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Towards Programming morphic
Palindromes
A first presentation of morphic grammars and programs for
palindromes

Rudolf Kaehr Dr.phil@
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Abstract
Morphic palindromes had been introduced and studied on two levels of representation:
1. the alpha-numeric level with tuples or lists, esp. of integers,
2. the differentiational approach of the ε/ν-structure.
The tuple approach got some specification by a grammar and by a production program written in Scala.
The production system for morphic palindromes is characterized a) by the morphic production rules and b) by
the context rule that refers backwards to the produced palindrome and is therefore adding to the recursive
production rules an aspect of retro-grade recursion.
The tuple approach is divided into a conceptual and a recursive formulation and formalization.
The conceptual thematization is considering palindromes under the operations of reversion, repetition and
accretion, This is augmenting the classical definition of palindromes that are characterized by reversion (and
repetition)by the operation of accretion.
The relabeling concept for DOW palindromes analyzed.
The ε/ν-approach that is emphasizing the differential structure of a morphogram and its morphic palindromes
by equality or non-equality (ε/ν, or E/N) specifies palindromes independently of the elements of the tuple
approach.
The ε/ν-approach allows different presentations of morphic palindromes.
The matrix or table presentation of the ε/ν-approach enables to proof that a morphogram is a palindrome iff its
matrix is symmetric. This might be seen as a fundamental theorem for palindromes in general.
Furthermore, a new form of duality for ε/ν-palindromes is introduced.
Connections with graph-theoretic analysis are sketched.
(work in progress, vers. 0.5, Aug 2013)

1.  Programming Aspects of Palindromes

1.1.  Motivations for asymmetric palindromes
"But Warren S. McCulloch has already explained in his work from 1945, which we referred to
in the beginning, that the knowing and wanting neural network of the brain works not only
with hierarchy, but also with a heterarchical functionality of logical values. This requires -
as we have emphasized throughout the course of this analysis - an additional language-axis
for the description of consciousness. While along the hierarchical axis the beginning value
can no longer change, for the heterarchical axis the same value can never be repeated.

"The  possibility  of  self-reflection  in  computable  systems  thereby  suggests  itself.  In
opposition to hierarchy, which in the movement from concept to concept never allows a
self-relation and which if traveled in the opposite direction only undoes the achieved result,
the heterarchical axis produces an increasing number of circles of backwards referential
Being, provided that the number of values is continuously increased.” (G. Gunther, trnsl. J.
Paul, J. Newbury)
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http://www.vordenker.de/ggphilosophy/gg_identity-neg-language_biling.pdf

This note gives the first grammar for asymmetric palindromes as they had been introduced in
previous papers.

Palindromes in DNA research
Again,  palindromes  in  the  field  of  DNA  research  are,  in  a  philosophical  sense,  ‘object'-
oriented. They are focused on the relational structures between objects, elements, entities
of identifiable and measurable ‘observables’ (R. Rosen).

Morphic palindromes are not focused on objects, they are, in a philosophical sense, ‘subject'-
oriented, studying the dynamics, processuality, evocation of events, i.e. of structurations.

Hence, morphic palindromes are thematizing the praxa of DNA events. And are therefore
praxeological (or praxeo-grammatical)and not in any way informational or in-formational.

Why are 'asymmetric' palindromes of importance?

Everybody knows the famous palindromes in phonetic writing systems.

The simplest western example is the name "anna". It reads forwards and backwards the same
and it has for both ways of reading the same meaning.

There are competitions about the longest palindrome, and there are even novels written as a
palindrome.

But again, their meaning is invariant of the reading direction.

Therefore they are sometimes called symmetric palindromes. But in fact, all palindromes are
symmetric.

A palindrome is a word that reads the same both forward and backwards, such as rotor. An
algorithm to determine whether or not a word is a palindrome can be expressed recursively.
Simply  strip  off  the  first  and  last  letters;  if  they  are  different,  the  word  is  not  a
palindrome. If they are, test the remaining string (after the first and last letters have been
removed) to see if it is a palindrome.

Classical grammar for palindromes over the alphabet   = {a, b}.
Context Free Grammar (CFG) production rules for palindromes:

           

Inductive definition
Basis: ⌀, 0 and 1 are palindromes
Induction: If w is a palindrome, so are 0w0 and 1w1. No string is palindrome of
0 and 1, unless it follows from this basis and inductive rule.

http://www.univ-orleans.fr/lifo/Members/Mirian.Halfeld/Cours/TLComp/l3-CFG.pdf

Example
S -->3 a  -->2  bab -->1 ababa  -->1 aababaa.

As a formal system

☙ The language of formulae   words
☙ The set of axioms (or assumptions) a-z,ϵ
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☙ The language of proofs

☙ Theorems are formulae that have proofs.

http://tel.archives-ouvertes.fr/docs/00/67/26/99/ANNEX/slides.pdf

Now, what is an example for an asymmetric palindrome?

I don't know a single asymmetric palindrome in a linguistic or numeric version of what ever
length and elaboration.

Chinese palindrome

      友朋小吃 （you meng xiaochi : a snack bar named You-Peng

      吃小朋友 （chi xiao pengyou  : “Eat little kids”

http://blog.chinesehour.com/

Hence,  this  very  short  palindrome is  asymmetric  in  its  meaning,  albeit  it  is  scripturally
symmetric: 友朋小吃 吃小朋友.

And, again, I don't know of a single Western example of this kind of palindromes.

It might be argued that Martin Gardners “Semordnilap is a name coined for a word or phrase
that spells a different word or phrase backward. “Semordnilap" is itself "palindromes" spelled
backward.” is contradicting my last statement.

But as it is introduced, it is a specially coined word for such a purpose. Obviously, there are
no limits to introduce such artificial words and constructs. The meaning of "semordnilap” is
its inverse and it seems to have no own meaning.

Obviously, there are a few examples from natural languages too, like “deserts” that reads as
“stressed” and represents a different meaning. But these are nevertheless rare and arbitrary
exceptions with highly restricted length. And there is no genuine linguistic-semantic base for
“asymmetric” palindromes in the linearity of Western languages.

Now, I introduced the concept of asymmetric palindromes of arbitrary length that are neither
linguistic nor numeric or pictographic.

A simple example is the name "Annabelle". Taken as a name, it isn't palindromic at all.

Funny enough, it consists of 3 palindromes: "anna, b” and "elle". But as a composition it isn't
a palindrome.

Taken as a pattern of differentiations it is a palindrome. It reads forwards and backwards as
the same.

OK, it  is  an asymmetric  palindrome which reads the same independently  of  the reading
direction albeit it is inscribed differently.

"Annabelle"  gets  a  palindromic  interpretation  by  the  asymmetric  morphogram
[1,2,2,1,3,4,5,5,4].
ispalindrome[1,2,2,1,3,4,5,5,4];
val it = true : bool
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The  differential  approach  is  not  counting  on  the  elements  of  the  string  but  on  the
differences between the elements.

The function ENstructure is calculating those differences in respect of their locations.
- ENstructure[1,2,2,1,3,4,5,5,4];
val it =
  [[],[(1,2,N)],
   [(1,3,N),(2,3,E)],
   [(1,4,E),(2,4,N),(3,4,N)],
   [(1,5,N),(2,5,N),(3,5,N),(4,5,N)],
   [(1,6,N),(2,6,N),(3,6,N),(4,6,N),(5,6,N)],
   [(1,7,N),(2,7,N),(3,7,N),(4,7,N),(5,7,N),(6,7,N)],
   [(1,8,N),(2,8,N),(3,8,N),(4,8,N),(5,8,N),(6,8,N),(7,8,E)],
   [(1,9,N),(2,9,N),(3,9,N),(4,9,N),(5,9,N),(6,9,E),(7,9,N),(8,9,N)]]
  : (int * int * EN) list list

It is easy to see that the differentiational equation holds:
ENstructure[1,2,2,1,3,4,5,5,4] = ENstructure[4,5,5,3,1,2,2,1]

Therefore, the morphogram [1,2,2,1,3,4,5,5,4] is a morphic palindrome.

ENstructureEN
The ENstructureEN function summarizes the pattern of ENstructure by omitting the explicite
numeric notation for the loci of the differentiations:

- ENstructureEN[1,2,2,1,3,4,5,5,4];
val it =
[[],[N],
[N,E],
[E,N,N],
[N,N,N,N],
[N,N,N,N,N],
[N,N,N,N,N,N],
[N,N,N,N,N,N,E],
[N,N,N,N,N,E,N,N]] : EN list list

ML ENstructureEN
fun ENstructureEN z =
   map (fn trl => map (fn pair => deltaEN pair z)
                      trl)
       (pairstructure (length z));

val ENstructureEN = fn : ''a list -> EN list list

This is nicely tabularized with the table of the EN-pattern:

From  a  symbolic  point  of  view  the  morphogram  [1,2,2,1,3,4,5,5,4]  is  obviously  an
asymmetric list.

On  the  other  hand,  the  EN-table  of  the  morphic  and  asymmetric  palindrome
[1,2,2,1,3,4,5,5,4] shows clearily its hidden symmetry.

That’s the reason why such differentiational, i.e. morphogrammatic palindromes are called,
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paradoxically, asymmetric palindromes. They are asymmetric on a semiotical (symbolic) or
mathematical level but symmetric on the level of morphogrames and their EN-structure.

Using a purely formal mathematical approach, we also might say: Morphic palindromes are
invariant under relabeling.

It turned out that this relabeling approach is purely combinatorial and is not telling much
about the character of palindromes.
A later and more profund formulation will be:

            

Diagrams of palindromes
A well known palindrome in the DOW literature, i.e. the study of double occurrence words
under relabeling, is the sequence [1,1,2,2,3,3].

Thematized as a differential structure, the palindrome gets its E/N-structure.

- ENstructure [1,1,2,2,3,3];
val it =
[[],
[(1,2,E)],
[(1,3,N),(2,3,N)],
[(1,4,N),(2,4,N),(3,4,E)],
[(1,5,N),(2,5,N),(3,5,N),(4,5,N)],
[(1,6,N),(2,6,N),(3,6,N),(4,6,N),(5,6,E)]] : (int * int * EN) list list

A simple palindrome test confirms its palindromicity. That is,
ENstructure [1,1,2,2,3,3] = Enstructure[3,3,2,2,1,1].

- ispalindrome[1,1,2,2,3,3];
val it = true : bool

The differential diagram is given by the DiagrMorphoPalin:

DiagrMorphoPalin [1,1,2,2,3,3]

The classical interpretation is depicted by the following diagram.

Assembly Graph for the palindrome (112233)

More at:
http://memristors.memristics.com/Morphospheres/Asymmetric%20Palindromes.html
http://the-chinese-challenge.blogspot.co.uk/2012/12/morphospheres-asymmetric-
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palindromes.html

1.2.  Towards a formal grammar for morphic palindromes
Programming classical palindromes is straight forwards, easy to access and realized in all
programming languages.
http://rosettacode.org/wiki/Palindrome_detection

Morphic Palindromes
http://memristors.memristics.com/Formal%20Aspects/Formal%20Aspects.html
http://memristors.memristics.com/Formal%20Aspects/Formal%20Aspects.pdf

In general
There are 2 approaches for programming to consider:
1. The non-recursive and
2. The recursive approach.

The  non-recursive  approach  works  with  the  construct  “reverse”,  the  recursive  approach
works over the constructs “head” and “last” of a list.

The non-recursive morphic approach
For the morphogrammatic approach, the descriptive approach has to completed by
a) reversion
b) repetition and
c) accretion.

The non-recursive approach answers the question: How to produce a palindrome out from a
given “head”. This head might be itself a palindrome or not.

From the palindromic head [1,2,3] the bodies of the possible palindromes are produced by
the rules of reversion, repetition and accretion.

Those rules are here not yet given explicitly. An example shows how they work.

The scheme covers correctly the list of morphic palindromes with head [1,2,3]:

The recursive morphic approach
The (retro-)recursive morphogrammatic approach has to deal additionally with the concept
of  trito-normal  form,  tnf,  also  called  in  other  contexts  an  “OrderedCollection”  or  a
“relabeling by ascending order” and, more important, the variability of the head (first) and
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last(tail) function for strings.

This variability is ruled by the morphoRules of the grammar for morphic palindromes.

The morphoRules are defining the production of morphic palindromes. The full grammar and
program will produce the palindromes on the base of the morphoRules and print them as a
list of ‘rough’ palindromes and additionally as a list of palindromes of canonical order, i.e. as
palindromes in trito-normal form defined by the operation tnf.

Recursive definition of morphic palindromes
Basis: [⌀] and [1] are morphic palindromes
Induction: If for [P] = [w] = [w1w2], [P] is a palindrome,
even palindromes for w1!=w2, and
odd palindromes for w1=w2,
so are

Rules even
R1: [P] --> w1[P]w2
R2: [P] --> w2[P]w1
R3: [P] --> w3[P]w3
R4: [P] --> w3[P]w4.

Rule odd
R5 [if length w odd ]   [P] => wM [P] wM
wM = middleElement(P)

Defs
w3 = add(|w1|,1)
w4 = add(|w3|,1)
wM = middleElement( P )

Closure
No string is a morphic palindrome of ∑(w), unless it follows from this basis and the inductive
rules R1 - R5.

With that, inductive proofs of properties of morphoGrammars are introduced.

Hence, as the first palindrome productions, we get:
           [⌀]  --> [1,1], [1,2]                  : R1, R4: even palindromes
           [1]  --> [1,1,1], [2,1,2], [2,1,3] : R1 (R5), R3, R4: odd palindromes.
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The palindrome grammar is applied as a palindrome tester. If a morphogram accepts the
properties defined with the rules, it is a palindrome.

The  palindrome  production  system  is  producing  recursively  the  domain  of  morphic
palindromes.

For short:
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Test-Example
ispalindrome[1,2,2,1,3,4,5,5,4];
val it = true : bool

tnf might be replaced by ReLabel.
- tnf;
val it = fn : ''a list -> int list

Examples for tnf
- tnf["a", "c"];
val it = [1,2] : int list
- tnf["&", "*"];
val it = [1,2] : int list
- tnf[3,1,4];
val it = [1,2,3] : int list

Production example for even palindromes
P: w1!=w2: ([w1=1, w2=2], [w1=1,w2=1]):
P = [1,2] and P = [1,1].
                   rules       result            tnf
P = [1,1]:      w1Pw1   [1,1,1,1] -> [1,1,1,1]  ; rule1 (rule2)
                   w3Pw3   [2,1,1,2] -> [1,2,2,1]  ; rule3
                   w3Pw4   [2,1,1,3] -> [1,2,2,3]  ; rule4
P = [1,2]:      w1Pw2   [1,1,2,2] -> [1,1,2,2] ; rule1 : direct repetition
                   w2Pw1   [2,1,2,1] -> [1,2,1,2]  ; rule2 : inverse repetition
                   w3Pw3   [3,1,2,3] -> [1,2,3,1]  ; rule3 : symmetric accretion
                   w3Pw4   [3,1,2,4] -> [1,2,3,4]  ; rule4 : asymmetric accretion

Production example for odd palindromes
P: w1=w2: [1]
                   rules       result        tnf
P = [1]:         w1Pw1   [1,1,1] -> [1,1,1]  ; rule5
                   w3Pw3   [2,1,2] ->  [1,2,1]  ; rule3
                   w3Pw4   [2,1,3] ->  [1,2,3]  ; rule4

Grammars and Programs.nb 9 of 42

11/08/2013 17:42



1.3.  Production tables
1.3.1.  Table for Palin(1-3-5)
ATTENTION
The  following  tables  had  been  manually  produced  on  the  base  of  normed  (canonized)
palindromes in trito-normal form, tnf, as it is used in the ML implementation.

The Scala program for the recursive production of palindromes, MorphoGrammar, is not yet
accepting this approach. It is based purely, as it is defined, on non-canonized palindromes.

Hence,  a  morphogram [1,2,3]  is  not  accepted  as  a  palindrome  by  the  MorphoGrammar
program. Written as the list (1,2,3), it is not recognized as a morphogram that is written as
[1,2,3].
scala> isPalindrome2(List(1,2,3))
res17: Boolean = false

With the list written in the form as it is produced, i.e. as (2,1,3) or (3,1,2), the morphogram
[1,2,3] is accepted by the MorphoGrammar as a palindrome.
scala> isPalindrome2(List(2,1,3))
res2: Boolean = true

Hence, the approach of the tables is some kind of zigzagging between produced and normed
palindromes.

As mentioned before,
            Rules(palindromes) =MG Rules(tnf(Palindromes)).
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1.3.2.  Patterns, Tables and ENstructures

The  symmetric  structure  of  morphic  palindromes  becomes  obvious  with  the  E/N-pattern
representation calculated by ENstructureEN  (palin).  Each palindrome palin(n)  of such an
E/N-structure is contained in the pattern of palin(n+1).

All patterns are symmetric in the sense of an equality of rows and columns of the square
pattern. This holds for even as well as for odd morphic palindromes.

                 

The symmetry of the E/N-pattern (matrix) is a ‘row/column’ or right/left symmetry.
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(morphogrammatically reversed word, bi-symmetric EN-matrix)

A similarity to be checked:

Guoce Xin, Terence Y.J. Zhang, Enumeration of bilaterally symmetric 3-noncrossing partitions

"Theorem 1. For any given partition P and vacillating tableau V, Prefl =  Vrev if and only if
φ(P) = V.

"A vacillating tableau V is said to be palindromic if V = Vrev.

A partition P of [n] is said to be bilaterally symmetric (bi-symmetric for short) if P = Prefl.
Theorem 1 implies that P is bi-symmetric if and only if V(P) is palindromic.

The enumeration of bi-symmetric partitions and matchings are not hard, but turns out to be
very difficult if we also consider the statistic of crossing number or nesting number.

http://www.sciencedirect.com/science/article/pii/S0012365X08003919 (2008)

The advantage of the EN-abstraction is  the fact that it  allows to emphasize much more
directly than it is possible with other approaches, the genuine morphogrammatic properties
of morphic palindromes.

The EN-table presentation of morphic palindromes, ENpalindromes, or ε/ν-Palindromes, has
the great advantage of a mathematical structure that is more directly accessible to analysis,
elaboration and perception than its  topological  counterparts  for  standard palindromes in
canonical form with its complex diagrams of knotted graphs.

Example for a EN-pattern
- ENstructureEN[1,2,3,1];
val it = [[],[N],[N,N],[E,N,N]] : EN list list

- ENstructureEN[1,2,3,1,2,3];
val it = [[],[N],[N,N],[E,N,N],[N,E,N,N],[N,N,E,N,N]] : EN list list

      :          

1.3.3.  Palindromes in different approaches and notations
The numeric list notation gets different presentations as a list, a graph, a EN-structure and
a EN-symmetry table and the classic assembly graph, and more.

1.Differentiation graph of palindrome [1,1,2,2,3,3] :
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2. EN-structureEN of palindrome [1,2,2,3,1,4,4,3]:
- ENstructureEN[1,2,2,3,1,4,4,3];
val it =
  [[],[N],[N,E],[N,N,N],[E,N,N,N],[N,N,N,N,N],[N,N,N,N,N,E],[N,N,N,E,N,N,N]]
  : EN list list

3. EN-symmetry table of palindrome [1,2,2,3,1,4,4,3] :

   

EN-symmetry table [1,2,1,3,2,3]

- ENstructureEN[1,2,1,3,2,3];
val it = [[],[N],[E,N],[N,N,N],[N,E,N,N],[N,N,N,E,N]] : EN list list

4. Assembly graph of (1,2,2,3,1,4,4,3):

EN-symmetry table [1,2,1,3,2,3]

- ENstructureEN[1,2,1,3,2,3];
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val it = [[],[N],[E,N],[N,N,N],[N,E,N,N],[N,N,N,E,N]] : EN list list

Diagrams for numeric palindrome (1,2,1,3,2,3)

1.4.  Towards production rules for ENpalindromes
1.4.1.  Production rules for ENpalindromes
EN-palindromes are focused on the E/N-structure of morphograms and morphic palindromes.

The EN-approach is presenting palindromes, while the list approach of keno-sequences for
morphograms is just re-presenting palindromes in a canonical notation form.
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Even elementary rules
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Axiom2 = [1,2]:
[1,2]     -> [1,1,2,2]     
            -> [2,1,2,1] : [1,2,1,2]
            ->  [3,1,2,3] : [1,2,3,1]
            ->  [3,1,2,4] : [1,2,3,4]

- ENstructureEN[1,1,2,2];
val it = [[],[E],[N,N],[N,N,E]] : EN list list
- ENstructureEN[2,1,2,1];
val it = [[],[N],[E,N],[N,E,N]] : EN list list
- ENstructureEN[3,1,2,3];
val it = [[],[N],[N,N],[E,N,N]] : EN list list
- ENstructureEN[3,1,2,4];
val it = [[],[N],[N,N],[N,N,N]] : EN list list

ML definition of ENpalindrome

fun ENpalindrome l = (ENstructureEN (l) = ENstructureEN (kref l));
val ENpalindrome = fn : ''a list -> bool

fun ENpalindrome ENstructureEN(l) = (ENstructureEN (l) = ENstructureEN (kref l));
val ENpalindrome = fn : (int list -> ''a) -> int list -> bool

- ENpalindrome ENstructureEN [1,2,3];
val it = true : bool

Axiom1 = [1,1]
P = [1,1]:     -> [1,1,1,1]  
                    -> [2,1,1,2] : [1,2,2,1]  
                    -> [2,1,1,3] : [1,2,2,3]  

- ENstructureEN[1,1,1,1];
val it = [[],[E],[E,E],[E,E,E]] : EN list list
- ENstructureEN[2,1,1,2];
val it = [[],[N],[N,E],[E,N,N]] : EN list list
- ENstructureEN[2,1,1,3];
val it = [[],[N],[N,E],[N,N,N]] : EN list list
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ENstructureEN[1,1,1,2,1,1,1]:
[[],[E],[E,E],[N,N,N],[E,E,E,N],[E,E,E,N,E],[E,E,E,N,E,E]]

Next example

pal = [1,1,2,1,3,1,1]                     rule4(pal) = [4,1,1,2,1,3,1,1,5]                                                   

rule1(pal) = [1,1,1,2,1,3,1,1,1]       rule3(pal) = [4,1,1,2,1,3,1,1,4]      
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- ENstructureEN[1,1,1,2,1,3,1,1,1];
  [[],[E],[E,E],[N,N,N],[E,E,E,N], [N,N,N,N,N],[E,E,E,N,E,N],[E,E,E,N,E,N,E],
   [E,E,E,N,E,N,E,E]]

- ENstructureEN[4,1,1,2,1,3,1,1,4];
  [[],[N],[N,E],[N,N,N],[N,E,E,N], [N,N,N,N,N],[N,E,E,N,E,N],[N,E,E,N,E,N,E],
   [E,N,N,N,N,N,N,N]]

[v] as [1]   [2,1,3]       [1,2,1,3,1]         [1,1,2,1,3,1,1]              [1,1,1,2,1,3,1,1,1]
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1.4.2.  Inversion of productions

-ENstructureEN[1,2,3,4,1,1,3,4,5,1];
[[],[N],[N,N],[N,N,N],[E,N,N,N],[E,N,N,N,E],[N,N,E,N,N,N],[N,N,N,E,N,N,N],
[N,N,N,N,N,N,N,N],[E,N,N,N,E,E,N,N,N]]                            

-ENstructureEN[4,3,2,1,1,3,2,5];
[[],[N],[N,N],[N,N,N],[N,N,N,E],[N,E,N,N,N],[N,N,E,N,N,N],[N,N,N,N,N,N,N]]                         
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-ENstructureEN[3,2,1,1,3,2];
[[],[N],[N,N],[N,N,E],[E,N,N,N],[N,E,N,N,N]]                      

-ENstructureEN[2,1,1,3];
[[],[N],[N,E],[N,N,N]]

-ENstructureEN[1,1];
[[],[E]]

Contrary example
- ENstructureEN[3,1,2,2,4];
val it = [[],[N],[N,N],[N,N,E],[N,N,N,N]] :

  R3     ??    : ##

Albeit the first row/column is symmetric, there is no rule to finally reduce the morphogram
to an ENpalindrome axiom. Hence, the morphogram fails the test, and is therefore not a
palindrome.
- ispalindrome [1,2,1,3,1,3];
val it = false : bool
- ENstructureEN[1,2,1,3,1,3];
val it = [[],[N],[E,N],[N,N,N],[E,N,E,N],[N,N,N,E,N]] : EN list list

The table for ENstructureEN[1,2,1,3,1,3] is not symmetric. Hence it is not a palindrome.

  

1.4.3.  Classic symmetric palindromes
Symmetric palindromes from [1] to [1,2,3,4,5,6,7]: 31
[[1],[1,1],
[1,1,1],[1,2,1],
[1,1,1,1],[1,2,2,1],
[1,1,1,1,1],[1,1,2,1,1],[1,2,1,2,1],[1,2,2,2,1],[1,2,3,2,1],
[1,1,1,1,1,1],[1,1,2,2,1,1],[1,2,1,1,2,1],[1,2,2,2,2,1],[1,2,3,3,2,1],
[1,1,1,1,1,1,1],[1,1,1,2,1,1,1],
                        [1,1,2,1,2,1,1],[1,1,2,2,2,1,1],[1,1,2,3,2,1,1],[1,2,1,1,1,2,1],

Grammars and Programs.nb 22 of 42

11/08/2013 17:42



                        [1,2,1,2,1,2,1],[1,2,1,3,1,2,1],[1,2,2,1,2,2,1],[1,2,2,2,2,2,1],
                        [1,2,2,3,2,2,1],[1,2,3,1,3,2,1],[1,2,3,2,3,2,1],[1,2,3,3,3,2,1],[1,2,3,4,3,2,1]]

Examples: symmetric Palin(5)
[1,1,1,1,1],[1,1,2,1,1],[1,2,1,2,1],[1,2,2,2,1],[1,2,3,2,1] : 5

- ENstructureEN[1,1,2,1,1];
val it = [[],[E],[N,N],[E,E,N],[E,E,N,E]]
- ENstructureEN[1,2,1,2,1];
val it = [[],[N],[E,N],[N,E,N],[E,N,E,N]]
- ENstructureEN[1,2,2,2,1];
val it = [[],[N],[N,E],[N,E,E],[E,N,N,N]]
- ENstructureEN[1,2,3,2,1];
val it = [[],[N],[N,N],[N,E,N],[E,N,N,N]]

  [1,1,1,1,1]       [1,1,2,1,1]        [1,2,1,2,1]       [1,2,2,2,1]       [1,2,3,2,1]

             

Out of 35 morphic palindromes, 5 palindromes are filtered out as symmetric in the classical
sense. There is a total of 203 morphograms of length 5. Hence, there are still 30 morphic
palindromes that are symbolically asymmetric but structurally symmetric.

Obviously, for all classical palindromes, position (1,5) has to be marked by equality, i.e by e.

Distribution of v is:
v([1,1,1,1,1]) = 0,
v([1,1,2,1,1]) = 4,
v([1,2,1,2,1]) = 6,
v([1,2,2,2,1]) = 6,
v([1,2,3,2,1]) = 8,

This shows, again, the enormeous structural poverty of the classical approach to palindromes
and their specific iterability.

EN-structure of DOW palindromes of length 6:
- ENstructureEN[1,2,3,3,2,1];
val it = [[],[N],[N,N],[N,N,E],[N,E,N,N],[E,N,N,N,N]] : EN list list
- ENstructureEN[1,1,2,2,3,3];
val it = [[],[E],[N,N],[N,N,E],[N,N,N,N],[N,N,N,N,E]] : EN list list
- ENstructureEN[1,2,3,3,1,2];
val it = [[],[N],[N,N],[N,N,E],[E,N,N,N],[N,E,N,N,N]] : EN list list
- ENstructureEN[1, 2, 3, 2, 3, 1];
val it = [[],[N],[N,N],[N,E,N],[N,N,E,N],[E,N,N,N,N]] : EN list list
ENstructureEN[1,2,2,3,3,1];
val it = [[],[N],[N,E],[N,N,N],[N,N,N,E],[E,N,N,N,N]] : EN list list
- ENstructureEN[1,2,1,3,2,3];
val it = [[],[N],[E,N],[N,N,N],[N,E,N,N],[N,N,N,E,N]] : EN list list
- ENstructureEN[1,2,3,1,2,3];
val it = [[],[N],[N,N],[E,N,N],[N,E,N,N],[N,N,E,N,N]] : EN list list

  [1,2,3,3,2,1]           [1,1,2,2,3,3]         [1,2,3,3,1,2]      [1,2,3,2,3,1]

        

   [1,2,2,3,3,1]         [1,2,1,3,2,3]        [1,2,3,1,2,3]
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Duality between DOW palindromes

[1,2,3,3,2,1] dual [1,2,3,1,2,3]
[1,2,3,3,1,2] dual [1,2,3,2,3,1]
[1,1,2,2,3,3] dual [1,1,2,2,3,3]
[1,2,2,3,3,1] dual [1,2,2,3,3,1]
[1,2,1,3,2,3] dual [1,2,1,3,2,3].

e(DOW-palin(3)) = 3.

Representatives of isomorphism classes of irreducible graphs of size 3 (Jonathan Burns et
al, 2011)
(palindromic and non-palindromic, [1,2,1,3,3,2], [1,2,3,1,3,2], [1,2,1,3,3,2], graphs)

Component analysis
Following the dissertation of Jamie Sprecher, a structural analogy to the ENstructure-analysis
of this paper is  noted. This graph-theoretical analysis might be translated into the context of
EN-structures and their tabulations.

Because morphograms are patterns  and not  sequentiell  strings,  i.e.  directed graphs,  the
inter-connectedness  of  the  parts  is  ‘remembered’  by  the  reductive  cut  into  different
components.

The assembly number of a graph is  the minimum number of polygonal paths needed to
create a Hamiltonian set for that graph.

Jamie Sprecher, Multicomponent Assembly Graphs in DNA Recombination
http://knot.math.usf.edu/multimedia/jamies_thesis_2013.pdf

This might be seen as a very first step of a comparison of the multicomponent assembly
graphs  and  corresponding  morphograms  and  their  decomposition  into  palindromeic
monomorphies.

Example [1,1,2,2,3,4,3,4]

             [1,1,2,2,3,4,3,4]          ==>    {[1],    [1,2,2,3,4,3,4]}
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- ENstructureEN[1,1,2,2,3,4,3,4];
  [[],[E],[N,N],[N,N,E],[N,N,N,N],[N,N,N,N,N],[N,N,N,N,E,N],[N,N,N,N,N,E,N]]

- ENstructureEN[1,2,2,3,4,3,4];
  [[],[N],[N,E],[N,N,N],[N,N,N,N],[N,N,N,E,N],[N,N,N,N,E,N]]

Example [1,2,1,2,3,4,3,4]

- ENstructureEN[1,2,1,2,3,4,3,4];
  [[],[N],[E,N],[N,E,N],[N,N,N,N],[N,N,N,N,N],[N,N,N,N,E,N],[N,N,N,N,N,E,N]]

- ENstructureEN[1,2,3,4,3,4];
[[],[N],[N,N],[N,N,N],[N,N,E,N],[N,N,N,E,N]]
- ENstructureEN[1,2];  [[],[N]]

Further decompositions (Jamie Sprecher)
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http://knot.math.usf.edu/multimedia/jamies_thesis_2013.pdf

1.4.4.  Duality principle for ENpalindromes
There is a complementarity principle for DNA palindromes related to their elements which
directly leads to Herrlich’s economic principle of “two for one” of duality in category theory.

Two for one
Genetics is cleverly applying the duality principle to reduce the costs of observation. Because
of the duality (DNA complementarity) of A and T and C and G, “one is justified in following
the evolutionary development of one strand and ignoring the other strand” (Kimura’s DNA
Substitution Model).

"For example, if  one strand contains the block -ACCGT- of bases, then the other strand
contains the complementary block -TGGCA- of bases.”

http://www.genetics.ucla.edu/courses/hg236b/Lange_Chapter_PopGenetics.pdf

One more

"DNA (deoxyribonucleic acid) is found in any living organism, it consists of polymer chains,
called DNA strands. DNA strands are composed of nucleotides (sometimes called bases): A
(adenine), G (guanine), C (cytosine), and T (thymine). A and G are called purines, C and T
are called pyrimidines.

"In nature the strands form the well-known double helix by a bondage of two separate
strands. This bonding always takes place by pairwise attraction of the bases: A bonds with T,
G  bonds  with  C.  This  phenomenon  is  called  Watson-Crick  complementarity  and  the
pairs  and  are called complementary pairs.

"Watson-Crick complementarity gives us some fundamental information for free: whenever
in a double strand a bondage takes place, we know that the bases at the corresponding
positions  are  complementary.  Moreover,  for  a  single  DNA  strand  nature  gives  its
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complementary pair; therefore if we have one member of a double strand, then we have its
complementary pair as well.”

http://www.cs.bme.hu/~csima/phd1/node25.html#watson

This kind of element-oriented complementarity (duality, complementary strand) is focused
on its elements and is not yet taking the internal, symmetric and asymmetric, structures of
the palindromes into account.

In contrast, the ENpalindrome concept is purely structural and algebraic, and not based on
the duality of its elements, equal = E and non-equal = N, of the palindromes.

The  Watson-Crick  complementarity  is  working  with  4  elements,  the  ENpalindromic
complementarity works with 2 elements {E, N} and the grid (matrix) of their distribution.

Obviously,  the patterns  and   are not complementary.  Albeit  there might be a

duality between the elementary E and N. The latter pattern even doesn’t exist.

A kind of complementation might exist between homogeneous EN-patterns like:  and  

 based on the elementary duality of E and N.

Structural complementarity

Because of the structural symmetry of palindromes expressed in the ENtables of palindromes,
a new specific duality (complementarity) of palindromes is introduced. The table or matrix
duality of palindromes.

Slogan

Instead of the pheno-type bargain shopping at the CatShop we get a geno-type interaction of
“two for one” at the deep-structural level of the morphic game.
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Example
[2,1,2,3,2]
ENstructureEN[2,1,2,3,2];
val it = [[],[N],[E,N],[N,N,N],[E,N,E,N]] : EN list list
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- ENstructure[2,1,2,3,2];

  [[],[(1,2,N)],
  [(1,3,E),(2,3,N)],
  [(1,4,N),(2,4,N),(3,4,N)],
  [(1,5,E),(2,5,N),(3,5,E),(4,5,N)]]

  [[],[(1,2,N)],
  [(1,3,E),(2,3,N)],
  [(1,4,N),(2,4,N),(3,4,N)],
  [(1,5,E),(2,5,N),(3,5,E),(4,5,N)]]

  [[],[(1,2,N)],
  [(1,3,E),(2,3,N)],
  [(1,4,N),(2,4,N),(3,4,N)],
  [(1,5,E),(2,5,N),(3,5,E),(4,5,N)]]

1.4.5.  More ENstructureEN and tables
- ENstructure[1,2,3];
val it = [[],[(1,2,N)],[(1,3,N),(2,3,N)]] : (int * int * EN) list list
ENstructureEN[1,2,3] = [[],[N],[N,N]] : EN list list

- ENstructure[2,1,3] = ENstructure[1,2,3];
val it = true : bool

- ENstructureEN[1,1,1,1,1];
val it = [[],[E],[E,E],[E,E,E],[E,E,E,E]] : EN list list

- ENstructureEN[2,1,1,1,2];
val it = [[],[N],[N,E],[N,E,E],[E,N,N,N]] : EN list list

- ENstructureEN[2,2,1,1,1,2,2];
val it = [[],[E],[N,N],[N,N,E],[N,N,E,E],[E,E,N,N,N],[E,E,N,N,N,E]]: EN list list
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- ENstructureEN[2,1,1,1,3];
val it = [[],[N],[N,E],[N,E,E],[N,N,N,N]] : EN list list

ENstructureEN[4,2,1,1,1,3,5];
val it = [[],[N],[N,N],[N,N,E],[N,N,E,E],[N,N,N,N,N],[N,N,N,N,N,N]]

Rule3   :      ==>     : accretion asym

- ENstructureEN[4,2,1,1,1,3,4];
val it = [[],[N],[N,N],[N,N,E],[N,N,E,E],[N,N,N,N,N],[E,N,N,N,N,N]]

Rule3:     ==>    : accretion, sym.

- ENstructureEN[3,2,1,2,1,2,3];
val it = [[],[N],[N,N],[N,E,N],[N,N,E,N],[N,E,N,E,N],[E,N,N,N,N,N]]
  : EN list list

    

ENstructureEN
- ENstructureEN[1,1,2,1,1];
val it = [[],[E],[N,N],[E,E,N],[E,E,N,E]] : EN list list
- ENstructureEN[2,1,2,1,2];
val it = [[],[N],[E,N],[N,E,N],[E,N,E,N]] : EN list list
- ENstructureEN[3,1,2,1,3];
val it = [[],[N],[N,N],[N,E,N],[E,N,N,N]] : EN list list
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- ENstructureEN[3,1,2,1,4];
val it = [[],[N],[N,N],[N,E,N],[N,N,N,N]] : EN list list
- ENstructureEN[1,1,2,3,1];
val it = [[],[E],[N,N],[N,N,N],[E,E,N,N]] : EN list list
- ENstructureEN[3,1,2,3,1];
val it = [[],[N],[N,N],[E,N,N],[N,E,N,N]] : EN list list
- ENstructureEN[2,1,2,3,2];
val it = [[],[N],[E,N],[N,N,N],[E,N,E,N]] : EN list list
- ENstructureEN[4,1,2,3,4];
val it = [[],[N],[N,N],[N,N,N],[E,N,N,N]] : EN list list
- ENstructureEN[4,1,2,3,5];
val it = [[],[N],[N,N],[N,N,N],[N,N,N,N]] : EN list list

- ENstructureEN[1,1,2,2,3,3];
val it = [[],[E],[N,N],[N,N,E],[N,N,N,N],[N,N,N,N,E]] : EN list list

Translations: 

Dependencies

There is a conflict of enummeration between the functions Enstructure and subsystems.
- ENstructure[1,2,2,1];
val it = [[],[(1,2,N)],[(1,3,N),(2,3,E)],[(1,4,E),(2,4,N),(3,4,N)]]
  : (int * int * EN) list list

- ENstructureEN[1,2,2,1];
val it = [[],[N],[N,E],[E,N,N]] : EN list list

- ENtoKS  [[], [(1, 2, N)], [(1, 3, N), (2, 3, E)], [(1, 4, N), (2, 4, E), (3, 4, E)],
   [(1, 5, E), (2, 5, N), (3, 5, N), (4, 5, N)]]
   [(1, 5, E), (2, 5, N), (3, 5, N), (4, 5, N)]];
val it = [1,2,2,2,1] : int list

Enumeration table

Correspondence
subsystems:  corresponds to
ENstructure: [(1, 2, N)],    [(1, 3, N),  (2, 3, E)].

1.4.6.  Summary
Morphic palindromes had been introduced and studied on two levels of representation:
1. the alpha-numeric level with tuples or lists, esp. of integers,
2. the differentiational approach of the ε/ν-structure.

The  tuple  approach  got  some specification  by  a  grammar  and  by  a  production  program
written in Scala.
The  production  system  for  morphic  palindromes  is  characterized  a)  by  the  morphic
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production  rules  and  b)  by  the  context  rule  that  refers  backwards  to  the  produced
palindrome and is therefore adding to the recursive production rules an aspect of retro-grade
recursion.

The ε/ν-approach that is emphasizing the differential structure of a morphogram and its
morphic  palindromes  by  equality  or  non-equality  (ε/ν,  or  E/N)  specifies  palindromes
independently of the elements of the tuple approach.

The ε/ν-approach allows different presentations of morphic palindromes.
The matrix or table presentation of the ε/ν-approach enables to proof that a morphogram is
a palindrome iff its matrix is symmetric.

Furthermore, it make directly accessible a new form of duality for ε/ν-palindromes.

2.  Programming MorphoGrammars

2.1.  Test programs
Ossip’s Scala program for MorphoGrammar
This Scala program is not yet producing the list of palindromes of arbitrary length but is
functioning as a recursive palindrome tester for the lists defined by the morphoRules.

2.2.  Production rules and programs
2.2.1.  Production rules
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2.2.2.  Production program (first version)
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Use
genPalindrome(5)
genPalindrome(5, List(2,3))

Print
def prnt(s:Set[List[Int]]) =  s.map("[" + _.mkString(",") +"]").toList.sorted.mkString("\n")
prnt(genPalindrome(n))
Size
genPalindrome(n).size

Test:
genPalindrome(5).map(x => x +":"+  isPalindrome(x).toString).mkString("\n")

2.2.3.  Scala morpho production rules

Definition and test
def morphoProdRule1(s:List[Int]) = List(s.head)++(s)++List(s.last);            
morphoProdRule1: (s: List[Int])List[Any]
scala> morphoProdRule1(List(1,2,3))
res53: List[Any] = List(1, 1, 2, 3, 3)

scala> def morphoProdRule2(s:List[Int]) = List(s.last)++(s)++List(s.head);   
morphoProdRule2: (s: List[Int])List[Any]
scala> morphoProdRule2(List(1,2,3))
res56: List[Any] = List(3, 1, 2, 3, 1)

def morphoProdRule3(s:List[Int]) = List(s.last+1)++(s)++List(s.last+1)
scala> def morphoProdRule3(s:List[Int]) = List(s.last+1)++(s)++List(s.last+1)
morphoProdRule3: (s: List[Int])List[Any]
scala> morphoProdRule3(List(1,2,3))
res62: List[Any] = List(4, 1, 2, 3, 4)

scala> def morphoProdRule4(s:List[Int]) = List(s.last+1)++(s)++List(s.last+2)
morphoProdRule4: (s: List[Int])List[Any]
scala> morphoProdRule4(List(1,2,3))
res63: List[Any] = List(4, 1, 2, 3, 5)

scala> def morphoProdRule5 (s : List[Int]) = (if (isOdd(s.size))
       (List(middle(s)) ++ (s) ++ List(middle(s))) else Nil)
scala> morphoProdRule5(List(1,2,3))
res342: List[Int] = List(2, 1, 2, 3, 2)

2.2.4.  Comments on the implementations
The intuitive and manual use of the rules follows some context rules (conditions) that are not yet
implemented in the proposed grammar and the production program.

Recursion  on  words  is  not  yet  running  round  with  the  Scala  grammar  and  program
’genPalindrome”.
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Additionally, a strict 'mechanical' application of the rules on the length of the 'words' is producing
automatically some redundancy.

On the other hand, the manual application of the rules is delivering correctly the list of palindromes.
Obviously, some intuitive properties are not yet formalized.

This is discussed with the following example for even palindromes.

Restriction:
: rule3, because fst=scnd but not last = lastn like with  

.

Hence, rule3 is not applicable to 
An application of rule3 on (1,2) produces a non-palindromic morphogram.

[2,1,1,2] --> [2,2,1,1,2,3]: rule4
An application of rule4(2,2) of [2,1,1,2] produces a non-palindromic morphogram.

Redundancy:
: rule4 on (1,2) is applicable. But the result is also produced by

rule1 on (3,4):
: rule1 on (3,4).

Hence, the application rule4 on (1,2) can be omitted.

Example for redundancy

Limitation:
The  implemented  rules  are  not  yet  covering  recursively  all  correct  applications  on  a  word
(morphogram).
The present implementation is not yet considering cases like:

.

Consequences
As a consequence, the list constructs List(x.head) and List(x.last) are much too static and have
to be replaced by a more dynamic (functional) approach to realize the recursive application of the
rules on the length of the words.

Additionally, some context rules that are restricting the use of the rules have to be implemented.
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Because of possible redundancy, an elimination procedure for redundant items has to be added too.

Towards a re-formulation of the rules

Length of the word
Type: Odd, Even
word scheme: w = [w1,w,2,..., wi, wj, ..., w , wn]

middle of odd word:

Tuple notation
word tuple scheme: w = [(w1, wn), (w2,w ), ..., (w ...,(w , w2), (wn, w1)]

Re-enummeration: ∀i,j: n ==> n+2,  2<=i,j<=n ==> 2<=i,j<=n+2
[w1,w,2,..., wi, wj, ..., w , wn]  ==> [w1,w,2,..., wi, wj, ..., w , w ]

New Set of Rules
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Examples
:

:
length(P) = 6
type: even
re-nummeration: n ==> n+2
form: linear or tuple
linear: [w1, w2, ,w3, w4, w5, w6]
tupel :[(w1, w6), (w2,w5), (w3, w4)]

Rules
rule1(3,4): [(w1, w6), (w2,w5), (w3, w4)]
                ==>
                [(w3, w4), (w1, w6), (w2,w5), (w3, w4)]
                [(w1, w8), (w2, w7), (w3,w6), (w4, w5)] : re-enumeration

rule1(3,4): [(1, 6), (2, 5), (3, 4)]
                ==>
                [(3, 4)], (1, 6), (2, 5), (3, 4)] ==> [3,1,2,3,4,5,6,4] :  (3, 4) ∩ (1, 6) = ∅

rule1(2,5): [(w1, w6), (w2,w5), (w3, w4)]
                ==>
                [(w2, w5), (w1, w6), (w2,w5), (w3, w4)]

rule1(2,5): [(1, 6), (2, 5), (3, 4)]
                ==>
                [(2, 5), (1, 6), (2, 5), (3, 4)]] ==> [2,1,2,3,4,5,6,5] : (2, 5) ∩ (1, 6) = ∅

rule1(1,6): [(w1, w6), (w2,w5), (w3, w4)]
                ==>
                [(w1, w6), (w1, w6), (w2,w5), (w3, w4)]

rule1(1,6): [(1, 6), (2, 5), (3, 4)]
                ==>
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                [(1, 6), (1, 6), (2, 5), (3, 4)]] ==> [1,1,2,3,4,5,6,6]  : (1, 6) = (1, 6)

Restriction for rule 3

rule3(3,4): [(1, 6), (2, 5), (3, 4)]
                ==>
                [(5, 5)], (1, 6), (2, 5), (3, 4)] ==> [5,1,2,3,4,5,6,5] : (5,5) ∩ (1,6) = ∅

rule3(2,5): [(1, 6), (2, 5), (3, 4)]
                ==>
                [(6, 6)], (1, 6), (2, 5), (3, 4)] ==> [6,1,2,3,4,5,6,6] : (6,6) ∩ (1,6) != ∅

rule3(1,6): [(1, 6), (2, 5), (3, 4)]
                ==>
                [(7, 7)], (1, 6), (2, 5), (3, 4)] ==> [7,1,2,3,4,5,6,7] : : (7,7) ∩ (1,6) = ∅

Mismatch:
rule3(1,2):
[3,1,2,4]   ==> [(3,3), (3,4), (1,2)] : normal form, test: (3,3) ∩ (3,4) != ∅

rule3(2,3):
[1,2,3,4]   ==> [(4,4), (1,4), (2,3)] : numeric form, test: (4,4) ∩ (1,4) != ∅

rule4(1,1)
[2,1,1,2]  [2,2,1,1,2,3]  [(2,3), (2,2), (1,1)] :  (2,3) ∩ (2,2) != ∅

rule3(1,1):
[2,1,1,3]  [2,2,1,1,3,2]  [(2,2), (2,3), (1,1)] :  (2,2) ∩ (2,3) != ∅

rule2(2,3):
[2,1,1,3]  [3,2,1,1,3,2]  [(3,2), (2,3), (1,1)] :  (3,2) ∩ (2,3) = ∅

Context Rule for genPalindrome

def rule3(x:List[Int]) = {
    (0 until x.size/2).flatMap(i => genP(List(x(x.size -i-1)+1) ++ x ++ List(x(x.size -i-1)+1) ) )

rule3(2,5): [(1, 6), (2, 5), (3, 4)]
                ==>
                [(6, 6)], (1, 6), (2, 5), (3, 4)] ==> [6,1,2,3,4,5,6,6] : (6,6) ∩ (1,6) != ∅

x =  [(1, 6), (2, 5), (3, 4)]
List(x(x.size -i-1)+1) = 6
List(x(x.size -i-1)+1) = 6
head(x) = 1,
last(x) = 6
hence,
(List(x(x.size -i-1)+1) , head(x)) ∩ (List(x(x.size -i-1)+1) , last(x)) != ∅
is (6, 1) ∩ (6, 6) != ∅.
Therefore, [6,1,2,3,4,5,6,6] or [(6, 6)], (1, 6), (2, 5), (3, 4)] is not a palindrome.
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2.2.5.  Recursion and reflection for palindromes
Hence, the retrograde recursion over the morphic palindromes gets a meta-rule, context rule CR,
which controls  the palindrome-procedures in retrograde respect  of  the structure of  the prolonged
palindrome.  Therefore,  the  morphoProdRules   are  not  just  directly  applied  on  the
palindromes but are also reflecting the structure of the produced palindromes by the context rule to
decide its further application.
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Morphogrammatics and Computational Reflection
Applying  insights  from the  retro-grade  recursivity  concept  of  morphogrammatics  to  questions  of
reflectionality and interactionality of programming

http://memristors.memristics.com/MorphoReflection/Morphogrammatics%20of%20Reflection.html

2.2.6.  Reformulation of the Scala program genPalindrome (2nd version)
This  reformulation  is  considering  the  recursive  application  of  the  rules  on  the
length of the word.
The context rule is not yet implemented.
object Palindrome {
def morphoRules(s:List[Int]) : Boolean =
  ((s.head == s.last) ||
  (s.head+1 == s.last) ||
  (s.head+1 == s.last+1) ||
  (s.head+1 == s.last+2) )
def isPalindrome(s : List[Int]) : Boolean =
  s match {
    case s if s.length > 1 => morphoRules(s) && isPalindrome(s.slice(1, s.length - 1))
    case _ => true
  }

def isOdd(i:Int) : Boolean = i % 2 != 0  
def middle(s:List[Int]) = s( s.size / 2)

def genPalindrome1(maxSize:Int, s:List[Int] = Nil) = {
  def genP(s:List[Int]) : Set[List[Int]] = {
    s match {
      case x if x.size >= maxSize -1 => Set(x)
      case x if x.isEmpty =>  genP(List(1)) ++ genP(List(1,1)) ++ genP(List(1,2))     
      case x =>
         Set(x) ++
        genP(List(x.head) ++ x ++ List(x.last)) ++
        genP(List(x.last) ++ x ++ List(x.head)) ++
        genP(List(x.last+1) ++ x ++ List(x.last+1)) ++
        genP(List(x.last+1) ++ x ++ List(x.last+2)) ++
        (if (isOdd(x.size)) genP(List(middle(x)) ++ x ++ List(middle(x))) else Nil)
    }
  }
  genP(s)
}  

def genPalindrome(maxSize:Int, s:List[Int] = Nil) = {
  def rule1(x:List[Int]) = {
    (0 until x.size/2).flatMap(i => genP(List(x(i)) ++ x ++ List(x(x.size -i-1)) ) )
  }
  def rule2(x:List[Int]) = {
    (0 until x.size/2).flatMap(i => genP(List(x(x.size -i-1)) ++ x ++ List(x(i)) ) )
  }
  def rule3(x:List[Int]) = {
    (0 until x.size/2).flatMap(i => genP(List(x(x.size -i-1)+1) ++ x ++ List(x(x.size -i-1)+1) ) )
  }
  def rule4(x:List[Int]) = {
    (0 until x.size/2).flatMap(i => genP(List(x(x.size -i-1)+1) ++ x ++ List(x(x.size -i-1)+2) ) )
  }
  def genP(s:List[Int]) : Set[List[Int]] = {
    s match {
      case x if x.size >= maxSize -1 => Set(x)
      case x if x.isEmpty =>  genP(List(1)) ++ genP(List(1,1)) ++ genP(List(1,2))     
      case x =>
        Set(x) ++
        rule1(x) ++ rule2(x) ++ rule3(x) ++ rule4(x) ++
        (if (isOdd(x.size)) genP(List(middle(x)) ++ x ++ List(middle(x))) else Nil)
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    }
  }
  genP(s)
}  

def prnt(s:Set[List[Int]]) =  s.map("[" + _.mkString(",") + "]").toList.sorted.mkString("\n")
// prnt(genPalindrome(5))
// genPalindrome(5).map(x => x +":"+  isPalindrome(x).toString)

def main(args:Array[String]) {
  val len = if(args.length >0) args(0).toInt else 5
  val pal = genPalindrome(len)
   println("genPalindrome("+len+") => "+pal.size+"..\n" + prnt(pal))
}  
}
// println("genPalindrome("+6+")..\n" + prnt(genPalindrome(6)))

2.2.7.  Scala program with context rule CR (3rd version)
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