@ilidenker,

Summer-Edition 2017

— vordenker-archive —
Rudolf Kaehr

(1942-2016)

Title
Tool Set for Morphic Cellular Automata Systems

Archive-Number / Categories
3_37 /K12, K09, K11

Publication Date
2014

Keywords / Topics
Morphograms, Celluilar Automata, Elementary cellular automaton (ECA)

Disciplines

Computer Science, Artificial Intelligence and Robotics, Logic and Foundations of Mathematics,

Cybernetics, Theory of Science

Abstract

Again, there is no ‘natural’ method to extend the classical ECA concept to a ‘trans-classical’ theory on
the base of set-theoretical functions.

An extension of the function-based approach is easily achieved with an extension of the value-set from
2 elements to n>2. But such a concept of extension is abstract and there are no systematic criteria to
chose the elements. The value-set might be arbitrarily extended to any size.

The analogous situation happened and still happens with the transition from 2-valued to multiple-
valued logics.

Hence, the morphogrammatic approach to ECAs is an interpretation of the basic morphograms of
morphogrammatics.

Citation Information / How to cite

Rudolf Kaehr: "Tool Set for Morphic Cellular Automata Systems", www.vordenker.de (Sommer Edition, 2017) J. Paul
(Ed.), http://www.vordenker.de/rk/rk_Tool-Set-for-Morphic-Cellular-Automata-Systems_IntroMorphCA_2014.pdf

K01
K02
K03
K04
K05
K06
K07

Categories of the RK-Archive

Gotthard Gilnther Studies KO8 Formal Systems in Polycontextural Constellations
Scientific Essays K09 Morphogrammatics

Polycontexturality — Second-Order-Cybernetics K10 The Chinese Challenge or A Challenge for China
Diamond Theory K11l Memristics Memristors Computation

Interactivity

K12 Cellular Automata

Diamond Strategies K13 RK and friends
Contextural Programming Paradigm

http://www.vordenker.de/index.html
http://www.vordenker.de/index.html
http://www.vordenker.de/navigation.htm
https://de.wikipedia.org/wiki/Rudolf_Kaehr
https://en.wikipedia.org/wiki/Elementary_cellular_automaton
http://www.vordenker.de/rk/rk_Tool-Set-for-Morphic-Cellular-Automata-Systems_IntroMorphCA_2014.pdf

Tool Set for Morphic Cellular Automata Systems

Dr. phil Rudolf Kaehr

copyright © ThinkArt Lab Glasgow
ISSN 2041-4358

(work in progress, vs. 0.1, July 2014)

Functional and morphogrammatic definitions of ECA

Again, it easily happens to confuse the morpgram-based approach to elementary CAs with the original function-
based approach as we know it. That happens naturally because of the coincidence of the objectified results.

What differs is how the results are achieved (produced) and not so much what is reached (produced).

Functional representations of the morphoCAs are in fact simulations in the realm of functions, and not morphic
realizations.

Again, there is no Tatural > method to extend the classical ECA concept to a “trans-classical ” theory on the base of
set-theoretical functions.

An extension of the function-based approach is easily achieved with an extension of the value-set from 2 elements
to n>2. But such a concept of extension is abstract and there are no systematic criteria to chose the elements.
The value-set might be arbitrarily extended to any size.

The analogous situation happened and still happens with the transition from 2-valued to multiple-valued logics.

Hence, the morphogrammatic approach to ECAs is an interpretation of the basic morphograms of morphogrammat-
ics.

In the case of complexity/complication of 4, i.e. for MG “*, there are just 15 basic morphograms. To define the
classical ECAs, not more than 8 morphograms are necessary as a base for interpretation.

This way to interpret morphograms by values and relabeling is not yet taking the genuine morphogrammatic level
into account. Morphograms are introduced by differences and not by values of a function. The difference-oriented
approach to morphogrammatic CAs is ruled by the e/v-structuration of the domain of computation.

The first presentation of morphogrammatic based CAs had been restricted on a combination of just 4 to 5 mor-
phograms per automaton.

The morphogrammatic approach enables an easy method of combining basic cellular automata to compound
structures of well defined complex morphic automata.

The tool set contains the 15 basic morphograms and the two rules of composition: ruleCl for <lassical ”and ruleM
for “trans-classical structurations.

The tool set allows to define morphogrammatic compounds of basic morphograms for more complex CAs.

In this sense, a morphogram MG is defined as a mediation of 3 basic morphograms: e.g.

MG®¥ = Mc“*® 11 MG*® 11 MG*Y.

Morphic CAs are therefore defined as interpretations of additive and mediative compositions of morphogrms.
Additive compositions have the form:

m =4 : classical

(4,n) (4,n) (4,n) :
[MGl » MG ™, ., MGy, with (m =5: transclassical

)for CAs.

While mediative compositions have the reflectional and interactional distribution form:
4,n) (,n 4,

MG mmeg ™, ..., 11 MGR™].

Mediative composition examples for m=3:

CA®¥: RS 3 = (R} LR3) LR, "U": mediation

2 | IntroShort-reduced.cdf

RYY 5 & @ 3
"m0
1.2 1.1 _ _
w2 |[RrRFZ D
RIF,ooo|= oom
N @, 3) _ RS‘Z_ o _
H RN
1,3 - - 3.3
1,3 R o

CA®?2: RIJ 3 = (R} OR;) LR}, "0": replication, "LI" : mediation

R7Z 3 &) @ ®
amm ol ~
L2 ||R7_ o _
mEED
RN 3ocoo|s)3 RI_ZDDI
OO m (G 2 _ g - - -
~ ~ N =l
1,3 Re™_ o _

http : // memristors.memristics.com/Notes on Polycontextural Logics/Notes on Polycontextural Logics.html

Other definitions and derivations from the morphogrammatic approach are naturally possible as different and non-
standard interpretations of morphograms.

It is obviously the advantage of the morphogrammatic approach to enable such systematic automata-theoretical
constructions and structurations.

“It might be thought that CA with greater values of « have also greater computational power, however this is not
true.lt is true that rules with « = 1 can be easily characterized because they describe linearly separable CA, but even
rules with « = 2 can have extremely complex behaviors as in the case of rule 110, which is known to be equivalent to
a Universal Turing Machine.

This phenomenon, already hypothesized by Wolfram, is called threshold of complexity. It is noteworthy to mention
that not all rules with high complexity index have complex behaviors, [...].”

Giovanni E. Pazienza, Aspects of algorithms and dynamics of cellular paradigms

http://www.tdx.cat/bitstream/handle/10803/9151/gpazienza_thesis.pdf

System of elementary morphic cellular automata rules

4
rules—CA *4 =ZSn2(4, K)=1+6+7+1 = 15

k=1

R1 R2 R3 R4 R5
e mn|memol|som|moo EON
- —-|l-w-]-= -]]-w - - m -
R6 R7 R8 R9 R10
e mn|memo)|soe|soo EOHE
-o-l|l-o-l|l-o0o-||-o - - o -
R11 R12 R13 R14 R15
mmCffmom|lmoofeons E 0N
-m -||-m -f|-® |- ® - - m -

There might be a difference between the pheno - and the geno - type of CAs. In other words, the surface -
structure as an interpretation of morphograms, i.e. as a function- and set - oriented approach has to be distin-

http://www.tdx.cat/bitstream/handle/10803/9151/gpazienza_thesis.pdf?sequence=1

IntroShort-reduced.cdf | 3

guished from a morphogrammatic understanding of CAs that is pre - ordered as a pattern-oriented deep-structure
of mappings and sets.

Structurally, the system of CA%? with its 256 elements or mappings is inherently symmetric. That is not excluding
that the behavior of some functions are asymmetric.

It turns out that not even dually defined CAs are behaving dually. That is, e.g, that the dual of rule 30 has not a
dual representation of the rule 30.

In sharp contrast, the morphogrammatic system is with its 15 basic morphograms for CA*# is inherently asymmet-
ric. That obviously includes the symmetric subsystem of CA%? too.

The morphogrammatic approach enables a simple modular construction of the automata.

Rule space for CAMM

CA“? : 16 CA“?: 32

appendix = appendix =

.5;10;14 .5;10;14

rulel.2 .3 4 rule6.2 .3 .4
rule1.2 .3 .9 ||rule6.2 .3 .9 rulel.2 .3 .4 rule6.2 .3 .4
rulel.2 .8 .4 rule6.2 .8 .4 rulel.2 .3 .9 rule6.2 .3 .9
rulel.2 .8 .9 rule6.2 .8 .9 rulel.2 .8 .4 rule6.2 .8 .4

rulel.2 .8 .9 rule6.2 .8 .9
rulel.7 .3 .4 rule6.7 .3 .4
rulel.7 .3 .9 rule6.7 .3 .9 rulel.7 .3 .4 rule6.7 .3 .4
rulel.7 .8 .4 rule6.7 .8 .4 rulel.7 .3 .9 rule6.7 .3 .9
rulel.7 .8 .9 ||rule6.7 .8 .9 rulel.7 .8 .4 rule6.7 .8 .4

rulel.7 .8 .9 rule6.7 .8 .9
CA“¥: (notcomplete)
rulel.2 .3 .4 .5.-10-14-15 rulel.7 .3 .4 .5 -10-14-15
rulel.2 .8 .4 .5.-10-14-15 rulel.7 .3 .9 .5 -10-14-15
rulel.2 .12 .4 .5.-10-14-15 rulel.7 .3 .13 .5 -10-14-15
rulel.2 .3 .9 .5.-10-14-15 rulel.7 .8 .4 .5.-10-14-15
rulel.2 .8 .9 .5.-10-14-15 rulel.7 .8 .9 .5.-10-14-15
rulel.2 .12 .9 .5.-10-14-15 rulel.7 .8 .13 .5.-10-14-15
rulel.2 .3 .13 .5.-10-14-15 rulel.7 .12 .4 .5.-10-14-15
rulel.2 .8 .13 .5.-10-14-15 rulel.7 .12 .9 .5.-10-14-15
rulel.2 .12 .13 .5.-10-14-15 rulel.7 .12 .13 .5.-10-14-15
rulel.11 .3 .4 .5.-10-14-15 rule6.2 .3 .4 .5.-10-14-15
rulel.11 .3 .9 .5.-10-14-15 rule6.2 .8 .4 .5.-10-14-15
rulel.11 .3 .13 .5.-10-14-15 rule6.2 .12 .4 .5.-10-14-15
rulel.11 .8 .4 .5.-10-14-15 rule6.2 .3 .9 .5.-10-14-15
rulel.11 .8 .9 .5.-10-14-15 rule6.2 .8 .9 .5.-10-14-15
rulel.11 .8 .13 .5.-10-14-15 rule6.2 .12 .9 .5.-10-14-15
rulel.11 .12 .4 .5.-10-14-15 rule6.2 .3 .13 .5.-10-14-15
rulel.11 .12 .9 .5.-10-14-15 rule6.2 .8 .13 .5.-10-14-15
rulel.11 .12 .13 .5.-10-14-15]frule6.2 .12 .13 .5.-10-14-15

4 | IntroShort-reduced.cdf

rule6.7 .3 .4 .5 -10-14-15 rule6.11 .3 .4 .5.-10-14-15
rule6 .7 .5 -10-14-15 rule6 .11 .9 .5.-10-14-15
rule6.7 .3 .13 .5 -10-14-15 rule6.11 .3 .13 .5.-10-14-15

w
©
w

rule6.7 .8 .4 .5.-10-14-15 rule6 .11 .4 .5.-10-14-15
rule6 .7 .9 .5.-10-14-15 rule6 .11 .9 .5.-10-14-15
rule6.7 .8 .13 .5.-10-14-15 rule6.11 .8 .13 .5.-10-14-15

o

o
©

rule6.7 .12 .4 .5.-10-14-15 rule6.11 .12 .4 .5.-10-14-15
rule6.7 .12 .9 .5.-10-14-15 rule6.11 .12 .9 .5.-10-14-15
rule6.7 .12 .13 .5.-10-14-15 | |rule6.11 .12 .13 .5.-10-14-15

rulel.3 .11 .13 .5-10-14-15

rulei.3 7 .13 5-10-14-15 | [™ie6-3 11 .13 .5-10-14-15

rulel.8 41 13 5-10—-14-15 rule6.8 .11 .13 .5-10-14-15

Program schemes for morphic CAs

Rule function scheme

rul es; = Mbd[ReLabel ; [{a, b, ¢c}], n] - d,
a, b, c,de {0, 1, 2, 3}, 1<i =5, 2

IA
=)
v
N

Relabeling

(Debug) In[5]:= ReLabel [L_List] =L /. Map [H#] [1]] -> [[2]] &,
Transpose[{DeleteDuplicates[L], Range[Length[Union[L]]1}1]

Two functions are morphogrammatically equivalent if they are equal under relabeling.

Hence, the listed functions below are all representing in the context of CAB2

H E QO

the same morphogram R7, i.e.| _

List of functions

{0,0,1}y-0, {0,0,2}-0, {0,0,3y-0,{1,1,0}y-0, {1,1,2}-0, {1,1, 3} -0,
{2,2,0}y-0,{2,2,1}y-0, {2,2,3y-0, {3,3,0}-0, {3,3,1}-0, {3,3,2}-0

Morphogrammatic equivalence
P \od [ReLabel [{0,0,1}],2] =
Mod[ReLabel [{0,0,2}],2] ==
Mod [ReLabel [{0,0,3}],2] ==
Mod[ReLabel [{1,1,0}],2]==
Mod[ReLabel [{2,2,0}],2] ==
Mod[ReLabel [{2,2,1}],2] ==
Mod[ReLabel [{2,2,3}],2] ==
Mod[ReLabel [{3,3,0}],2]==
Mod[ReLabel [{3,3,1}],2]==
Mod[ReLabel [{3,3,2}]1,2]

(Debug) Outjel= Tr ue

IntroShort-reduced.cdf | 5

Permutations

Morphogram R13: | ™ E D1 isrepresented in CA%® by the following functions.
List of functions
(ebug) 7= Fca[{13}] :=
{
{0, 1, 1} -> 2,
{0, 2, 2}y -> 1,
{0, 3, 3} -> 2,
{1, 0, 0} -» 2,
{1, 2, 2}y -> O,
{1, 3, 3y -> 2,
(2, 3, 3} -> 1,
{2, 0, 0} -» 1,
{2, 1, 1}y -> O,
{3, 1, 1}y -> 2,
(3, 0, 0} -> 1,
(3, 2,2} -» 0
}

Morphogrammatic equivalence
(CPRIE T Mod [ReLabel [{0,1,1,2}],3] ==
Mod [ReLabel [{0,2,2,1}],3]
Mod [ReLabel [{0,3,3,2}],3]
Mod [ReLabel [{1,0,0,2}],3]
Mod [ReLabel [{1,2,2,0}],3]
Mod [ReLabel [{1,3,3,2}1,3] =
Mod [ReLabel [{2,3,3,1}]1,3] ==
Mod[ReLabel[{2,1,1,0}],3] ==
Mod[ReLabel[{2,0,0,1}],3] ==
Mod [ReLabel [{3,0,0,1}],3] ==
Mod[ReLabel [{3,1,1,2}],3] ==
Mod [ReLabel [{3,2,2,0}],3]

(Debug) Outgl= Tr ue

Basic composition scheme for morphoRules
The function RCA denotes the composed rules based on the rule space defined by the combination of the sub-rules rca.

This approach is nicely modular and allows easily to compose morphic elementary cellular automata.

The rule space is defined by the composition of the 15 basic morphograms for CA4Y
The functional definition of the morphograms might differ depending on the understanding of its mechanism.

(Debug) In[91]:= ruleMN[{a_, b_, Cc_, d_, e_, f_}] o=
Flatten[{rca[{a}], rca[{b}], rca[{c}], rca[{d}], rca[{e}], rca[{f}]}]

(Debug) In[92]:= rUIeM[{a_, b_, Cc_, d_, e }] :=

Flatten[{rca[{a}], rca[{b}], rca[{c}], rca[{d}], rca[{e}]}]

(Debug) In[93]:= ruleCl [{a_, b , C_, d_}] -=

Flatten[{rca[{a}], rca[{b}] , rca[{c}], rca[{d}]1}]

(ebug) 2= MorphoRules := { ruleCl, ruleM, ruleMN}

6 | IntroShort-reduced.cdf

General CA scheme

Presentation|

ArrayPl ot [Cel | ul ar Aut omat on |
rul eDef (M™™"), morphoRul es, rul eSpace
{init}, steps],

{Graphics}]||

presentation =
{TabVi ew, SlideViev, MenuView, etc}

Introduction
How does is work? Relabeling (i.e., trito-normal form, tnf) and separation.
Example
ruleM[{1, 11, 3, 9, 15}]

ColorRules -> {1 -> Red, 0 -> Yellow, 2 - Blue, 3 - Green}

Step 1

ArrayPlot[CellularAutomaton|
rulemMr{1, 11, 3, 9, 15}],
{{1}, 0}, 11,
ColorRules -> {1 -> Red, O -> Yellow, 2 - Blue, 3 > Green}, Mesh - True]

0|1
21110

o

[0, 1, O] corresponds : [1, O, 1], hence the next step is [1, 0, 1] ->0or [1, 0, 1] -> 1.
Because rule 3 is involved and not rule 8, the next step is 1 and not 0.

Mod [ReLabel [{0, 1, 0}7, 2]
{1, 0, 1}

Hence,

IntroShort-reduced.cdf | 7

Step 2

e

0jo0j1jojo
of2|1]0]o
ofol3]o]o

[2,1,0] corresponds by relabeling to [1,2,0], hence the next step is: [1,2,0] -> 0 or [1,2,0] ->1 or [1,2,0] ->2or

[1,2,0] -> 3.
In contrast to a set-based approach, there are no other possibilities involved on the level of morphogrammatics.

Because rule 15 is involved and not rule 5 or rule 10 or rule 14, the next step is 3 and not 0, 1 or 2.
The head of the morphogram

(Debug) ns4= Mod [ReLabel [{2, 1, 0}], 3]
{1, 2, 0}

The morphogram 15
(Debug) In[88]:= MOd[ReLabel [{2, 1, 0, 3}] 5 4]

{1, 2, 3, 0}
123_ 102_l [|
“1ol-1 ™ 13-l " |- = -

Diagram of the separation procedure

Decision procedure

rule set, initstring
1
stringat pos = (Nr., 1)
| RelLabel
relabeled (string)
v | N NextGen
NextGen (relabeled (string))
N L v oerule-set?

(yes; no)

s N
applyrule stop

l

result

8 | IntroShort-reduced.cdf

ruleset = {1, 11, 3, 9, 15}, init ruleset = {1, 11, 3, 9, 15}, init
Examplel Example2
[0, 1, 0]: stringatpos(Nr. =1, 1 = 3) [2,1,0]: stringatpos (Nr. =2, | = 3)
| Relabel | RelLabel
[1,0,1] [1,2,0]
v |~ NextGen v |~ NextGen
[1,0,1,0],[1,0,1,1],[1,0,1, 2] [1,2,0,0],[1,2,0,1],(2,2,0,2],[1, 2,0, 3]
N L v erule-set? N L v erule-set?
(yes; no) {yes; no)
v N v N
apply: stop apply: stop
[1,0,1, 1] =rule3 [1, 2,0, 3] =rulel5
{ !
result = [1] result = [3]

http : // memristors.memristics.com/CA - Compositions/Memristive %20 Cellular %20 Automata %20 Compositions.pdf

On the level a functional implementation of the morphic cellular automata, like in this paper, the genuine
concept of morphic interaction is replaced by a corresponding set of ' pre - given' functions.

TabView for CA®* rules

Table of explicit rules for CA“44

Applications

(Debug) In[15]:= rUIeM[{a_, b_, Cc_, d_, e }] :=
Flatten[{rca[{a}], rca[{b}], rca[{c}], rca[{d}], rca[{e}]}]

rule =6.7.3.13.15

oebug) Insa)= ArrayPlot[CellularAutomaton[
ruleM[{6, 7, 3, 13, 15}],
{{13, 03, 221,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 -» Green}]

(Debug) Out[89]=

IntroShort-reduced.cdf | 9

Mesh view

oebug) n171= ArrayPlot[CellularAutomaton[
ruleM[{6, 7, 3, 13, 15}],
{{13, 03, 221,
ColorRules -> {1 -> Red, O -> Yellow, 2 » Blue, 3 - Green}, Mesh -» True]

(Debug) Out[17]=

Rule verification

(Oebu 2= e g6, 7, 3, 13, 15}]

Dynamic representation of classic morphoCAs

Classic rules
Classical examples : ruleCL, 16

oebugy np21;= ruleCl[{a_, b_,c_,d_}] :=
Flatten[{rca[{a}], rca[{b}] , rca[{c}], rca[{d}]}]

10 | IntroShort-reduced.cdf

:

(Debug) Out[22]=

]

(Debug) Out[23]=

1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16

(Debug) Out[67]=

IntroShort-reduced.cdf | 11

Dynamic representation of transclassic morphoCAs
rule =1.2.8.13.10

oebug) Inze)= ArrayPlot[CellularAutomaton[
ruleM[{1, 2, 8, 13, 10}],
{{1}, 0}, 2227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 » Green}]

(Debug) Out[26]=

rule =1.11.3.9.15

oebug) n271= ArrayPlot[CellularAutomaton|[
ruleM[{1, 11, 3, 9, 15}],
{{1}, 03, 227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 - Blue, 3 -» Green}]

(Debug) Out[27]=

12 | IntroShort-reduced.cdf

rule=6.73.13 15

oebug) Inze)= ArrayPlot[CellularAutomaton[
ruleM[{6, 7, 3, 13, 15}],
{{1}, 0}, 222],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 » Green}]

(Debug) Out[28]=

PEPEY PR eV e e e

IntroShort-reduced.cdf | 13

rule= 6.13.11 12 15

oebug) Inza)= ArrayPlot[CellularAutomaton[
ruleM[{6, 13, 11, 12, 15}],
{{1}, 0}, 2227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 » Green}]

(Debug) Out[29]=

rule=1.13.11.12.15

oebug) 0= ArrayPlot[CellularAutomaton[
ruleM[{1, 13, 11, 12, 15}],
{{1}, 0}, 2227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 - Green}]

(Debug) Out[30]=

14 | IntroShort-reduced.cdf

oebug) Inz11= ArrayPlot[CellularAutomaton[
ruleM[{6, 13, 11, 12, 15}],
{{1}, 0}, 2227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 » Green}]

(Debug) Out[31]=

ebug) n321= ArrayPlot[CellularAutomaton|[
ruleM[{1, 13, 11, 12, 1531,
{{1}, 03, 222],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 - Green}]

(Debug) Out[32]=

IntroShort-reduced.cdf | 15

rule=6.8.11.13 .14

oebug) Inz3= ArrayPlot[CellularAutomaton[
ruleM[{6, 8, 11, 13, 14}],
{{1}, 0}, 2227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 » Green}]

(Debug) Out[33]

(ebug) n34= ArrayPlot[CellularAutomaton|[
ruleM[{6, 8, 11, 13, 14}1,
{{1}, 03, 222],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 - Green}]

(Debug) Out[34]=

16 | IntroShort-reduced.cdf

rule =6.2.8.13.15

oebug) Inzs)= ArrayPlot[CellularAutomaton[
ruleM[{6, 2, 8, 13, 15}],
{{1}, 0}, 222],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 » Green}]

(Debug) Out[35]=

rule=1.7.12.13.15

oebug) Inze)= ArrayPlot[CellularAutomaton|
ruleM[{1, 7, 12, 13, 15}],
{{1}, 0}, 222],
ColorRules -> {1 -> Red, O -> Yellow, 2 » Blue, 3 - Green}]

(Debug) Out[36]=

IntroShort-reduced.cdf | 17

rule =6.7.3.13.15

oebug) Inz71= ArrayPlot[CellularAutomaton[
ruleM[{6, 7, 3, 13, 15}],
{{1}, 0}, 222],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 » Green}]

(Debug) Out[37]=

PEPErEPE P R P

18 | IntroShort-reduced.cdf

rule=1.7.8.13.15

oebug) Inze)= ArrayPlot[CellularAutomaton[
ruleM[{1, 7, 8, 13, 15}],
{{1}, 0}, 2227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 » Green}]

(Debug) Out[38]=

IntroShort-reduced.cdf | 19

Dynamic presentation of CA“-3 examples, 68 automata

47 VY

(Debug) Out[82]=

Extended rules: ruleMN
(ebug) n3a)= ruleMN[{a_, b_,c_,d_,e_, f_}] :=
Flatten[{rca[{a}], rca[{b}] , rca[{c}], rca[{d}] , rca[{e}], rca[{f}]}]
Examples

ruleMN[{1, 7, 8, 13,5, 15}],
ruleMN[{1, 7, 8, 13,10, 15}],

20 | IntroShort-reduced.cdf

ruleMN[{1, 7, 8, 13,14, 15}]

SlideView of ruleMN examples

v

(Debug) Out[42]=

Different initial conditions

Multple seeds: {1,0,1,0,1}

oebug) 3= ArrayPlot[CellularAutomaton[
ruleM[{1, 7, 3, 13, 15}],
{{1, 0,1, 0,1}, 0}, 22],
ColorRules -> {1 -> Red, O -> Yellow, 2 - Blue, 3 » Green}, ImageSize -» 400]

(Debug) Out[43]=

Random: [1,100]

(Debug) In[44]:= rUIEM[{l, 7,3, 13, 15}]

IntroShort-reduced.cdf | 21

ebug) n2s)= ArrayPlot[CellularAutomaton [
ruleM[{1, 7, 3, 13, 15}],
Randominteger([l, 100], 2227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 - Green}, ImageSize -» 400]

22 | IntroShort-reduced.cdf

(Debug) Out[45]

rule test

(ebug) nia61= ruleM[{1, 7, 3, 13, 15}]

IntroShort-reduced.cdf | 23

ebug) na71= ArrayPlot[CellularAutomaton [
ruleM[{1, 7, 8, 13, 15}],
Randominteger([l, 100], 2227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 - Green}, ImageSize -» 400]

IntroShort-reduced.cdf | 25

ruleMN[{1,7,8,13,14,15}], 222, random, example 1

oebug) Inag)= ArrayPlot[CellularAutomaton[
ruleMN[{1, 7, 8, 13, 14, 15}],
RandomlInteger([l, 1007, 2227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 - Blue, 3 » Green}, ImageSize -» 400]

IntroShort-reduced.cdf | 27

ruleMN[{1,7,8,13,14,15}], 222, random, example 2

oebug) Inag)= ArrayPlot[CellularAutomaton[
ruleMN[{1, 7, 8, 13, 14, 15}],
RandomlInteger([l, 1007, 2227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 - Blue, 3 » Green}, ImageSize -» 400]

IntroShort-reduced.cdf | 29

ruleMN[{1,7,8,13,14,15}], 222, random, example 3

oebug) Ins0)= ArrayPlot[CellularAutomaton[
ruleMN[{1, 7, 8, 13, 14, 15}],
RandomlInteger([l, 1007, 2227,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 - Blue, 3 » Green}, ImageSize -» 400]

» 15}]

IntroShort-reduced.cdf | 31

Towards analysis

Steps fromntom

from to [111, 222]

oebug) In7s)= ArrayPlot[CellularAutomaton|
ruleM[{1, 7, 3, 13, 15}],
Randominteger([1l, 100], {{111, 222}}],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 - Green}, ImageSize - 400]

(Debug) Out[75]=

Selections

Every tenth step from 111 to 222

oebug) In76)= ArrayPlot[CellularAutomaton[
ruleM[{1, 7, 3, 13, 15}],
Randomlnteger([l, 1001, {{111, 222, 10}}1,
ColorRules -> {1 -> Red, 0 -> Yellow, 2 - Blue, 3 -» Green}, ImageSize -» 400]

(Debug) Out[76]=

Dynamic range of steps

rule = 6.7 .3 .13 .15, range = 555

32 | IntroShort-reduced.cdf

oebug) In771= Manipulate [ArrayPlot[CellularAutomaton[
ruleM[{6, 7, 3, 13, 15}], {{1}, O}, n],
ColorRules -> {1 -> Red, 0 -> Yellow, 2 » Blue, 3 » Green},
ImageSize - 400], {n, 2, 555, 1}]

9

(Debug) Out[77]=

IntroShort-reduced.cdf | 33

Differentiations for [1, 7, 8, 13, -], with dynamic step range

] 2] 5] 4

(Debug) Out[74]=

rule = 6.7 .3 .13 .15, seed = {1, 0, 1, 0, 1}

)

(Debug) Out[78]=

