012 13:58

2. Distributed processors

Playing Chiasms and Bifinctoriality.nb 9 of 13

25/07/2012 13:58

The super-operators SOPS are the programming strategies, the distributed processor on the kenomic
matrix are the programmed machines to be programmed firstly, contexturally, i.e. depending on the
loci/places of the processors and secondly, by the types of operations involved. The involved operations
then are the localized junctional, transpositional, replicational and reflectional logico-arithmetic
operations.

The super-operators are activating or deactivating the disseminated processors according to their
operational structure.

Because of the exchange mechanism of operator and operand on the level of the hardware processors, a
feature that is not realizable within the possibilities of classical processors and architectures, it is
proposed that by taking into account the new possibilities of memristive approaches to realize such
mechanisms of interchangeability with a successive application of devices based on memristors and
memristive systems, such limits of traditional computation might be, in principle, overcome.

It is understood that the main novelty of memristors is not in the domain of quantities, like speed and
storage, but in the functionality of the exchangeability of “processor” and “memory” functions of the
“same” computing device at the “same” place.

Hence, the dissemination, defined by distrubution and mediation, of the activity, i.e. inter- and trans-
activity of the processors of the grid, is managed by the interchangeability of the main features of
computability, computation and memorization, and realized by the application of memristors and their
distribution in crossbar systems.

Logical and symbolic processes are distributed over the kenomic matrix. But this distribution is not a static
architectonic fact but is involved in the process of interactions between different processors. In this sense,
the relization of a transpositional distribution is seen as an interaction between different processors. The
‘main’ processor of a transjunctional operation is ‘sending’ an activation messige to the transpositioned
processor to realize the transjunction addressed by the main processor. The main processors in the design
are the ‘diagonal’ processors of the grid. This is not a restriction to a mxm-matrix. Other configurations
are easily produced, and each processor might play the role of a ‘main’ processor.

Playing Chiasms and Bifinctoriality.nb 10 of 13

25/07/2012 13:58

Playing Chiasms and Bifinctoriality.nb 11 of 13

25/07/2012 13:58

Multi-Processor-System for matrix-distribution of tableaux_forests =
(intra-process:{append, remove, leave}, inter-process: {send, receive}).

Playing Chiasms and Bifinctoriality.nb 12 of 13

25/07/2012 13:58

XXX

Playing Chiasms and Bifinctoriality.nb 13 of 13

25/07/2012 13:58

